Цитокины - классификация, роль в организме, лечение (цитокинотерапия), отзывы, цена. Для чего нужны цитокины – особенности клеток, управляющих иммунитетом Использование цитокинов

  • Дата: 04.07.2020

Многие попытки победить этот недуг свелись к нулю, но исследования продолжаются. Так, ученые открыли, что очень эффективно против страшной болезни направить все силы иммунной системы. Врачи иммунологи-онкологи постоянно работают над этим. Так появился один из методов лечения рака - цитокинотерапия. Что это такое, рассмотрим далее. Интересно узнать, какие есть отзывы об этом методе лечения.

Надежда на спасение

В Москве существует онкоцентр нового поколения - клиника онкоиммунологии и цитокинотерапии. Здесь медики используют новейшие методы в лечении онкологических заболеваний. Традиционные методы, такие как химиотерапия, радиотерапия и хирургия в клинике используют совместно с цитокинотерапией. Онкологи-иммунологи разработали уникальный метод лечения, при котором ни одна здоровая клетка не страдает, при этом раковые уничтожаются с минимальным количеством побочных эффектов. Этот метод лечения получил название "цитокинотерапия". Именно благодаря изучению онкоиммунологии появился этот уникальный способ борьбы с недугом.

На чем основывается онкоиммунология?

В нашем организме заложены все силы для того, чтобы он сам смог бороться с инфекциями и опухолями. Главный принцип онкоиммунологии - это стимуляция собственных защитных сил организма против опухоли. Ученые заметили, что всем злокачественным образованиям сопутствует очень низкий иммунный ответ организма. Наша иммунная система состоит из:

  • различных клеток крови, тканей (макрофагов, Т-клеток, В -клетоок, и т. д.);
  • растворимых веществ, находящижся в межклеточном пространстве, которые передают сигналы от клетки к клетке и выполняют эффекторную функцию.

После тщательного изучения действия мононуклеарных фагоцитов было выяснено, что они выполняют роль защиты, имеют способность поглощать и переваривать чужеродный материал. Также эти клетки активно участвуют во многих иммунных процессах в организме.

При воспалительных реакциях фагоциты помогают бороться с воспалением, выполняют защитную функцию. Именно эти клетки вырабатывают белок, который обладает, как выяснилось, способностью передавать сигналы на межклеточном уровне и влиять на клетки через рецепторы.

Они имеют силы бороться с разными опухолями. Клиника онкоиммунологии и цитокинотерапии в Москве работает, используя этот уникальный метод борьбы с раком. Врачи сумели активизировать внутренние силы организма для борьбы с опухолями. Этот метод получил название цитокинотерапия. Что это такое, рассмотрим подробнее.

Что значит "цитокинотерапия"?

Прежде всего, стоит сказать, что название метода происходит от названия белков цитокинов, благодаря которым появилась возможность бороться с опухолями. Терапия, проводимая с использованием цитокинов, называется "цитокинотерапия". Что это такое, что за белки такие необычные?

Цитокины - это белки, которые вырабатываются в крови, иммунной и другими системами организма, они осуществляют передачу корректирующих сигналов и способны через рецепторы влиять на клетки. Именно цитокиновая коррекция очень важна для поддержания постоянства и саморегуляции организма в состоянии нормы или при патологических отклонениях. Цитокины уничтожают только опухолевые клетки, при этом не касаются здоровых. Также замечено их иммуностимулирующее действие. По действию цитокины можно разделить на несколько групп:

  1. Они активизируют рост и образование молодых клеток крови.
  2. Защищают организм от бактериальных и вирусных инфекций путем влияния на клетки макрофаги и гранулоциты.
  3. Способствуют росту, активации и дифференцировке зрелых лимфоцитов.
  4. Активируют цитотоксические макрофаги и естественные киллеры.

Цитокины используют как для выявления заболеваний, так и лечения, а также с целью профилактики болезней.

Опираясь на функции клеток, можно выделить положительные стороны цитокинотерапии.

Положительное действие цитокинотерапии

Что такое цитокинотерапия в онкологии? Можно сделать вывод, узнав, какое действие оказывает на организм заболевшего терапия цитокинами.

Рассмотрим несколько положительных факторов при использовании цитокинотерапии:

  • Выборочное влияние на клетки опухоли и метастазы.
  • Значительное усиление эффективности химиотерапии.
  • Профилактика распространения метастазов и рецидивов опухоли.
  • Значительное уменьшение побочных проявлений химиотерапии, снижение токсических факторов.
  • Лечение и профилактика инфекционных осложнений в период лечения.
  • Нетоксична и может использоваться у пациентов с ярко выраженными патологиями.
  • Может использоваться вместе с химиотерапией и отдельно.

Ознакомившись с этими положительными факторами, можно предположить, что о таком методе, как цитокинотерапия, отзывы оставляются только положительные в лечении онкологических заболеваний.

Немного истории

Цитокинотерапия для лечения онкологических заболеваний используется в мировой практике очень давно. Однако ранние препараты были очень токсичны и вызывали множество побочных явлений, которые зачастую превышали эффективность такого лечения. Так, в США и Европе начали использовать еще в 80-е годы препарат ФНО-альфа (фактор некроза опухоли). Применять его можно в том случае, если есть возможность изолировать орган от общего кровотока из-за его чрезмерной токсичности. Лекарство циркулирует с помощью аппарата искусственного кровообращения только в органе, где есть опухолевый процесс, чтобы снизить проявление побочных реакций.

Есть препараты, которые используются давно и довольно успешно, это препараты двух групп:

  1. Интерфероны-альфа ("Интрон", "Реаферон" и т. д.).
  2. Интерлейкины (ИЛ-2).

Эффективны эти препараты только при лечении меланомы кожи и при раке почек. Но врачи постоянно ищут лекарство, которое смогло бы победить это страшное заболевание.

В России новейшие препараты использует клиника онкоиммунологии и цитокинотерапии в Москве.

Препараты для цитокинотерапии

В 1990 году в России был создан препарат «Рефнот», который используют в настоящее время. Его разработал член-корреспондент Международной академии общественных наук В. А. Шмелев. Средство успешно прошло клинические испытания и с 2009 года разрешено к применению для лечения разных видов опухолей. Оно обладает рядом преимуществ перед ранее выпущенными препаратами:

  • Лекарство менее токсично, примерно в 100 раз.
  • Воздействует непосредственно на раковые клетки через рецепторы на их поверхности.
  • Активируются и лимфоциты, что приводит к некрозу опухоли.
  • Снижается кровоснабжение опухоли, средство может проникнуть в ее центр и разрушить ее.
  • Препарат увеличивает противовирусную активность рекомбинантного интерферона в 1000 раз.
  • Повышает эффективность проводимой химиотерапии.
  • Стимулирует работу естественных киллерных клеток, а также противоопухолевых.
  • Значительно снижает процент рецидива у пролеченных пациентов.
  • Хорошая переносимость.
  • Отсутствие побочных эффектов.
  • Улучшает общее состояние больного.

Как говорилось ранее, препарат ФНО-альфа очень токсичен и оказывает влияние только на первичный очаг опухоли.

Еще один препарат, который очень эффективен и применяется в цитокинотерапии, - это «Ингарон». Он создан на основе препарата «Интерферон-гамма». Препарат «Ингарон» способен блокировать выработку вирусных белков и вирусные РНК и ДНК.

Зарегистрирован в 2005 году и применяется для лечения и профилактики таких заболеваний:

  • Гепатиты В и С.
  • СПИД и ВИЧ.
  • Туберкулез легких.
  • Инфекции, вызванные вирусом папилломы человека.
  • Хламидиоз урогенитальный.
  • Раковые заболевания.

А также в целях профилактики осложнений при лечении хронического гранулематоза.

Для лечения и профилактики ОРВИ, гриппа используют раствор «Ингарона» для обработки слизистых.

При лечении опухолей «Ингарон» хорошо активирует рецепторы раковых клеток, на которые затем влияет «Рефнот». Поэтому в цитокинотерапии эффективно совместное использование этих двух препаратов.

Действие «Ингарона» заключается в следующем:

  • Останавливает распространение вирусных РНК и ДНК в клетках.
  • Не дает распространяться внутриклеточным патогенным вирусам, бактериям, грибкам.
  • Увеличивает активность макрофагов.
  • Повышает активность естественных киллерных клеток.
  • Восстанавливает естественный фенотип поврежденных клеток.
  • Замедляет рост раковых клеток.
  • Уничтожает некоторые виды раковых клеток на клеточном уровне.

  • Останавливает разрастание опухолевых сосудов.
  • Значительно останавливает рост опухоли.
  • Приводит в норму артериальное давление.
  • Понижает уровень липопротеинов.

Препараты «Рефнот» и «Ингарон» совместно успешно используются в цитокинотерапии. Лечение таким методом проводит клиника онкоиммунологии и цитокинотерапии в Москве.

Кому может помочь цитокинотерапия?

Исследования показали, что проведенная за неделю до химиотерапии цитокинотерапия значительно снизит токсические побочные эффекты. Продолжение проведения цитокинотерапии после химиотерапии защитит организм от развития инфекций, повысит противоинфекционный иммунитет. При этом эффективность лечения значительно повысится.

Метод цитокинотерапии применяется при лечении таких опухолей, как:

  • Рак шейки и тела матки.
  • Опухоли молочных желез.
  • Мезотелиома.
  • Рак легкого.
  • Онкология желудка, тонкого и толстого кишечника.
  • Опухоли поджелудочной железы.
  • Рак почек.
  • Яичников.
  • Мочевого пузыря.
  • Рак головного мозга.
  • Злокачественная опухоль пищевода.
  • Саркомы костей и мягких тканей.

  • Глиома.
  • Опухоли нервной системы.
  • Рак кожи, меланома.

Цитокинотерапия при также возможна как для профилактики, так и лечения.

Кому метод цитокинотерапии не подходит?

Учитывая то, что препараты для проведения цитокинотерапии не имеют побочных проявлений, применять их можно практически всем. Однако существует категория людей, которым это лечение противопоказано:

  • Беременные женщины.
  • Период грудного вскармливания.
  • При наличии непереносимости составляющих препаратов, что очень редко.
  • Аутоиммунные заболевания.

Много видов рака поддаются лечению методом цитокинотерапии, о них мы говорили ранее, но опухоли щитовидной железы не могут пока войти в их число, так как препараты интерферона оказывают значительное влияние на ее ткани и функции. Может вызывать разрушение клеток и нарушать ее работу. Цитокины большое значение оказывают на развитие аутоиммунных заболеваний, в том числе и щитовидной железы. Эта зависимость еще не до конца изучена. Раковому больному с АИТом поможет ли цитокинотерапия? Об этом говорить рано. Так как метод цитокинотерапии включает препараты с интерфероном «Ингарон».

Лечение назначать может только лечащий врач-онколог.

Побочные проявления

Как говорилось ранее, проявление побочных реакций не наблюдалось. Однако при приеме препарата «Рефнот» в редких случаях наблюдалось повышение температуры на 1-2 градуса. В этом случае рекомендуется принять «Ибупрофен» или «Индометацин». На действие препаратов это не повлияет.

