Евгений Адамов: работы по проекту "Прорыв" не засекречены. Атомную отрасль России ждёт «Прорыв

  • Дата: 26.09.2019

Мы уже несколько раз показывали, насколько тяжело уразуметь полностью «энергетические новости» от наших «больших СМИ». Короткие фразы, скрывающие массу непроговоренной информации, не дают возможность полностью понять значение того или иного события – традиционно это выглядит именно так. Но интерес к энергетике в России есть, и к энергетике атомной он тоже заметен.

Стали появляться стаьи нового типа: большие, обзорные, с явной попыткой полностью раскрыть тему. Это, конечно, просто здорово: таких статей в федеральных СМИ должно быть как можно больше, поскольку Россия с полным на то правом претендует на титул энергетической сверхдержавы, а атомная энергетика – вершина ее развития, до которой многим и многим конкурентам добраться очень тяжело. Но и в этом случае появляются проблемы, на этот раз связанные, как нам кажется, с тем, что описать коротко новые и новейшие направления развития атомного проекта в одной заметке просто невозможно – слишком уж объемен материал, не так прост он для понимания людьми без узко специального образования.

Вот не так давно в «Комсомольской Правде» была опубликована под заголовком “Замыкая цикл: мечты и реальности”.

Скриншот со страниц КП, Фото: kompravda.eu

Все хорошо, особенно вступительная часть… А дальше начинается нечто удивительное, смотрите.

«Но вот беда – в реакторах на тепловых нейтронах уран-238 не делится (т. е. не вырабатывает энергию), а, поглощая нейтрон, превращается в другой изотоп – плутоний-239»

Простите, вот весь уран-238 р-р-раз, и превратился в плутоний-239, причем только в плутоний-239, а не в плутоний-238, не в плутоний-240? Да это ж мечта всех генералов и министров обороны! Стоишь себе возле реактора АЭС и лопатой выгребаешь оружейный плутоний, штампуя тут же все новые ядерные и термоядерные бомбы. Зачем вот так-то, спрашивается? Чтобы у читателя появилось впечатление, что любая АЭС – великолепный источник ядерного и термоядерного оружия, что ли? Ни слова о том, что превращение урана-238 в плутоний-239 весьма редкое событие в реакторе тепловой АЭС, ни слова о том, что с равной вероятностью появляются изотопы плутония-240 и плутония-241. В ОЯТ (отработанном ядерном топливе) их по 33%, и именно такая смесь делает ОЯТ безопасным в смысле возможности создать из него ядерное оружие. Уж очень вредны для боеголовок эти вот плутоний-240 и плутоний-241. И именно эти свойства урана-238 дают возможность строить реакторы на быстрых нейтронах, не нарушая условия Договора о нераспространении ядерного оружия.

Небольшая, вроде бы, неточность, но сами видите, что упущено. Единственная фраза в этой статье требует куда как более полного рассказа, который на страницах «Геоэнергетики» уже .

«Ученые создали реакторные установки на быстрых нейтронах, или бридеры»

Хм… А зачем нужны реакторы-бридеры, если у нас и из обычных реакторов плутоний так и хлещет? Ну, да ладно – пришла ученым в голову вот такая прихоть – создавать реакторы-бридеры. Да, поскольку объяснения термина «реактор-бридер» в статье и в помине нет, придеся уже нам поведать, что это такой реактор, в которым делящегося вещества (ядерного топлива) на выходе больше, чем на входе. При этом уважаемая Ольга Ганжур считает, что реакторы-бридеры работают только и исключительно на уран-плутониевом топливе, даже не вспоминая о том, что реакторам БН-350 и БН-600 вполне хватало топлива чисто уранового, да и БН-800 пока только готовят к приему уран-плутониевого, пока чистый уран горит.

И, тем не менее, «Геоэнергетика» весьма признательна автору КП – по ее статье можно уверенно готовить план наших будущих публикаций. «Ставим галочку»: подробнее рассказать, как Росатом будет осваивать МОКС-топливо на БН реакторах и на реакторах ВВЭР.

«В 2010 г. «Росатом» инициировал работы по созданию новой технологической платформы атомной отрасли на основе быстрых реакторов и ЗЯТЦ. Идею поддержало правительство, была принята Федеральная целевая программа «Ядерные энерготехнологии нового поколения на период 2010 – 2015 годов и на перспективу до 2020 года». Годом позже многие работы объединили в росатомовском проекте «Прорыв»

«В рамках «Прорыва» предполагается, во-первых, создание проектов двух типов реакторных установок: коммерческого быстрого реактора с натриевым теплоносителем мощностью 1200 МВт (БН-1200*) и опытно-демонстрационного со свинцовым теплоносителем мощностью 300 МВт (БРЕСТ-ОД-300). Во-вторых, предстоит создать совершенно новое топливо для них: СНУП (смешанное нитридное уран-плутониевое)»

Интересно сказано, да вот только проект «Прорыв» это не только два указанных пункта, но и еще один, едва ни главный – решение проблемы ОЯТ. Да, мы умеем хранить в пристанционных бассейнах и построили нечто совершенно новое – центральное хранилище ОЯТ. Да, мы умеем делать из него МОКС-топливо, Ремикс-топливо, мы уверены, что сможем использовать его в реакторах БН. БН-реактор, напомним, можно расшифровать по разному: реактор на быстрых нейтронах и реактор быстрый натриевый – по типу используемого теплоносителя. Зачем, для чего нам еще и БРЕСТ, реактор, в котором в качестве теплоносителя используется рсплавленный свинец, если и так «все в порядке»? И зачем нам еще какое-то СНУП? МОКС-топливо уже есть, зачем городьбу городить? И каким образом СНУП-топливо будет использоваться на БН-реакторах, если сама их технология «заточена» под МОКС-топливо?