Цитокины - ключевые гуморальные факторы воспаления, необходимые для реализации защитных функций врожденного иммунитета. В развитии воспаления участвуют три группы цитокинов - воспалительные, или провоспалительные цитокины, хемокины, колониестимулирующие факторы, а также функционально связанные факторы IL-12 и IFNy. Цитокинам также принадлежит важная роль в подавлении и сдерживании воспалительной реакции. К противовоспалительным цитокинам относят трансформирующий фактор роста в (TGFp), IL-10; часто роль противовоспалительного фактора играет IL-4.
Выделяют 3 основных представителя группы провоспалительных цитокинов - TNFa, IL-1 и IL-6; относительно недавно к ним были добавлены IL-17 и IL-18. Эти цитокины продуцируются в основном активированными моноцитами и макрофагами преимущественно в очаге воспаления. Провоспалительные цитокины могут вырабатываться также нейтрофилами, дендритными клетками, активированными В-, NK- и Т-лимфоцитами. В очаге проникновения патогенов цитокины первыми начинают синтезировать немногочисленные местные воспалительные макрофаги. Затем в процессе эмиграции лейкоцитов из кровотока численность клеток-продуцентов возрастает и их спектр расширяется. В частности, к синтезу провоспалительных цитокинов подключаются стимулированные продуктами микроорганизмов и факторами воспаления эпителиальные, эндотелиальные, синовиальные, глиальные клетки, фибробласты. Гены цитокинов относят к индуцибельным. Естественные индукторы их экспрессии - патогены и их продукты, действующие через TLR и другие патогенраспознающие рецепторы. Классический индуктор - бактериальный ЛПС. В то же время некоторые провоспалительные цитокины (IL-1, TNFa) сами способны индуцировать синтез провоспалительных цитокинов.
Провоспалительные цитокины синтезируются и секретируются достаточно быстро, хотя кинетика синтеза различных цитокинов этой группы неодинакова. В типичных случаях (быстрый вариант) экспрессию их мРНК отмечают через 15-30 мин после индукции, появление белкового продукта в цитоплазме - через 30-60 мин, содержание его во внеклеточной среде достигает максимума через 3-4 ч. Синтез цитокинов конкретной клеткой продолжается довольно непродолжительное время - обычно немногим больше суток. Не весь синтезируемый материал секретируется. Некоторое количество цитокинов экспрессируется на поверхности клетки или содержится в цитоплазматических гранулах. Выброс гранул могут вызывать те же активирующие сигналы, что и продукция цитокинов. Это обеспечивает быстрое (в течение 20 мин) поступление цитокинов в очаг поражения.
Провоспалительные цитокины выполняют многие функции. Основная их роль - «организация» воспалительной реакции (рис. 2.55). Один из наиболее важных и ранних эффектов провоспалительных цитокинов - усиление экспрессии молекул адгезии на эндотелиальных клетках, а также на самих лейкоцитах, что приводит к миграции в очаг воспаления лейкоцитов из кровяного русла (см. раздел 2.3.3). Кроме того, цитокины индуцируют усиление кислородного метаболизма клеток, экспрессии ими рецепторов для цитокинов и других факторов воспаления, стимуляцию выработки цитокинов, бактерицидных пептидов и т.д. Провоспалительные цитокины оказывают преимущественно местное действие. Попадание избыточно секретируемых провоспалительных цитокинов в циркуляцию способствует проявлению системных эффектов воспаления, а также стимулирует выработку цитокинов клетками, отдаленными от очага воспаления. На системном уровне провоспалительные цитокины стимулируют продукцию белков острой фазы, вызывают повышение температуры тела, действуют на

Рис. 2.55. Внутриклеточная передача сигнала, запускаемая провоспалительными цитокинами и механизмы активации провоспалительных генов

эндокринную и нервную системы, а в высоких дозах приводят к развитию патологических эффектов (плоть до шока, подобного септическому).
IL-1 - собирательное обозначение семейства белков, включающего более 11 молекул. Функция большинства из них неизвестна, однако 5 молекул - IL-1a (по современной классификации - IL-1F1), IL-1p (IL-1F2), IL-1RA (IL-1F3), IL-18 (IL-1F4) и IL-33 (IL-1F11) - активные цитокины.
IL-1a и IL-1P традиционно называют IL-1, поскольку они взаимодействуют с одним и тем же рецептором и их эффекты неразличимы. Гены этих цитокинов локализованы в длинном плече хромосомы 2 человека. Гомология между ними на нуклеотидном уровне составляет 45%, на аминокислотном - 26%. Обе молекулы имеют р-складчатую структуру: они содержат 6 пар антипараллельных р-слоев и имеют форму трилистника. Клетки синтезируют молекулу-предшественник с молекулярной массой около 30 кДа, лишенную сигнальных пептидов, что свидетельствует о необычном пути процессинга молекулы IL-1. Молекулярная масса зрелых белков - около 18 кДа.
IL-1a существует в трех формах - внутриклеточной (растворимая молекула присутствует в цитозоле и выполняет регуляторные функции), мембранной (молекула доставляется на поверхность клетки за счет механизма, аналогичного рециклингу рецепторов и заякоривается в мембране) и секре- тиуремой (молекула секретируется в первоначальном виде, но подвергается процессингу - расщеплению внеклеточными протеазами с образованием активного цитокина массой 18 кДа). Основной вариант молекулы IL-1a у человека - мембранный. В такой форме действие цитокина более выражено, но проявляется только локально.
Процессинг IL-1P происходит внутри клетки с участием специализированного фермента - IL-1-конвертазы (каспазы 1), находящегося в лизосомах.
Активация этого фермента осуществляется в составе инфламмосомы - временной надмолекулярной структуры, включающей, кроме неактивной каспазы 1, внутриклеточные рецепторы семейства NLR (см. раздел 2.2.3) - NOD1, NOD2, IPAF и др. Для активации каспазы 1 необходимо распознавание названными рецепторами PAMP, что вызвает развитие активационного сигнала. В результате происходит образование транскрипционного фактора NF-kB и индукция провоспалительных генов, а также активация инфламмосомы и содержащейся в ней каспазы 1. Активированный фермент расщепляет молекулу-предшественницу IL-1P, и образовавшийся зрелый цитокин с молекулярной массой 18 кДа секретируется клеткой.
IL-1a, IL-1P, а также рецепторный антагонист IL-1 имеют общие рецепторы, экспрессируемые спонтанно на многих типах клеток. При активации клеток на них возрастает число мембранных рецепторов для IL-1. Основной из них - IL-1RI - во внеклеточной части содержит 3 иммуноглобулиноподобных домена. Его внутриклеточная часть представляет TIR- домен, структурно сходный с аналогичными доменами TLR и запускающий те же сигнальные пути (см. раздел 2.2.1). Число этих рецепторов невелико (200-300 на клетку), но они обладают высоким сродством к IL-1 (Kd равен 10-11 М). Другой рецептор - IL-1RII - лишен сигнальной составляющей в цитоплазматической части, не передает сигнал и служит рецептором-ловушкой. В передаче сигнала от IL-1RI принимают участие те же факторы, что и для TLR (например, MyD88, IRAK и TRAF6), что приводит к аналогичным результатам - образованию транскрипционных факторов NF-kB и АР-1, вызывающих экспрессию одного и того же набора генов (см. рис. 2.12). Эти гены отвечают за синтез провоспалительных цитокинов, хемокинов, молекул адгезии, ферментов, обеспечивающих бактерицидность фагоцитов, и других генов, продукты которых участвуют в развитии воспалительной реакции. К продуктам, секрецию которых индуцируют IL-1, принадлежит и сам IL-1, т.е. в данном случае срабатывает петля положительной обратной связи.
Мишенями IL-1 потенциально могут быть любые клетки организма. В наибольшей степени его действие затрагивает эндотелиальные клетки, все виды лейкоцитов, клетки хрящевой и костной тканей, синовиальные и эпителиальные клетки, многие разновидности нервных клеток. Под влиянием IL-1 происходит индукция экспрессии больше 100 генов; с его участием реализуется больше 50 различных биологических реакций. Основные эффекты IL-1 вызывают эмиграцию лейкоцитов и активацию их фагоцитарной и бактерицидной активности. Они влияют также на свертывающую систему и сосудистый тонус, определяя особенности гемодинамики в очаге воспаления. IL-1 оказывает многоплановое действие на клетки не только врожденного, но и адаптивного иммунитета, обычно стимулируя проявления и того, и другого.
IL-1 обладает множеством системных эффектов. Он стимулирует выработку гепатоцитами белков острой фазы, при действии на центр терморегуляции гипоталамуса вызывает развитие лихорадки, участвует в развитии системных проявлений воспалительного процесса (например, в недомогании, снижении аппетита, сонливости, адинамии), что связано с действием IL-1 на ЦНС. Усиливая экспрессию рецепторов для колониестимулирующих факторов, IL-1 способствует усилению гемопоэза, с чем связано его радиозащитное действие. IL-1 стимулирует выход из костного мозга лейкоцитов, в первую очередь нейтрофилов, в том числе незрелых, что приводит к появлению при воспалении лейкоцитоза и сдвигу лейкоцитарной формулы влево (накопление незрелых форм клеток). Эффекты IL-1 влияют на вегетативные функции и даже на высшую нервную деятельность (изменение поведенческих реакций и т.д.). Мишенями IL-1 могут быть также хондроциты и осте- оциты, с чем связана способность IL-1 вызывать разрушение хряща и кости при их вовлечении в воспалительный процесс и наоборот, гиперплазия патологических тканей (паннус при ревматоидном артрите). Повреждающее действие IL-1 проявляется и при септическом шоке, повреждении суставов при ревматоидном артрите и ряде других патологических процессов.
Дублирование IL-1 эффектов бактериальных продуктов связано с потребностью в многократном воспроизведении активирующего эффекта патогенов без их диссеминации. Микроорганизмы стимулируют только клетки, находящиеся в непосредственной близости от места проникновения, прежде всего локальные макрофаги. Затем тот же эффект многократно воспроизводится молекулами IL-1p. Выполнение IL-1 указанной функции облегчается экспрессией их рецепторов почти всеми клетками организма при активации (происходит прежде всего в очаге воспаления).
Рецепторный антагонист IL-1 (IL-1RA) гомологичен IL-1a и IL-1P (гомология составляет соответственно 26% и 19%). Он взаимодействует с рецепторами IL-1, но не способен передавать в клетку сигнал. В результате IL-1RA выступает в роле специфического антагониста IL-1. IL-1RA секретируют те же клетки, что и IL-1, этот процесс не требует участия каспазы 1. Выработку IL-1RA индуцируют те же факторы, что и синтез IL-1, однако некоторое его количество спонтанно продуцируют макрофаги и гепатоциты. В результате этот фактор постоянно присутствует в сыворотке крови. Вероятно, это необходимо для предотвращения негативных последствий системного действия IL-1, вырабатываемого в значительных количествах при остром воспалении. В настоящее время проводят испытания рекомбинантного IL-1RA в качестве лекарственного препарата при лечении хронических воспалительных заболеваний (ревматоидный артрит и т.д.)
IL-18 - провоспалительный цитокин, родственный IL-ф: он также синтезируется в виде предшественника, конвертируемого с участием каспазы 1; взаимодействует с рецептором, цитоплазматическая часть которого содержит домен TIR и передает сигнал, приводящий к активации NF-kB. В результате происходит активация всех провоспалительных генов, однако она выражена слабее, чем при действии IL-1. Отдельное свойство IL-18 - индукция (особенно в сочетании с IL-12) синтеза клетками IFNy. В отсутствие IL-12 IL-18 индуцирует синтез антагониста IFNy - IL-4 и способствует развитию аллергических реакций. Действие IL-18 ограничивает растворимый антагонист, связывающий его в жидкой фазе.
IL-33 структурно очень близок IL-18. Процессинг IL-33 тоже происходит с участием каспазы 1. Однако этот цитокин отличается от других представителей семейства IL-1 выполняемыми функциями. Своеобразие действия IL-33 значительной степени обусловлено тем, что его рецептор экспрессируется избирательно на ^2-клетках. В связи с этим IL-33 способствует секреции ^2-цитокинов IL-4, IL-5, IL-13 и развитию аллергических процессов. Он не оказывает существенного провоспалительного действия.
Фактор некроза опухоли а (ФНОа или TNFa) - представитель другого семейства иммунологически значимых белков. Это провоспалительный цитокин с широким спектром активности. TNFa имеет в-складчатую структуру. Он синтезируется в виде функционально активной мембранной молекулы про-TNFa с молекулярной массой 27 кДа, представляющей трансмембранный белок II типа (т.е. его N-концевая часть направлена внутрь клетки). В результате протеолиза во внеклеточном домене формируется растворимый мономер с молекулярной массой 17 кДа. Мономеры TNFa спонтанно формируют тример с молекулярной массой 52 кДа, представляющий основную форму этого цитокина. Тример имеет колоколовидную форму, причем субъединицы соединяются своими С-концами, содержащими по 3 участка связывания с рецептором, тогда как N-концы друг с другом не связаны и не участвуют во взаимодействии с рецепторами (а следовательно, и в выполнении цитокином своих функций). При кислых значениях рН TNFa приобретает a-спиральную структуру, что обусловливает изменение некоторых его функций, в частности, усиление цитотоксичности. TNF - прототипический член большого семейства молекул суперсемейства TNF (табл. 2.31). К нему относят лимфотоксины a и в (в растворимой форме существует только первый), а также многие мембранные молекулы, участвующие в межклеточных взаимодействиях (CD154, FasL, BAFF, OX40-L, TRAIL, APRIL, LIGHT), которые будут упоминаться далее в различных контекстах. Согласно современной номенклатуре, название членов суперсемейства состоит из сокращения TNFSF и порядкового номера (для TNFa - TNFSF2, для лимфотоксина a - TNFSF1).
Таблица 2.31. Основные представители семейств фактора некроза опухоли и его рецепторов


Фактор (лиганд)

Хро
мосома

Молекулярная масса, кДа

Рецептор

TNFa (TNFSF2)


17; тример - 52; гликозилирован- ная форма - 25,6

TNF-R1, TNF-R2 (TNFRSF1, TNFRSF2)

Лимфотоксинa (TNFSF1)


22,3

TNF-R1, TNF-R2

Лимфотоксин в (TNFSF3)


25,4

LTp-R (TNFRSF3)

OX-40L (TNFSF4)

1q

34,0

OX-40 (TNFRSF4; CD134)

CD40L (TNFSF5; CD154)

Xp

39,0

CD40 (TNFRSF5)

FasL (TNFSF6; CD178)

1q

31,5

Fas/APO-1 (CD95) (TNFRSF6)

CD27L (TNFSF7, CD70)

19p

50,0

CD27 (TNFRSF7)

CD30L (TNFSF8)

9q

40,0

CD30 (TNFRSF8)

4-1BBL (TNFSF9)

19p

27,5

4-1BB (TNFRSF9; CD137)

TRAIL (TNFSF10)

3q

32,0

ВК4б ВК5

APRIL (TNFSF13)

17p

27,0

BCMA, TACI

LIGHT (TNFSF14)

16q

26,0

HVEM (TNFRSF14)

GITRL (TNFSF18)

1p

22,7

GITR (TNFRSF18)

BAFF (TNFSF20)

13

31,2

BAFFR, TACI, BCMA

Основные продуценты TNFa, как и IL-1, - моноциты и макрофаги. Его секретируют также нейтрофилы, эндотелиальные и эпителиальные клетки, эозинофилы, тучные клетки, В- и Т-лимфоциты при их вовлечении в воспалительный процесс. TNFa выявляют в кровотоке раньше других провоспалительных цитокинов - уже через 20-30 мин после индукции воспаления, что связано со «сбрасыванием» клетками мембранной формы молекулы, а возможно также с выбросом TNFa в составе содержимого гранул.
Есть 2 типа рецепторов TNF, общие для TNFa и лимфотоксина a - TNFRI (от tumor necrosis factor receptor I) и TNFRII с молекулярной массой соответственно 55 и 75 кДа. TNFRI присутствует практически на всех клетках организма, кроме эритроцитов, а TNFRII - преимущественно на клетках иммунной системы. TNFR образуют большое семейство, в которое входят молекулы, участвующие во взаимодействии клеток и индукции клеточной гибели - апоптоза. Сродство TNFa к TNFRI ниже, чем к TNFRII (соответственно около 5х10-10 М и 55х10-11 М. При связывании TNFa-тримера происходит необходимая для передачи сигнала тримеризация его рецепторов.
Особенности передачи сигнала от этих рецепторов во многом определяются структурой их внутриклеточной части. Цитоплазматическая часть TNFRI представлена так называемым доменом смерти, от которого поступают сигналы, приводящие к включению механизма апоптоза; TNFRII лишен домена смерти. Передача сигнала от TNFRI происходит с участием адапторных белков TRADD (TNFR-associated death domain) и FADD (Fas- associated death domain), тоже содержащих домены смерти. Помимо пути, приводящего к развитию апоптоза (через активацию каспазы 8 или синтез церамида), выделяют еще несколько сигнальных путей, включаемых с участием факторов TRAF2/5 и RIP-1. Первый из названных факторов передает сигнал по пути, приводящему к активации фактора NF-kB, т.е. по классическому пути индукции провоспалительных генов (см. рис. 2.55). Сигнальный путь, активируемый фактором RIP-1, приводит к активации MAP-каскада с конечным продуктом - транскрипционным фактором АР-1. Этот фактор включает гены, обеспечивающие активацию клетки и предотвращающие развитие апоптоза. Судьбу клетки, таким образом, определяет баланс про- и антиапоптотических механизмов, запускаемых при связывании TNFa с TNFRI.
Реализация функций TNFa связана преимущественно с действием через TNFRI - выключение соответствующего гена приводит к развитию тяжелого иммунодефицита, тогда как последствия инактивации гена TNFRII незначительны. На пике воспалительной реакции рецепторы ФНОa могут «сбрасываться» с мембраны и выходить в межклеточное пространство, где они связывают ФНОa, оказывая противовоспалительное действие. В связи с этим растворимые формы TNFR используют при лечении хронических воспалительных заболеваний. При этом оказалось, что препарат на основе растворимого TNFRII оказался клинически наиболее эффективным.
Как и IL-1, TNFa усиливает экспрессию молекул адгезии, синтез провоспалительных цитокинов и хемокинов, белков острой фазы, ферментов фагоцитарных клеток и т.д. Наряду с IL-1, TNFa участвует в формировании всех основных местных, а также некоторых системных проявлений воспаления. Он активирует эндотелиальные клетки, стимулирует ангиогенез, усиливает миграцию и активирует лейкоциты. TNFa в большей степени, чем IL-1, влияет на активацию и пролиферацию лимфоцитов. В комбинации с IFNy TNFa индуцирует активность NO-синтазы фагоцитов, что значительно усиливает их бактерицидный потенциал. TNFa стимулирует пролиферацию фибробластов, способствуя заживлению ран. При повышенной локальной выработке TNFa преобладают процессы повреждения тканей, проявляющиеся развитием геморрагического некроза. Помимо этого TNFa подавляет активность липопротеиновой липазы, что ослабляет липогенез и приводит к развитию кахексии (одно из первоначальных названий TNFa - кахексин). Повышенное высвобождение TNFa и его накопление в циркуляции, например при действии высоких доз бактериальных суперантигенов, вызывает развитие тяжелой патологии - септического шока. Таким образом, действие TNFa, направленное на выполнение защитной функции и поддержание гомеостаза, может сопровождаться тяжелыми токсическими эффектами (местными и системными), нередко служащими причиной смерти.
IL-6 - провоспалительный цитокин широкого действия. Он также служит прототипическим фактором семейства цитокинов, включающего, кроме собственно IL-6, онкостатин М (OSM), лейкемия-ингибирующий фактор (LIF), цилиарный нейротрофический фактор (CNTF), кардиотро- пин-1 (CT-1), а также IL-11 и IL-31. Молекулярная масса IL-6 - 21 кДа. IL-6 вырабатывают моноциты и макрофаги, эндотелиальные, эпителиальные, глиальные, гладкомышечные клетки, фибробласты, Т-лимфоциты типа Th2, а также многие опухолевые клетки. Выработка IL-6 миелоидными клетками индуцируется при взаимодействии их TLR с микроорганизмами и их продуктами, а также под влиянием IL-1 и TNFa. При этом в течение 2 ч содержание IL-6 в плазме крови возрастает в 1000 раз.
Рецепторы всех факторов семейства IL-6 содержат общий компонент - цепь gp130, присутствующую практически на всех клетках организма. Второй компонент рецептора индивидуален для каждого цитокина. Специфическая цепь рецептора IL-6 (gp80) отвечает за связывание этого цитокина, тогда как gp130 участвует в передаче сигнала, поскольку связана с тирозинкиназами Jak1 и Jak2. При взаимодействии IL-6 с рецептором запускается следующая последовательность событий: IL-6-мономер взаимодействует с цепью gp80, происходит димеризация комплексов (2 молекулы цитокина - 2 цепи gp80), после чего к комплексу присоединяется 2 цепи gр130, что приводит к фосфорилированию Jak-киназ. Последние фосфорилируют факторы STAT1 и STAT3, которые димеризуются, перемещаются в ядро и связывают промоторы генов-мишеней. Цепь gp80 легко «смывается» с клетки; в свободной форме она взаимодействует с цитокином, инактивируя его, т.е. выступает в качестве специфического ингибитора IL-6.
IL-6 участвует в индукции практически всего комплекса местных проявлений воспаления. Он влияет на миграцию фагоцитов, усиливая выработку СС-хемокинов, привлекающих моноциты и лимфоциты, и ослабляя продукцию СХС-хемокинов, привлекающих нейтрофилы. Провоспалительные эффекты IL-6 выражены слабее, чем у IL-1 и TNFa, в противоположность которым он не усиливает, а угнетает выработку провоспалительных цитокинов (IL-1, TNFa и IL-6) и хемокинов клетками, вовлеченными в воспалительный процесс. Таким образом, IL-6 сочетает свойства про- и противовоспалительных цитокинов и участвует не только в развитии, но и в ограничении воспалительной реакции.
IL-6 - основной фактор, индуцирующий в гепатоцитах экспрессию генов белков острой фазы. IL-6 влияет на различные этапы гемопоэза, в том числе на пролиферацию и дифференцировку стволовых клеток. Он служит ростовым фактором незрелых плазматических клеток, существенно усиливая гуморальный иммунный ответ. IL-6 влияет также на Т-лимфоциты, повышая активность цитотоксических Т-клеток.
IL-17 и связанные с ним цитокины. Группа цитокинов, включающая разновидности IL-17, привлекла всеобщее внимание в связи с открытием особой разновидности Т-хелперов - Th17, участвующей в развитии некоторых повреждающих форм воспалительных реакций, в частности, при аутоиммунных процессах (см. раздел 3.4.3.2). Роль этих цитокинов в реакциях адаптивного иммунного ответа будет рассмотрена далее. Здесь приведем только общую характеристику цитокинов и кратко рассмотрим их роль в реакциях врожденного иммунитета.
Семейство IL-17 включает 6 белков, обозначаемых буквами от А до F. Свойствами провоспалительных цитокинов из них обладают IL-17A и IL-17F. Они представляют собой гомодимеры, скрепленные дисульфидной связью; их молекулярная масса - 17,5 кДа. Эти цитокины продуцируются упомянутыми Th17, а также CD8+ Т-клетками, эозинофилами, нейтрофилами. IL-23 стимулирует развитие ТЫ7-клеток и выработку IL-17.
Рецепторы для IL-17 экспрессируются многоми клетками - эпителиальными, фибробластами, клетками иммунной системы, в частности, нейтрофилами. Основной результат взаимодействия IL-17 с рецептором состоит, как и при действии других провоспалительных цитокинов, в индукции фактора NF-kB и экспрессии многочисленных NF-KB-зависи- мых генов воспаления.
Один из важных биологических эффектов IL-17 (наряду с IL-23) - поддержание гомеостаза нейтрофилов. Эти цитокины усиливают образование нейтрофилов, стимулируя выработку G-CSF. При этом усиление или ослабление выработки IL-17 и IL-23 регулируется численностью нейтрофилов в периферических тканях: снижение числа этих клеток в результате апоптоза приводит к усилению выработки цитокинов.
Провоспалительное действие IL-17 реализуется главным образом через усиление выработки других цитокинов (IL-8, IL-6, y-CSF, ряд хемокинов) и экспрессии молекул адгезии. У мышей, трансгенных по IL-17 или по IL-23, развивается системное хроническое воспаление, имеющее интерстициальный характер, с инфильтрацией нейтрофилами, эозинофилами, макрофагами и лимфоцитами различных органов. За этими цитокинами признают ведущую роль в развитии хронических аутоиммунных заболеваний.
Семейство IL-12
IL-12 был идентифицирован по способности активировать NK-клетки, вызывать пролиферацию Т-лимфоцитов и индуцировать синтез IFNy. IL-12 занимает особое место в ряду цитокинов, вырабатываемых клетками системы врожденного иммунитета, поскольку он (как и его главные продуценты - дендритные клетки) служит связующим звеном между врожденным и адаптивным иммунитетом. С другой стороны, IL-12 входит в тандем IL-12-IFNy, которому принадлежит ключевая роль в осуществлении иммунной защиты от внутриклеточных патогенов.
IL-12 представляет димер, состоящий из субъединиц р40 и р35. Его суммарная молекулярная масса - 75 кДа. Функциональная активность IL-12 связана с его субъединицей р40. «Полномасштабный» IL-12 секретируют активированные моноциты, макрофаги, миелоидные дендритные клетки, нейтрофилы, эпителиальные клетки барьерных тканей (они продуцируют и ^-12р35 и IL-12p40 субъединицы цитокина). Большинство же клеток организма синтезирует только функционально неактивную субъединицу ^-12р35. Количество гетеродимера IL-12, секретируемого клеткой, ограничено субъединицей р35. IL-12p40 синтезируется в избытке и может димеризоваться с образованием гомодимера, выступающего в качестве антагониста IL-12, а также хемоаттрактанта. Индукторы выработки IL-12 - прежде всего патогены, распознаваемые TLR и другими паттернраспознающими рецепторами. Выработку IL-12 усиливают IL-1, IFNy, а также межклеточные взаимодействия, опосредованные CD40-CD154 и другими парами молекул семейств - TNFR.
Рецептор IL-12 сильнее всего экспрессирован на NK-клетках, активированных ТЫ-клетках и цитотоксических Т-лимфоцитах и в меньшей степени - на дендритных клетках. Экспрессия рецептора IL-12 активированными Т-клетками усиливается под влиянием IL-12, IFNy, IFNa, TNFa и при кос- тимуляции через рецептор CD28. Рецептор для IL-12 представляет димер, образованный субъединицами IL-12RP1 (100 кДа), и IL-12RP2 (130 кДа, CD212), с которым ассоциирован белок с молекулярной массой 85 кДа. В связывании IL-12 участвуют и Pj и р2 цепи, тогда как в передаче сигнала задействована преимущественно субъединица IL-12RP2. Внутриклеточный домен Pj-цепи ассоциирован с киназой JAK2, внутриклеточный домен Р2-цепи - с киназой Tyk2. Киназы фосфорилируют транскрипционные факторы STAT1, STAT3, STAT4 и STAT5.
Главная функция IL-12, обусловленная его способностью стимулировать цитотоксические лимфоциты (NK и T) и индуцировать дифферен- цировку Thl-клеток (см. раздел 3.4.3.1), - запуск клеточных механизмов защиты от внутриклеточных патогенов. IL-12 действует на NK- и NKT-клетки уже на ранних стадиях иммунных процессов, усиливая пролиферацию и цитотоксическую активность NK-клеток, а позже - цитотоксических Т-лимфоцитов и синтез всеми этими клетками IFNy. Несколько позже IL-12 индуцирует дифференцировку Thl-клеток, тоже продуцирующих IFNy. Условие индукции Thl-клеток - предварительная экспрессия активированными CD4+ Т-клетками субъединицы рецептора IL-12RP2. После этого клетки приобретают способность связывать IL-12, что приводит к активации фактора STAT4, регулирующего экспрессию генов, характерных для Thl-клеток (для экспрессии гена IFNG более важно действие транскрипицонного фактора T-bet). Одновременно IL-12 подавляет дифференцировку ^2-клеток и ослабляет выработку клетками
В-ряда антител классов IgE и IgA. Действуя на дендритные и другие АПК IL-12 индуцирует экспрессию костимулирующих молекул (CD80/86, и др.), а также продуктов МНС-II АПК. Таким образом, IL-12 играет связующую роль между врожденным и адаптивным иммунитетом и усиливает иммунные механизмы, ответственные за защиту от внутриклеточных патогенов и опухолей.
К семейству IL-12 относят IL-23, IL-27 и IL-35. Эти цитокины представляют гетеродимеры: IL-23 образован двумя субъединицами - ^-23р19 и IL-12p40 (идентична соответствующей субъединице IL-12), IL-27 - субъединицами Ebi3 и IL-27p28, IL-35 - субъединицами Ebi3 и IL-12p35. Эти цитокины продуцируются преимущественно дендритными клетками. Выработку цитокинов семейства IL-12 запускают представленные на патогенах PAMP и цитокины, в особенности GM-CSF.
Рецепция IL-23 осуществляется двумя разными структурами: субъединицу IL-12p40 распознает ргцепь рецептора для IL-12, а субъединицу ^-23р19 - особый рецептор - IL-23R. Основную роль в передаче сигнала от IL-23 играет STAT4. Рецептор для IL-27 активирует молекулы WSX-1 (гомолог р2-субъединицы IL-12R) и gp130 (полипептидная цепь, входящая в состав рецепторов для цитокинов семейства IL-6).
Подобно IL-12, IL-23 и IL-27 действуют преимущественно на CD4+ Т-клетки, способствуя их дифференцировке по Th1-пути. Особенности IL-23 - преимущественное действие на Т-клетки памяти, а также способность поддерживать развитие Т-хелперов типа Th17. IL-27 отличается от двух других цитокинов семейства способностью вызывать пролиферацию не только активированных, но и покоящихся CD4+ Т-клеток. Недавно было показано, что IL-27 и IL-35 могут выступать в качестве регуляторных (супрессорных) факторов, поскольку их субъединица Ebi3 - мишень ключевого фактора регуляторных Т-клеток FOXP3.
Колониестимулирующие факторы (CSF) (табл. 2.32) или гемопоэтины представлены тремя цитокинами - GM-CSF, G-CSF и M-CSF. К ним функционально близок IL-3 (Multi-CSF). Эти факторы называют колониестимулирующими, поскольку впервые были идентифицированы по способности поддерживать рост in vitro колоний гемопоэтических клеток соответствующего состава. IL-3 обладает наиболее широким спектром действия, поскольку поддерживает рост любых колоний гемопоэтических клеток, кроме лимфоидных. GM-CSF поддерживает рост как смешанных гранулоцитарно-моноцитарных колоний, так и отдельно колоний грану- лоцитов и моноцитов/макрофагов. G-CSF и M-CSF специализируются на поддержании роста и дифференцировки соответствующих колоний. Эти факторы не только обеспечивают выживаемость и пролиферацию кроветворных клеток указанных типов, но и способны активировать уже зрелые дифференцированные клетки (M-CSF - макрофаги, G-CSF - нейтрофилы). M-CSF участвует в дифференцировке моноцитов в макрофаги и подавляет дифференцировку моноцитов в дендритные клетки. G-CSF, помимо действия на гранулоцитарный ветвь гемопоэза, вызывает мобилизацию кроветворных стволовых клеток из костного мозга в кровоток.
Таблица 2.32. Характеристика колониестимулирующих факторов

Назва
ние

Хромо
сома

Молекулярная масса, кДа

Клетки-
продуценты

Клетки-
мишени

Рецеп
торы

GM-CSF

5q

22

Макрофаги, Т-клетки, NK-клетки, стромальные клетки, эпителиальные клетки

Макрофаги, нейтрофилы, эозинофилы, Т-клетки, дендритные клетки, гемопоэтические клетки

GM-
CSFR
а/Р

G-CSF

17q

18-22


Нейтрофилы, эозинофилы, Т-клетки, гемопоэтические клетки

G-CSFR (1 цепь)

M-CSF

5q

45/70 (димер)

Макрофаги, стромальные клетки, эпителиальные клетки

Макрофаги,
гемопоэтические
клетки

c-Fms

Фактор стволовых клеток

12q

32

Стромальные
клетки

Гемопоэтические клетки, В-клетки, тучные клетки

c-Kit

Flt-3-
лиганд

19q

26,4

Стромальные
клетки

Гемопоэтические клетки, тучные клетки

Flt-3

G-CSF, GM-CSF и IL-3 структурно характеризуются как гемопоэтины, содержащие 4 а-спиральных домена. Их рецепторы содержат по 2 полипептидные цепи, их относят к семейству гемопоэтиновых рецепторов. M-CSF отличается от остальных CSF. Он представляет собой димерную молекулу и существует как в растворимой, так и в мембраносвязанной формах. Его рецептор имеет внеклеточные Ig-подобные домены и внутриклеточный домен, обладающий активностью тирозинкиназы (наименование этой киназы-протоонкогена - с-Fms - иногда переносят на весь рецептор). При связывании М-CSF с рецепторами происходит их димеризация и активация киназы.
Колониестимулирующие факторы продуцируются эндотелиальными клетками и фибробластами а также моноцитами/макрофагами. GM-CSF и IL-3, кроме того, синтезируются Т-лимфоцитами. Под влиянием бактериальных продуктов (через паттернраспознающие рецеторы) и провоспалительных цитокинов синтез и секреция колониестимулирующих факторов значительно возрастает, что приводит к усилению миелопоэза. Особенно сильно стимулируется гранулоцитопоэз, что сопровождается ускоренной эмиграцией клеток, в том числе незрелых, на периферию. Это создает картину нейтрофильного лейкоцитоза со сдвигом формулы вправо, весьма характерным для воспаления. Препараты на основе GM- и G-CSF применяют в клинической практике для стимуляции гранулоцитопоэза, ослабленного цитотоксическими воздействиями (облучение, прием химиопрепаратов при лечении опухолевых заболеваний и т.д.). G-CSF применяют для мобилизации стволовых кроветворных клеток с последующим использованием индуцированной лейкомассы для восстановления нарушенного гемопоэза.
Фактор стволовых клеток (SCF - stem cell factor, c-kit ligand) cекретируют клетки стромы костного мозга (фибробласты, эндотелиальные клетки), а также разные типы клеток в период эмбрионального развития. SCF существует в виде трансмембранной и растворимой молекул (последняя образуется в результате протеолитического отщепления внеклеточной части). SCF выявляют в плазме крови. Его молекула имеет две дисульфидные связи. Рецептор SCF - с-Кк - обладает тирозинкиназной активностью и по своей структуре близок к Flt-3 и c-Fms (рецептор M-CSF). При связывании SCF происходят димеризация рецепторов и их фосфорилирование. Передача сигнала происходит с участием PI3K и MAP-каскада.
Мутации гена SCF и его рецептора описаны давно (мутации steel); у мышей они проявляются изменением окраски шерсти и нарушением гемопоэза. Мутации, нарушающие синтез мембранной формы фактора, вызывают грубые дефекты развития эмбриона. Совместно с другими факторами SCF участвует в поддержании жизнеспособности стволовых кроветворных клеток, обеспечивает их пролиферацию, поддерживает ранние этапы гемопоэза. SCF особенно важен для эритропоэза и развития тучных клеток, а также служит ростовым фактором для тимоцитов на стадиях DN1 и DN2.
По структуре и биологической активности сходными с SCF свойствами обладает фактор Flt-3L- (Fms-like thyrosinkinase 3-ligand), в сочетании с другими факторами поддерживающий ранние этапы миелопоэза и развитие В-лифмоцитов. SCF играет роль фактора роста лейкозных миелобластов.
Хемокины, представляющие важный гуморальный фактор воспаления и врожденного иммунитета, рассмотрены выше при описании хемотаксиса лейкоцитов (см. раздел 2.3.2).

Цитокины – это особый вид белков, которые могут генерироваться в теле при помощи иммунных клеток и клеток других органов. Основное количество данных клеток может генерироваться лейкоцитами.

При помощи цитокинов организм может передавать разную информацию между своими клетками. Такое вещество попадает на поверхность клетки и может контактировать с другими рецепторами, передавая сигнал.

Образовываются и выделяются данные элементы быстро. В их создании могут участвовать разные ткани. Также цитокины могут оказывать определенное воздействие и на другие клетки. Они могут как усиливать действие друг друга, так и уменьшать его.

Такое вещество может проявиться свою активность даже в том случае, когда его концентрация в теле будет небольшая. Также цитокин может оказывать воздействие на образование разных патологий в организме. При помощи них врачи проводят разные способы обследования пациента, в частности, в онкологии и при инфекционных заболеваниях.

Цитокин дает возможность точно поставить диагноз при раке, а потому часто используется в онкологии для постановки остаточного диагноза. Такое вещество может самостоятельно развиваться и размножаться в организме, при этом не влияя на его работу. При помощи этих элементов облегчается любое обследование пациента, в том числе и в онкологии.

Они играют важную роль в организме и имеют много функций. В целом работа цитокинов заключается в том, чтобы передавать информацию от клетки к клетке и обеспечивать слаженную их работу. Так, например, они могут:

  • Регулировать иммунные реакции.
  • Принимать участие в аутоиммунных реакциях.
  • Регулировать процессы воспаления.
  • Принимать участие в аллергических процессах.
  • Определять срок жизни клеток.
  • Участвовать в кровотоке.
  • Согласовывать реакции систем организма при воздействии раздражителей.
  • Обеспечивать уровень токсического воздействия на клетку.
  • Поддерживать гомеостазу.

Врачи выяснили, что цитокины способны принимать участие не только в иммунном процессе. Также они участвуют в:

  1. Нормальном протекании разных функций.
  2. Процессе оплодотворения.
  3. Гуморальном иммунитете.
  4. Процессах восстановления.

Классификация цитокинов

Сегодня ученым известно более двухсот видов данных элементов. Но постоянно их обнаруживают и новые виды. Поэтому для улучшения процесса понимания этой системы врачи придумали для них классификацию. Это:

  • Регулирующие воспалительные процессы.
  • Регулирующие иммунитет клеток.
  • Регулирующие гуморальный иммунитет.

Также цитокины классификация предопределяет наличие в каждом классе определенных подвидов. Для более точного ознакомления с ними надо просмотреть информацию в сети.

Воспаление и цитокины

При начале воспаления в организме начинают производиться им цитокины. Они могут оказывать воздействие на клетки, которые находятся рядом, и передавать информацию между ними. Также среди цитокинов можно найти и такие, которые препятствуют развитию воспаления. Они могут вызывать такие эффекты, которые схожи с проявлением хронических патологий.

Цитокины провоспалительные

Производить такие тела могу лимфоциты и ткани. Стимулировать выработку могут сами цитокины и определенные возбудители инфекционных заболеваний. При большом выделении таких тел происходит локальное воспаление. При помощи определенных рецепторов в воспалительный процесс могут вовлекаться и другие клетки. Все они начинают также производить цитокины.

К основным воспалительным цитокинам относятся ФНО-альфа и ИЛ-1. Они могут прилипать к стенкам сосудов, приникать в кровь и потом разносится с нею по всему организму. Такие элементы могут синтезировать клетки, которые производятся лимфоцитами и влиять на очаги воспаления, оказывая защиту.

Также ФНО-альфа и ИЛ-1 могут стимулировать работу разных систем и вызывать около 40 активных других процессов в организме. При этом воздействие цитокинов может оказываться на все типы тканей и органов.

Цитокины противовоспалительные

Контролировать указанные выше цитокины могут противовоспалительные. Они не только могут нейтрализовать воздействие первых, но также синтезировать белки.

При возникновении процесса воспаления важным моментом является количество этих цитокинов. От баланса во многом зависит сложность протекания патологии, ее продолжительность и симптоматика. Именно при помощи противовоспалительных цитокинов происходит улучшение свертываемости крови, продуцируются ферменты и образовывается рубцевание тканей.

Иммунитет и цитокины

В иммунной системе у каждой клетки есть своя важная роль, которую те выполняют. При помощи определенных реакций цитокины могут контролировать взаимодействие клеток. Именно они дают возможность им обмениваться важной информацией.

Особенность цитокинов в том, что они обладают способностью передавать сложные сигналы между клетками и подавлять или активизировать при этом большинство процессов в организме. При помощи цитокинов происходит взаимодействие иммунной системы и других.

Когда связь нарушается, то клетки гибнут. Именно так и проявляются сложные патологии в организме. Исход заболевания во многом зависит от того, смогут ли цитокины в процессе наладить связь между клетками и предотвратить внедрение в организм возбудителя.

Когда защитной реакции организме оказалось недостаточно, чтобы противостоять патологии, то цитокины начинают активировать другие органы и системы, которые помогают организму бороться с инфекцией.

Когда цитокины оказывают свое влияние на ЦНС, то происходит изменение всех реакций человека, синтезируются гормоны и белки. Но такие изменения не всегда бывают случайными. Они или требуются для защиты, или переключают организм на борьбу с патологией.

Анализы

Чтобы определить цитокины в организме требуется провести сложное тестирование на молекулярном уровне. При помощи такого теста специалист может выявить полиморфные гены, спрогнозировать появление и протекание того или иного заболевания, разработать схему профилактики от недугов и прочее. Делается всё это сугубо в индивидуальном порядке.

Полиморфный ген может обнаружиться только в 10% населения планеты. У таких людей можно отметить повышенную активность иммунитета при проведении операций или инфекционных заболеваниях, а также других воздействиях на ткани.

При проведении тестирования у таких лиц часто выявляют в организме клетки-кипперы. Которые могут вызывать нагноение после указанных выше процедур или септические расстройства. Также повышенная активность иммунитета в определенных случаях в жизни может мешать человеку.

Чтобы сдать тест не потребуется специально к нему готовиться. Для проведения анализа потребуется взять часть слизистой из рота.

Беременность

Исследования показали, что сегодня у беременных женщин может наблюдаться повышенная склонность организма к образованию тромбов. Это может стать причиной прерывания беременности или заражению плода инфекцией.

Когда ген при вынашивании плода начинает мутировать в организме матери, то это в 100% случаев становится причиной гибели ребенка. В таком случае для предотвращения проявления данной патологии потребуется предварительно обследовать и отца.

Именно такие тесты помогают спрогнозировать протекание беременности и принять меры по возможности проявления тех или иных патологий. Если риск патологии высок, то может быть процесс зачатия перенесен на другой срок, во время которого отцу или матери будущего ребенка надо пройти комплексное лечение.

Цитокинотерапия, что это такое и сколько стоит? Метод онкоиммунологии или цитокинотерапии, способ в основе которого лежит использование белков (цитокины), воспроизводимых самим организмом человека в ответ (цитотоксины) на возникающие патологические процессы (различного генеза вирусы, аномальные клетки, бактерии и антигены, митогены и прочие).

История появления цитокинотерапии


Данный способ лечения рака применяется в медицине уже достаточно давно. В Америке и европейских странах в 80-е гг. ввели в практику применение белка кахектин () извлеченного из рекомбинантного белка. При этом, его использование допускалось лишь тогда, когда удавалось обособить орган от общей системы кровотока. Действие данного вида белка посредством аппарата искусственного кровообращения распространялось исключительно на пораженный орган, ввиду высокой токсичности его действия. В современное время, токсичность препаратов на основе цитокинов снижена в сто раз. Исследования метода цитокинотерапии описаны в научных трудах С.А. Кетлинского и А.С. Симбирцева.

Ведущие клиники в Израиле

Какие функции выполняют цитокины?

Виды взаимодействия цитокинов представляет собой целый процесс разных функций. С помощью применения цитокинотерапии происходит:

  • Запуск реакции иммунной системы организма на разрушительные действия патогенного процесса, посредством выделения антител – цитотоксины);
  • Мониторинг работы защитных свойств организма и клеток, борющихся с болезнью;
  • Перезапуск работы клеток с аномальной на здоровую;
  • Стабилизация общего состояния организма;
  • Участие в аллергических процессах;
  • Уменьшение объемов опухоли либо ее разрушение;
  • Провоцирование либо сдерживание роста клеток и цитокинеза;
  • Недопущение рецидивов образования опухоли;
  • Создание «цитокиновой сети»;
  • Коррекция иммунного и цитокинового дисбаланса.

Разновидности белков-цитокинов

На основе методов изучения цитокинов выявлено, что продуцирование этих белков является одной из первичных реакций организма в ответ на патологические процессы. Их появление фиксируется в первые несколько часов и дней с периода возникновения угрозы. К настоящему времени, имеется около двухсот разновидностей цитокинов. К ним относятся:

  • Интерфероны (ИФН) – противовирусные регуляторы;
  • Интерлейкины (ИЛ1, ИЛ18) их биологические функции, обеспечивающие стабилизирующее взаимодействие иммунной системы с другими системами в организме;
    В ряде из них содержатся различные производные, такие как цитокинины;
  • Интерлейкин12, способствует стимулированию роста и дифференциации Т-лимфоцитов (Th1);
  • Факторы некроза опухолей — тимозин альфа1 (ФНО), регулирующие воздействие токсинов на клетки;
  • Хемокины, осуществляющие контроль движения за лейкоцитами всех видов;
  • Факторы роста, в ведении которых находится процесс управления ростом клеток;
  • Факторы колониестимулирующий, отвечающие за кроветворные клетки.

Наиболее широко известные и эффективные по своему действию признаны 2 группы: альфа-интерфероны (реаферон, интрон и другие) и интерлейкины или цитокины (ил-2). Данная группа медикаментов эффективна при лечении онкологии почек и раке кожи.

Какие болезни лечат цитокинотерапия?

Почти пятьдесят видов заболеваний различного происхождения в определенной степени реагируют на процедуру цитокинотерапии. Использование цитокинов в составе комплексной терапии оказывает практически полностью оздоровительный эффект на 10-30 процентов больных, частичное положительное воздействие испытывают почти 90 процентов пациентов. Благоприятный эффект цитокинотерапии имеется при одновременном проведении химической терапии. Если за неделю до начала химиотерапии начать курс цитокинотерапии, то это позволит предотвратить анемию, лейкопению, нейтропению, тромбоцитопению и другие негативные последствия.

В число заболеваний, поддающихся лечению с помощью цитокинов, входят:

  • Онкологические процессы, вплоть до четвертой стадии развития;
  • Гепатит B и C вирусного происхождения;
  • Различные виды меланом;
  • Кондиломы остроконечные;
  • Множественный геморрагический саркоматоз () при ВИЧ-инфекции;
  • Вирус иммунодефицита человека (ВИЧ) и синдром приобретённого иммунного дефицита (СПИД);
  • Острая респираторная вирусная инфекция (ОРВИ), вирус гриппа, инфекции бактериального характера;
  • Легочный туберкулёз;
  • Вирус герпеса в форме опоясывающего лишая;
  • Шизофреническая болезнь;
  • Рассеянный склероз (РС);
  • Заболевания мочеполовой системы у женщин (эрозия шейки матки, вагинит, дисбактериозные процессы во влагалище);
  • Бактериальные инфекции слизистых оболочек;
  • Анемия;
  • Коксартроз тазобедренного сустава. При этом лечение проводится цитокином ортокин/регенокин.

По прохождению процедуры цитокинотерапии, у пациентов начинается выработка иммунитета.

Лекарственные препараты для цитокинотерапии


Цитокины как были разработаны в РФ в начале 1991 года. Первое лекарство российского производства получило название Рефнот, обладающего механизмом противоопухолевого действия. После проведения трех фаз тестовых испытаний в 2009 году, данный медикамент был введен в производство и стал применятся для лечения рака различной этиологии. В его основе стоит фактор некроза опухоли. Чтобы выявить динамику лечения рекомендуется принять от одного до двух курсов терапии. Часто читатели задаются вопросом, о действии Рефнота и что есть правда и ложь в его действии?

По сравнению с другими лекарствами, его преимуществами признаны:

  • Уменьшение токсичности в сто раз;
  • Воздействие прямо на онкологические клетки;
  • Активизация эндотелических клеток и лимфоцитов, что способствует вымиранию опухоли;
  • Снижение кровоснабжения образования;
  • Препятствие делению опухолевых клеток;
  • Увеличение противовирусной активности почти в тысячу раз;
  • Повышение эффекта химической терапии;
  • Стимулирование работы здоровых клеток и клеток, борющихся с опухолью (происходит выделение цитотоксинов);
  • Значительное уменьшение вероятности появления рецидивов;
  • Легкая переносимость пациентами процедуры лечения и отсутствие побочного воздействия;
  • Улучшение общего состояния пациента.

Другим эффективным препаратом иммуноонкологии в цитокинотерапии считается Ингарон, который разработан на основе лекарства гамма-интерферон. Действие данного медикамента направлено на блокирование выработки белков, а также днк и рнк вирусных происхождений. Препарат зарегистрирован вначале 2005 года и используется для лечения следующих болезней:

  • Гепатит B и C;
  • ВИЧ и СПИД;
  • Легочный туберкулез;
  • ВПЧ (вирус папилломы человека);
  • Урогенитальный хламидиоз;
  • Онкологические заболевания.

Эффект Ингарона заключается в следующем:

Согласно инструкции по применению, ингарон показан в качестве профилактики осложнений, которые возникают при хроническом гранулематозе, а также при лечении ОРВИ (применяется при обработке слизистых поверхностей). В случае с опухолью, это лекарство позволяет активировать рецепторы онкоклеток, что помогает Рефноту влиять на их некроз. С этой точки зрения, в цитокинотерапии рекомендовано использование двух препаратов вместе. Ключевым преимуществом совместного применения ингарона и рефнота является тот факт, что они практически не токсичны, не повреждают кроветворную функцию, однако, при этом, полностью активизируют иммунную систему для борьбы с раковыми проявлениями.

Согласно исследованиям, комбинация двух этих препаратов эффективна при таких заболеваниях, как:

  • Образования, возникающие в нервной системе;
  • Рак легких;
  • Онкологические процессы в шее и голове;
  • Карцинома желудка, поджелудочной железыи толстой кишки;
  • Рак простаты;
  • Образования в мочевом пузыре;
  • Рак костей;
  • Опухоль в женских органах;
  • Лейкемия.

Период лечения вышеперечисленных процессов посредством цитокинотерапии, составляет около двадцати дней. Данные препараты применяются в виде инъекций – на один курс требуется десять флаконов, которые обычно выдаются по рецепту. Согласно научным исследованиям, перспективными признаются ингибиторы цитокинов – антицитокиновые препараты. В их число входят такие лекарства как: Ember, Инфликсимаб, Анакинра (блокатор интерлейкиновых рецепторов), Симулект (специфический антагонист рецептора ил2) и ряд других.

Не тратьте время на бесполезный поиск неточной цены на лечение рака

* Только при условии получения данных о заболевании пациента, представитель клиники сможет рассчитать точную цену на лечение.

Разновидности побочных последствий лечения цитокинами

Применение таких препаратов иммуноонкологии, как ингарон и рефнот могут привести к следующим негативным эффектам:

  • Гипертермия на два или три градуса. С этим сталкивается около десяти процентов больных. Обычно повышение температуры тела возникает по истечению четырех или шести часов после введения лекарства. Чтобы сбить жар рекомендуется прием аспирина, ибупрофена, парацетамола или анбиотиков;
  • Боль и краснота в области введения инъекции. В этой связи, проходя курс лечения необходимо вводить препарат в разные места. Воспалительный процесс может снять прием нестероидных противовоспалительных средств и нанесение на воспаленное место йодовой сетки;
  • В случае наличия опухоли крупных размеров, не исключается интоксикация организма элементами ее распада. В этом случае, применение цитокинотерапии откладывается (от 1 до 3 дней) до нормализации состоянии больного.

После прохождения курса лечения, пациенту необходимо повторить диагностику посредством таких методов обследования как: магнитно-резонансная томография (МРТ), позитронно-эмиссионная томография (ПЭТ), компьютерная томография (КТ), УЗИ и тест на онкомаркеры.

Внимание: проведенный сразу после завершения процедуры цитокинотерапии может выдать высокий уровень показателей, вследствие разложения опухоли на фоне лечения.

Несмотря на то, что цитокинотерапия является в целом безвредным методом лечения, существует определённая категория лиц, которым данный способ лечения противопоказан. Среди них выделяются:

  • Женщины «в положении»;
  • Период лактации;
  • Индивидуальная непереносимость препаратов (что отмечалось редко);
  • Болезни аутоиммунного характера.

Следует отметить, что, к цитокинотерапии чувствительны большинство опухолей, однако такая патология, как (в результате роста клеток Ашкенази-Гюртле) не входит в число онкозаболеваний которые можно лечить с помощью цитокинов. Это связанно с тем, что лекарственные препараты с содержанием интерферона воздействуют на ткани и работу щитовидной железы, что может привести к разрушению ее клеток.

Эффективность цитокинотерапии

Анализ лечения пациентов с помощью рассматриваемой методики показывает, что его эффективность обусловлена, прежде всего, степенью чувствительности онкообразования к элементам цитокина и зависит от классификации опухоли. В случае абсолютной для воздействия на опухоль чувствительности, регресс болезни практически гарантирован (распад опухоли и избавление от метастаза). При таком раскладе, спустя две или 4 недели, пациенту необходимо пройти еще 1 курс цитокинотерапии.

В случае, если цитокиновые реакция к препарату является умеренной, то можно добиться уменьшения опухоли в размерах и сокращения метастаз – фактически регрессия наступает частично. Однако, это не исключает необходимости повторного курса.

Тогда, когда раковые клетки показывают устойчивость к лечению, эффект от применения цитокинотерапии заключается в стабилизации процесса развития рака. На практике, это позволяло добиться преобразования злокачественных клеток в доброкачественные.

Согласно статистике, у примерно двадцать процентов пациентов образования после такой терапии продолжают демонстрировать рост.
В этом случае, показано сочетание цитокинотерапии с химической либо радиационной терапией.

Примечательно: Химическая терапия, проводимая в комплексе с цитокинотерапией, не имеет таких тяжелых побочных эффектов и более эффективна.

Сколько стоит цитокинотерапия?

Как показывают отзывы, сегодня, одной из признанных специализированных клиник оказывающей услуги по лечению методом цитокинотерапии находится в Москве – Центр онкоиммунологии и цитокинотерапии (имеет одно отделение в Новосибирске). Стоимость лечения зависит от вида заболевания и типа препарата.

Для справки: Известным своими исследованиями и терапией больных с иммунозависимыми патологиями является «ГНЦ Институт Иммунологии» ФМБА России, клиники в Санкт-Петербурге, Екатеринбурге, Уфе, Казани, Краснодаре и Ростове-на-дону.

Купить лекарства можно в Москве. Цены выглядят таким образом: средняя стоимость 5 флаконов Рефнота в дозе 100000 МЕ составляет от 10 до 14 тысяч рублей, 5 флаконов Ингарона в дозе 500000 МЕ – от 5 тысяч рублей, Интерлейкина-2 – в районе 5500 тысяч рублей, Эритропоэтина – в диапазоне 11 000 рублей.

Общая характеристика цитокинов. Цитокины -- самая многочисленная, наиболее важная и универсальная в функциональном отношении группа гуморальных факторов системы иммунитета, в равной степени важная для реализации врожденного и адаптивного иммунитета. Цитокины участвуют во многих процессах; их нельзя назвать факторами, относящимися исключительно к иммунной системе, поскольку они играют важную роль в кроветворении, тканевом гомеостазе, межсистемной передаче сигналов.

Цитокины можно определить, как белковые или полипептидные факторы, лишенные специфичности в отношении антигенов, продуцируемые преимущественно активированными клетками кроветворной и иммунной систем и опосредующие межклеточные взаимодействия при кроветворении, воспалении, иммунных процессах и межсистемных коммуникациях.

Цитокины различаются по строению, биологической активности и другим свойствам. Однако наряду с различиями цитокины обладают общими свойствами, характерными для данного класса биорегуляторных молекул:

  • · Цитокины - это, как правило, гликозилированные полипептиды средней молекулярной массы (менее 30 кD).
  • · Цитокины вырабатываются клетками иммунной системы и другими клетками (например, эндотелием, фибробластами и др.) в ответ на активирующий стимул (патогенассоциированные молекулярные структуры, антигены, цитокины и др.) и участвуют в реакциях врожденного и адаптивного иммунитета, регулируя их силу и продолжительность. Некоторые цитокины синтезируются конститутивно.
  • · Секреция цитокинов - короткий по времени процесс. Цитокины не сохраняются как преформированные молекулы, а их синтез начинается всегда с транскрипции генов. Клетки вырабатывают цитокины в низкой концентрации (пикограммы на миллилитр).
  • · В большинстве случаев цитокины продуцируются и действуют на клетки-мишени, находящиеся в непосредственной близости (короткодистантное действие). Основное место действия цитокинов - межклеточный синапс.
  • · Избыточность системы цитокинов проявляется в том, что каждый тип клеток способен продуцировать несколько цитокинов, а каждый цитокин может секретироваться различными клетками.
  • · Для всех цитокинов характерна плейотропность, или полифункциональность действия. Так, проявление признаков воспаления обусловлено влиянием ИЛ-1, ФНОб, ИЛ-6, ИЛ-8. Дублирование функций обеспечивает надежность работы системы цитокинов.
  • · Действие цитокинов на клетки-мишени опосредуется высокоспецифичными высокоаффинными мембранными рецепторами, представляющими собой трансмембранные гликопротеины, состоящие, как правило, более чем из одной субъединицы. Внеклеточная часть рецепторов ответственна за связывание цитокина. Существуют рецепторы, устраняющие избыток цитокинов в патологическом очаге. Это так называемые рецепторы-ловушки. Растворимые рецепторы представляют собой внеклеточный домен мембранного рецептора, отделенный с помощью фермента. Растворимые рецепторы способны нейтрализовывать цитокины, участвовать в транспорте их в очаг воспаления и в выведении из организма.
  • · Цитокины работают по принципу сети. Они могут действовать согласованно. Многие функции, приписываемые первоначально одному цитокину, как оказалось, обусловлены согласованным действием нескольких цитокинов (синергизм действия). Примерами синергического взаимодействия цитокинов являются стимуляция воспалительных реакций (ИЛ-1, ИЛ-6 и ФНОа), а также синтеза IgE (ИЛ-4, ИЛ-5 и ИЛ-13).

Классификация цитокинов. Существует несколько классификаций цитокинов, основанных на разных принципах. Традиционная классификация отражает историю изучения цитокинов. Идея о том, что цитокины играют роль факторов, опосредующих функциональную активность клеток иммунной системы, возникла после открытия гетерогенности популяции лимфоцитов и осмысления факта, что только некоторые из них -- В-лимфоциты -- ответственны за образование антител. Пытаясь выяснить, не играют ли гуморальные продукты Т-клеток роль в реализации их функций, начали изучать биологическую активность факторов, содержащихся в культуральной среде Т-лимфоцитов (особенно активированных). Решение этой задачи, а также возникшего вскоре вопроса о гуморальных продуктах моноцитов/макрофагов, привело к открытию цитокинов. Вначале их называли лимфокинами и монокинами, в зависимости от того, какие клетки их продуцировали -- Т-лимфоциты или моноциты. Вскоре выяснилось, что четко разграничить лимфокины и монокины нельзя, и был введен общий термин -- «цитокины». В 1979 г. На симпозиуме по лимфокинам в Интерлакене (Швейцария) установили правила идентификации факторов этой группы, которым присвоили групповое название «интерлейкины» (IL). Тогда же свои названия получили два первых члена этой группы молекул -- IL-1 и IL-2. С тех пор все новые цитокины (кроме хемокинов -- см. далее) получали обозначение IL и порядковый номер.

Традиционно, в соответствии с биологическими эффектами, принято выделять следующие группы цитокинов:

  • · Интерлейкины (ИЛ-1-ИЛ-33) - секреторные регуляторные белки иммунной системы, обеспечивающие медиаторные взаимодействия в иммунной системе и связь ее с другими системами организма. Интерлейкины разделяют по функциональной активности на про- и противовоспалительные цитокины, ростовые факторы лимфоцитов, регуляторные цитокины и др.
  • · Интерфероны (ИФН) - цитокины, участвующие в противовирусной защите, с выраженным иммунорегуляторным действием (ИФН типа 1 - ИФН б, в, д, к, ?, ф; группы ИФНподобных цитокинов - ИЛ-28А, ИЛ-28В и ИЛ-29; ИФН типа 2 - ИФНг).
  • · Факторы некроза опухоли (ФНО) - цитокины с цитотоксическим и регуляторным действиями: ФНОа и лимфотоксины (ЛТ).
  • · Факторы роста гемопоэтических клеток - фактор роста стволовых клеток (Kit-ligand), ИЛ-3, ИЛ-7, ИЛ-11, эритропоэтин, тробопоэтин, гранулоцитарно-макрофагальный колониестимулирующий фактор - ГМ-КСФ, гранулоцитарный КСФ - Г-КСФ, макрофагальный КСФ - М-КСФ).
  • · Хемокины - С, СС, СХС (ИЛ-8), СХ3С - регуляторы хемотаксиса различных типов клеток.
  • · Факторы роста нелимфоидных клеток - регуляторы роста, дифференцировки и функциональной активности клеток различной тканевой принадлежности (фактор роста фибробластов - ФРФ, фактор роста эндотелиальных клеток, эпидермальный фактор роста - ЭФР эпидермиса) и трансформирующие факторы роста (ТФРв, ТФРб).

Понятие «цитокины» достаточно трудно отграничить от понятия «ростовые факторы». Более точному пониманию понятия «интерлейкин» (фактически совпадающего с понятием «цитокин») способствовало введение Номенклатурным комитетом Международного союза иммунологических обществ в 1992 г. критериев, регламентирующих присвоение новым интерлейкинам очередного номера: для этого требуется молекулярное клонирование, секвенирование и экспрессия гена интерлейкина, удостоверяющие уникальность его нуклеотидной последовательности, а также получение нейтрализующих моноклональных антител. Для установления отличий между интерлейкинами и сходными факторами важны данные о выработке этой молекулы клетками иммунной системы (лейкоцитами) и доказательство ее роли в регуляции иммунных процессов. Таким образом, подчеркивается обязательное участие интерлейкинов в функционировании иммунной системы. Если считать, что интерлейкинами называют все открытые после 1979 г. цитокины (кроме хемокинов) и, следовательно, эти понятия фактически тождественны, то можно считать, что такие ростовые факторы, как эпидермальный, фибробластный, тромбоцитарный не являются цитокинами, а из трансформирующих факторов роста (TGF) по признаку функциональной причастности к иммунной системе лишь TGFв может быть отнесен к цитокинам. Однако этот вопрос в международных научных документах строго не регламентирован.

Четкая структурная классификация цитокинов отсутствует. Тем не менее по особенностям их вторичной структуры выделяют несколько групп:

  • · Молекулы с преобладанием б-спирализованных тяжей. Они содержат 4 б-спиральных домена (2 пары б-спиралей, расположенных под углом друг к другу). Выделяют короткий и длинный (по протяженности б-спиралей) варианты. К первому относят большинство цитокинов-гемопоэтинов -- IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-13, IL-21, IL-27, IFNг и M-CSF; ко второму -- IL-6, IL-10, IL-11 и GM-CSF.
  • · Молекулы с преобладанием в-складчатых структур. К ним относят цитокины семейства фактора некроза опухоли и лимфотоксины («в-трилистник»), семейство IL-1 (в-сендвич), семейство TGF (цитокиновый узел).
  • · Короткая б/в-цепь (в-пласт с прилежащими б-спиралями) -- хемокины.
  • · Смешанные мозаичные структуры, например, IL-12.

В последние годы в связи с идентификацией большого числа новых цитокинов, иногда родственных ранее описанным, и образующих с ними единые группы, стали широко использовать классификацию, основанную на принадлежности цитокинов к структурно-функциональным семействам.

Еще одна классификация цитокинов основана на структурных особенностях их рецепторов. Как известно, через рецепторы и осуществляется действие цитокинов. По особенностям структуры полипептидных цепей выделяют несколько групп цитокиновых рецепторов. Приводимую классификацию применяют именно к полипептидным цепям. В состав одного рецептора могут входить цепи, относящиеся к разным семействам. Важность этой классификации обусловлена тем, что для разных типов полипептидных цепей рецепторов характерен определенный сигнальный аппарат, состоящий из тирозинкиназ, адапторных белков и транскрипционных факторов.

Наиболее многочисленный тип -- цитокиновые гемопоэтиновые рецепторы. Для их внеклеточных доменов характерно наличие 4 остатков цистеина и присутствие последовательности, содержащей остатки триптофана и серина -- WSXWS. Домены семейства фибронектина, содержащие 4 остатка цистеина, составляют основу рецепторов интерферонов. Характерная черта доменов, образующих внеклеточную часть рецепторов семейства TNFR, -- высокое содержание остатков цистеина («богатые цистеином домены»). Эти домены содержат 6 остатков цистеина. Группа рецепторов, внеклеточные домены которых относят к суперсемейству иммуноглобулинов, включает две группы -- рецепторы для IL-1 и несколько рецепторов, цитоплазматическая часть которых обладает тирозинкиназной активностью. Тирозинкиназная активность свойственна цитоплазматической части практически всех ростовых факторов (EGF, PDGF, FGF и т.д.). Наконец, особую группу образуют родопсиноподобные рецепторы хемокинов, 7-кратно пронизывающие мембрану. Однако не все полипептидные цепи рецепторов соответствуют этой классификации. Так, ни б-, ни в-цепи рецептора IL-2 не относят к семействам, представленным в таблице 3 (б-цепь содержит домены контроля комплемента). В основные группы также не входят рецепторы IL-12, общая в-цепь рецепторов IL-3, IL-5, GMCSF и некоторые другие полипептидные цепи рецепторов.

Практически все цитокиновые рецепторы (кроме иммуноглобулиноподобных, обладающих киназной активностью) состоят из нескольких полипептидных цепей. Нередко разные рецепторы содержат общие цепи. Наиболее яркий пример -- г-цепь, общая для рецепторов IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, обозначаемая как г(с). Дефекты этой цепи играют важную роль в развитии иммунодефицитной патологии. Общая в-цепь входит в состав рецепторов GM-CSF, IL-3 и IL-5. Общие цепи имеют IL-7 и TSLP (б-цепь), а также IL-2 и IL-15, IL-4 и IL-13 (в обоих случаях -- в-цепь).

Как правило, рецепторы представлены на поверхности покоящихся клеток в небольшом количестве и нередко в неполном субъединичном составе. Обычно в таком состоянии рецепторы обеспечивают адекватный ответ только при действии очень высоких доз цитокинов. При активации клеток число мембранных рецепторов цитокинов увеличивается на порядки, более того, эти рецепторы «доукомплектовываются» полипептидными цепями, как это было показано выше на примере рецептора для IL-2. Под влиянием активации число молекул этого рецептора значительно возрастает и в их составе появляется б-цепь, ген которой экспрессируется в процессе активации. Благодаря таким изменениям лимфоцит приобретает способность пролиферировать в ответ на действие IL-2.

Механизмы действия цитокинов

Внутриклеточная передача сигнала при действии цитокинов. В состав С-концевой цитоплазматической части некоторых цитокиновых рецепторов (относящихся к суперсемейству иммуноглобулинов) входит домен, обладающий активностью тирозинкиназы. Все эти киназы относятся к разряду протоонкогенов, т.е. при изменении генетического окружения становятся онкогенами, обеспечивая бесконтрольную пролиферацию клетки. Эти киназы имеют собственное название. Так, киназу, входящую в состав рецептора M-CSF, обозначают как c-Fms; киназу SCF -- c-Kit; известна киназа гемопоэтического фактора -- Flt-3 (Fms-like thyrosine kinase 3). Рецепторы, обладающие собственной киназной активностью, запускают передачу сигнала непосредственно, поскольку их киназа обусловливает фосфорилирование как самого рецептора, так и прилежащих к нему молекул.

Наиболее типичный вариант проявления активности характерен для рецепторов гемопоэтинового (цитокинового) типа, содержащих 4 б-спиральных домена. К цитоплазматической части таких рецепторов примыкают молекулы тирозинкиназ группы Jak-киназ (Janus-associated family kinases). В цитоплазматической части цепей рецепторов есть специальные участки для связывания этих киназ (проксимальный и дистальный боксы). Всего известно 5 Janus-киназ -- Jak1, Jak2, Jak3, Tyk1 и Tyk2. Они в различных комбинациях кооперируются с разными цитокиновыми рецепторами, обладая сродством к конкретным полипептидным цепям. Так, киназа Jak3 взаимодействует с г(с)-цепью; при дефектах гена, кодирующего эту киназу, развивается комплекс нарушений в иммунной системе сходный с наблюдаемым при дефектах гена полипептидной цепи рецептора.

При взаимодействии цитокина с рецептором происходит генерация сигнала, приводящего к формированию транскрипционных факторов и активации генов, определяющих реакцию клетки на действие цитокина. Одновременно происходит поглощение клеткой комплекса цитокина с рецептором и расщепление его в эндосомах. Сама по себе интернализация этого комплекса к передаче сигнала отношения не имеет. Она необходима для утилизации цитокина, предотвращающей его накопление в месте активации клеток-продуцентов. Большую роль в регуляции этих процессов играет сродство рецептора к цитокину. Только при достаточно высокой степени сродства (порядка 10-10 М) генерируется сигнал и происходит поглощение комплекса цитокина с рецептором.

Индукция сигнала начинается с аутокаталитического фосфорилирования связанных с рецептором Jak-киназ, запускаемого конформационными измененями рецептора, которые происходят в результате его взаимодействия с цитокином. Активированные Jak-киназы фосфорилируют цитоплазматические факторы STAT (Signal transducers and activators of transcription), присутствующие в цитоплазме в неактивной мономерной форме.

Фосфорилированные мономеры приобретают сродство друг к другу и димеризуются. Димеры STAT перемещаются в ядро и выступают в качестве транскрипционных факторов, связываясь с промоторными участками генов-мишеней. При действии провоспалительных цитокинов активируются гены молекул адгезии, самих цитокинов, ферментов окислительного метаболизма и др. При действии факторов, вызывающих пролиферацию клеток, происходит индукция генов, ответственных за прохождение клеточного цикла и т.д.

Jak/STAT-опосредованный путь передачи сигналов от цитокинов -- основной, но не единственный. С рецептором связаны не только Jak-киназы, но и киназы семейства Src, а также PI3K. Их активация запускает дополнительные сигнальные пути, приводящие к активации АР-1 и других транскрипционных факторов. Активируемые транскрипционные факторы участвуют не только в передаче сигнала от цитокинов, но и в других сигнальных путях.

Существуют сигнальные пути, участвующие в контроле биологических эффектов цитокинов. Такие пути связаны с факторами группы SOCS (Suppressors of cytokine signaling), содержащей фактор SIC и 7 факторов SOCS (SOCS-1 -- SOCS-7). Включение этих факторов происходит при активации цитокиновых сигнальных путей, что приводит к образованию петли отрицательной обратной связи. Факторы SOCS содержат домен SH2, участвующий в реализации одного из следующих процессов:

  • · прямого ингибирования Jak-киназ в результате связывания с ними и индукции их дефосфорилирования;
  • · конкуренции с факторами STAT за связывание с цитоплазматической частью цитокиновых рецепторов;
  • · ускорения деградации сигнальных белков по убиквитиновому пути.

Выключение генов SOCS приводит к нарушению баланса цитокинов с преобладанием синтеза IFNг и сопутствующей этому лимфопенией и усилением апоптоза.

Особенности функционирования системы цитокинов. Цитокиновая сеть.

Из сказанного выше следует, что при активации клеток чужеродными агентами (носителями PAMP при активации миелоидных клеток и антигенами при активации лимфоцитов) индуцируется (или усиливается до функционально значимого уровня) как синтез цитокинов, так и экспрессия их рецепторов. Это создает условия для локального проявления эффектов цитокинов. Действительно, если один и тот же фактор активирует и клетки-продуценты цитокинов, и клетки-мишени, создаются оптимальные условия для локального проявления функций этих факторов.

Обычно цитокины связываются, подвергаются интернализации и расщеплению клеткой-мишенью, практически не диффундируя от секретируемых клеток-продуцентов. Нередко цитокины бывают трансмембранными молекулами (например, IL-1б и TNFб) или представляются клеткам-мишеням в связанном с пептидогликанами межклеточного матрикса состоянии (IL-7 и ряд других цитокинов), что также способствует локальному характеру их действия.

В норме цитокины если и содержатся в сыворотке крови, то в концентрациях, недостаточных для проявления их биологических эффектов. Далее на примере воспаления мы рассмотрим ситуации, в которых цитокины оказывают системное действие. Однако эти случаи всегда являются проявлением патологии, иногда очень серьезной. По-видимому, локальный характер действия цитокинов имеет для нормального функционирования организма принципиальное значение. Об этом свидетельствует высокая скорость их выведения через почки. Обычно кривая выведения цитокинов состоит из двух компонент -- быстрой и медленной. Т1/2 быстрой компоненты для IL-1в составляет 1,9 мин, для IL-2 -- 5 мин (Т1/2 медленной составляет 30-120 мин). Свойство близкодействия отличает цитокины от гормонов -- дальнодействующих факторов (поэтому утверждение «цитокины -- это гормоны иммунной системы» принципиально неверно).

Для системы цитокинов характерна избыточность. Это означает, что практически любую выполняемую конкретным цитокином функцию дублируют другие цитокины. Именно поэтому выключение отдельного цитокина, например, вследствие мутации его гена, не вызывает фатальных последствий для организма. Действительно, мутация гена конкретного цитокина практически никогда не приводит к развитию иммунодефицита.

Например, IL-2 известен как фактор роста Т-клеток; при искусственном удалении (путем генетического нокаута) кодирующего его гена существенного нарушения пролиферации Т-клеток не выявляют, однако регистрируют изменения, обусловленные дефицитом регуляторных Т-клеток. Это связано с тем, что пролиферацию Т-клеток в отсутствие IL-2 обеспечивают IL-15, IL-7, IL-4, а также комбинации нескольких цитокинов (IL-1в, IL-6, IL-12, TNFб). Точно так же дефект гена IL4 не приводит к значительным нарушениям в системе В-клеток и переключении изотипов иммуноглобулинов, поскольку сходные эффекты проявляет IL-13. В то же время некоторые цитокины не имеют функциональных аналогов. Наиболее известный пример незаменимого цитокина -- IL-7, лимфопоэтическое действие которого, по крайней мере на определенных этапах Т-лимфопоэза уникально, в связи с чем дефекты генов самого IL-7 или его рецептора приводят к развитию тяжелой комбинированной иммунной недостаточности (ТКИН).

Помимо избыточности, в системе цитокинов проявляется и другая закономерность: цитокины плейотропны (действуют на различные мишени) и полифункциональны (вызывают различные эффекты). Так, число клеток-мишеней IL-1в и TNFб с трудом поддается учету. Столь же разнообразны вызываемые ими эффекты, участвующие в формировании комплексных реакций: воспаления, некоторых этапов гемопоэза, нейротропных и других реакций.

Еще одна важная черта, свойственная системе цитокинов, -- взаимосвязь и взаимодействие цитокинов. С одной стороны, это взаимодействие заключается в том, что одни цитокины, действуя на фоне индукторов или самостоятельно, вызывают или усиливают (реже подавляют) выработку других цитокинов. Наиболее яркие примеры усиливающего действия -- активность провоспалительных цитокинов IL-1в и TNFб, усиливающих собственную выработку и образование других провоспалительных цитокинов (IL-6, IL-8, других хемокинов). IL-12 и IL-18 являются индукторами IFNг. TGFв и IL-10, наоборот, подавляют выработку различных цитокинов. IL-6 проявляет ингибирующую активность в отношении провоспалительных цитокинов, а IFNг и IL-4 взаимно подавляют выработку друг друга и цитокинов соответствующих (Th1 и Th2) групп. Взаимодействие между цитокинами проявляется и на функциональном уровне: одни цитокины усиливают или подавляют действие других цитокинов. Описаны синергизм (например, внутри группы провоспалительных цитокинов) и антагонизм цитокинов (например, между Th1- и Th2-цитокинами).

Cуммируя полученные данные, можно заключить, что ни один из цитокинов не существует и не проявляет своей активности изолированно -- на всех уровнях цитокины испытывают влияние других представителей этого класса молекул. Результат такого многообразного взаимодействия иногда может быть неожиданным. Так, при использовании в лечебных целях высоких доз IL-2 возникают опасные для жизни побочные эффекты, некоторые из которых (например, шок, подобный токсическому, без бактериемии) удается снять антителами, направленными не против IL-2, а против TNFб.

Наличие множественных перекрестных взаимодействий в системе цитокинов послужило причиной создания понятия «цитокиновая сеть», достаточно четко отражающего суть явления.

Для цитокиновой сети характерны следующие свойства:

  • · индуцибельность синтеза цитокинов и экспрессии их рецепторов;
  • · локальность действия, обусловленная скоординированной экспрессией цитокинов и их рецепторов под влиянием одного и того же индуктора;
  • · избыточность, объясняющаяся перекрыванием спектров действия разных цитокинов;
  • · взаимосвязи и взаимодействие, проявляющиеся на уровне синтеза и реализации функций цитокинов.

Цитокиновая регуляция функций клеток-мишеней осуществляется с помощью аутокринного, паракринного или эндокринного механизмов. Некоторые цитокины (ИЛ-1, ИЛ-6, ФНОб и др.) способны участвовать в реализации всех перечисленных механизмов.

Ответ клетки на влияние цитокина зависит от нескольких факторов:

  • · от типа клеток и их исходной функциональной активности;
  • · от локальной концентрации цитокина;
  • · от присутствия других медиаторных молекул.

Таким образом, клетки-продуценты, цитокины и специфические для них рецепторы на клетках мишенях формируют единую медиаторную сеть. Именно набор регуляторных пептидов, а не индивидуальные цитокины, определяют окончательный ответ клетки. В настоящее время система цитокинов рассматривается как универсальная система регуляции на уровне целостного организма, обеспечивающая развитие защитных реакций (например, при инфекции).

В последние годы сложилось представление о системе цитокинов, объединяющей:

  • 1) клетки-продуценты;
  • 2) растворимые цитокины и их антагонисты;
  • 3) клетки-мишени и их рецепторы.

Нарушения различных компонентов системы цитокинов приводят к развитию многочисленных патологических процессов, а потому выявление дефектов в этой регуляторной системе имеет важное значение для правильной постановки диагноза и назначения адекватной терапии.

Основные компоненты системы цитокинов.

Клетки-продуценты цитокинов

I. Основную группу клеток-продуцентов цитокинов в адаптивном иммунном ответе представляют лимфоциты. Покоящиеся клетки не секретируют цитокины. При распознавании антигена и при участии рецепторных взаимодействий (CD28-CD80/86 для Т-лимфоцитов и СD40-CD40L для В-лимфоцитов) происходит активация клеток, приводящая к транскрипции генов цитокинов, трансляции и секреции гликозилированных пептидов в межклеточное пространство.

CD4 Т-хелперы представлены субпопуляциями: Тh0, Тh1, Тh2, Тh17, Tfh, которые различаются между собой спектром секретируемых цитокинов в ответ на различные антигены.

Тh0 вырабатывают широкий спектр цитокинов в очень низких концентрациях.

Направление дифференцировки Th0 определяет развитие двух форм иммунного ответа с преобладанием гуморальных или клеточных механизмов.

Природа антигена, его концентрация, локализация в клетке, тип антигенпрезентирующих клеток и определенный набор цитокинов регулируют направление дифференцировки Тh0.

Дендритные клетки после захвата и процессинга антигена представляют антигенные пептиды Th0 клеткам и вырабатывают цитокины, регулирующие направление их дифференцировки в эффекторные клетки. ИЛ-12 индуцирует синтез ИФНг Т-лимфоцитами и ]ЧГК. ИФНу обеспечивает дифференцировку ТЫ1, которые начинают секретировать цитокины (ИЛ-2, ИФНу, ИЛ-3, ФНОа, лимфотоксины), регулирующие развитие реакций на внутриклеточные патогены (гиперчувствительности замедленного типа (ГЗТ) и различные типы клеточной цитотоксичности).

ИЛ-4 обеспечивает дифференцировку Тh0 в Тh2. Активированные Тh2 вырабатывают цитокины (ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-13 и др.), определяющие пролиферацию В-лимфоцитов, их дальнейшую дифференцировку в плазматические клетки и развитие реакций антителогенеза, преимущественно на внеклеточные патогены.

ИФНг негативно регулирует функцию Тh2-клеток и, наоборот, ИЛ-4, ИЛ-10, секретируемые Тh2, угнетают функцию Тh1. Молекулярный механизм этой регуляции связан с транскрипционными факторами. Экспрессия Т-bet и STAT4, детерминированная ИФНу, направляет дифференцировку Т-клеток по пути Тh1 и супрессирует развитие Тh2. ИЛ-4 индуцирует экспрессию GATA-3 и STAT6, что соответственно обеспечивает превращение наивных Тh0 в Тh2-клетки.

В последние годы описана особая субпопуляция Т-клеток хелперов (Тh17), продуцирующих ИЛ-17. Члены семейства ИЛ-17 могут экспрессироваться активированными клетками памяти (CD4CD45RO), у5Т-клетками, NKT клетками, нейтрофилами, моноцитами под влиянием ИЛ-23, ИЛ-6, ТФРв, вырабатываемых макрофагами и дендритными клетками. Основным дифференцировочным фактором у человека является ROR-C, у мышей - ROR-гl. Показана кардинальная роль ИЛ-17 в развитии хронического воспаления и аутоиммунной патологии.

Кроме того, Т-лимфоциты в тимусе могут дифференцироваться в естественные клетки-регуляторы (Treg), экспрессирующие поверхностные маркеры CD4+ CD25+ и транскрипционный фактор FOXP3. Эти клетки способны подавлять иммунный ответ, опосредуемый Тh1 и Тh2-клетками, путем прямого межклеточного контакта и синтеза ТФРв и ИЛ-10.

Т-цитотоксические клетки (CD8+), естественные киллеры - слабые продуценты цитокинов, таких, как интерфероны, ФНОа и лимфотоксины.

Избыточная активация одной из субпопуляций Тh может определить развитие одного из вариантов иммунного ответа. Хроническая несбалансированность активации Тh способна привести к формированию иммунопатологических состояний, связанных с проявлениями аллергии, аутоиммунной патологии, хронических воспалительных процессов и др.

II. В системе врожденного иммунитета основными продуцентами цитокинов являются клетки миелоидного ряда. С помощью Toll-по- добных рецепторов (TLRs) они распознают сходные молекулярные структуры различных патогенов, так называемые патогенассоциированные молекулярные патерны (РАМП), например, липополисахарид (ЛПС) грамотрицательных бактерий, липотейхоевые кислоты, пептидогликаны грамположительных микроорганизмов, флагеллин, ДНК, богатую неметилированными СрG повторами, и др. В результате такого взаимодействия с TLR запускается внутриклеточный каскад передачи сигнала, приводящий к экспрессии генов двух основных групп цитокинов: провоспалительных и ИФН типа 1. Главным образом эти цитокины (ИЛ-1, -6, -8, -12, ФНОа, ГМ-КСФ, ИФН, хемокины и др.) индуцируют развитие воспаления и участвуют в защите организма от бактериальных и вирусных инфекций.

III. Клетки, не относящиеся к иммунной системе (клетки соединительной ткани, эпителия, эндотелия), конститутивно секретируют аутокринные факторы роста (ФРФ, ЕФР, ТФРр и др.). и цитокины, поддерживающие пролиферацию гемопоэтических клеток.

Избыточная экспрессия цитокинов небезопасна для организма и может привести к развитию чрезмерной воспалительной реакции, острофазового ответа. В регуляции выработки провоспалительных цитокинов принимают участие различные ингибиторы. Так, описан ряд веществ, которые неспецифически связывают цитокин ИЛ-1 и препятствуют проявлению его биологического действия (а2-макроглобулин, С3-компонент комплемента, уромодулин). Специфическими ингибиторами ИЛ-1 могут быть растворимые рецепторы-ловушки, антитела и рецепторный антагонист ИЛ-1 (ИЛ-1RA). При развитии воспаления происходит усиление экспрессии гена ИЛ-1RA. Но и в норме этот антагонист присутствует в крови в высокой концентрации (до 1 нг/мл и более), блокируя действие эндогенного ИЛ-1.

Клетки-мишени

Действие цитокинов на клетки-мишени опосредуются через специфические рецепторы, связывающие цитокины с очень высокой аффинностью, причем отдельные цитокины могут использовать общие субъединицы рецепторов. Каждый цитокин связывается со своим специфическим рецептором.

Рецепторы цитокинов представляют собой трансмембранные белки и делятся на 5 основных типов. Наиболее распространен так называемый гемопоэтиновый тип рецепторов, имеющих два экстраклеточных домена, один из которых содержит общую последовательность аминокислотных остатков двух повторов триптофана и серина, разделенных любой аминокислотой (WSXWS-мотив). Второй тип рецепторов может иметь два внеклеточных домена с большим количеством консервативных цистеинов. Это рецепторы семейства ИЛ-10 и ИФН. Tретий тип представлен рецепторами цитокинов, относящихся к группе ФНО. Четвертый тип рецепторов цитокинов принадлежит к суперсемейству иммуноглобулиновых рецепторов, имеющих внеклеточные домены, напоминающие по строению домены молекул иммуноглобулинов. Пятый тип рецепторов, связывающих молекулы семейства хемокинов, представлен трансмембранными белками, пересекающими клеточную мембрану в 7 местах. Рецепторы цитокинов могут существовать в растворимой форме, сохраняя способность связывать лиганды.

Цитокины способны влиять на пролиферацию, дифференцировку, функциональную активность и апоптоз клеток-мишеней. Проявление биологической активности цитокинов в клетках-мишенях зависит от участия различных внутриклеточных систем в передаче сигнала от рецептора, что связано с особенностями клеток-мишеней. Сигнал к апоптозу проводится в том числе с помощью специфического участка семейства рецепторов ФНО, так называемого домена «смерти». Дифференцировочный и активирующий сигналы передаются посредством внутриклеточных белков Jak-STAT - сигнальных трансдукторов и активаторов транскрипции. G-белки участвуют в передаче сигнала от хемокинов, что приводит к усилению миграции и адгезии клеток.

Последний компонент - цитокины и их антагонисты, были описаны выше.