Пара фраз – а загадок в них на несколько страниц текста. Нитрудное топливо – это путь решения проблемы ОЯТ, поскольку в его составе не только нитриды плутония и урана, а еще и минорые актиниды – так красиво атомщики называют все те вредные составляющие ОЯТ, о которых Геоэнергетика писала достаточно подробно:

«35 кило пресловутых осколочных нуклидов – перечислять лениво, мы не на олимпиаде по химии. Все прочее – трансурановые элементы с названиями красивыми – нептуний, америций, кюрий» – это мы мысленно разбирали на составные части 1 тонну ОЯТ.

Изготавливать СНУП будут на специальном заводе, который является неотъемлемой частью БРЕСТа. Грубо: вытаскиваем ТВЭЛы из БРЕСТа, потрошим, щедро досыпаем те самые «минорные актиниды» , снова формируем ТВЭЛы, снова ставим в БРЕСТ. Если все расчеты верны, БРЕСТ будет «сжигать» до 30% радиоактивных отходов (именно отходов – вредных радиоактивных элементов), которые мы получаем в составе ОЯТ обычных реакторов.

Интересна скорость производства новых ТВС: после выгрузки из реактора БРЕСТ использованные ТВС охлаждаются в пристанционном хранилище всего 1 год, после чего поступают в переработку. Почему так быстро, ведь ОЯТ с тепловых реакторов охлаждается до 20 лет? Да вот по той самой причине: высокоактивные радиацонные материалы реактором БРЕСТа уничтожаются в куда большей степени, чем в реакторах обычных АЭС. А вот те минорные актиниды, которые не сумеет переработать даже БРЕСТ¸будут поступать в опять же пристанционное хранилище длительной выдержки, и тут слово «длительный» уж точно на своем месте, поскольку в этом случае это от 150 до 200 лет. Вот только, если все расчеты окажутся верны, появляется очень приятная, очень милая сердцу и уму любого нормального человека деталь: количество радиоактивности, которую мы вернем Земле будет ровно такой же, какую мы использовали на замкнутый топливный ядерный цикл. При этом СНУП-топливо не рассчитывается под «размножение» плутония: коэффициент его воспроизводства в БРЕСТе будет не выше единицы. Вот и еще одна «галочка» для Геоэнергетики – рассказать о СНУП-топливе, о проблеме ОЯТ и о том, почему завод по фабрикации топлива будет неотъемлемой частью БРЕСТа, не менее важной и нужной, чем сам реактор.

Почему для сжигания минорных актинидов требуется именно нитридное топливо? Ведь что в обычном топливе, что в МОКСе используются оксиды урана и оксиды плутония? Зачем возня с напичкиванием в топливо азота? Да все как бы «простенько».

С точки зрения физики нитридное топливо лучше оксидного: оксидное жёсткое, но хрупкое, трескается, распухает под действием нейтронов, а нитридное – более крепкое, поэтому и называется плотным, оно более устойчиво к механическим дефектам, не распухает, не лопается, не давит на оболочку твэла. За счёт лучшей теплопроводности нитридное топливо легче переносит температурные режимы, это даёт возможность повысить ресурс эксплуатации таких сборок, а значит, делает их более выгодными с точки зрения экономики. Что тут делает слово «экономика»? Да намекает на стоимость производства топлива, разумеется. Дорогое оно в производстве-то – что оксидное, что нитридное. Углеводороды нынчеподешевели, урановая руда после всех фукусим и планов той же Германии позакрывать все свои АЭС тоже стала недорогой, так что вопрос экономки вовсе не случаен: при всем своем новаторстве реакторы на быстрых нейтронах должны генерировать электричество по конкурентным ценам. Иначе никак, иначе дорога в пропасть, подобную той же, в которой вскоре может оказаться та же Германия, многие годы субсидировавшая «зеленую энергетику» за счет государственного бюджета. Собрать деньги со всей страны, со всех налогоплательщиков и поощрять ими новаторов – это, простите за резкость, просто новый вид распила, не более того. Поскольку коррупция в России и так ой-ой-ой, приумножать ее за счет атомного проекта совершенно не стоит.

Экономика того или иного вида атомного топлива «завязана» на такой показатель, как степень выгорания этого топлива. Что это такое? Да ничего хитрого – это просто доля выгоревшего основного топлива от начального его количества. Если мы говорим об обычных, тепловых, атомных реакторах, то основное топливо – привычный нам уран-235. Для реакторов РБМК (того самого, «чернобыльского» типа) степень выгорания урана-235 составляет от 0,35 до 0,37, для реакторов типа ВВЭР степень выгорания – от 0,30 до 0,33. С этим показателем, в свою очередь, связана глубина выгорания топлива – это и есть то, что уже можно считать в денежных единицах. Глубина выгорания – количество выработанной электроэнергии за топливную компанию (от момента погружения ТВЭЛов в реактор до момента их выемки) на единицу массы первоначально загруженного топлива. В этом случае речь идет обо всем топливе – и о том, которое «горит» и о том, которое выполняет практически роль некоего балласта. Для тепловых реакторов учитывают все количество урана – и «балластового» урана-238 и «горящего» урана-235. Измеряют глубину выгорания в МВт сутки на 1 тонну тполива. Чем это удобно? Да вот как-то затруднительно непосредственно измерить в граммах массу продуктов деления внутри реактора – уж очень много измеряльщиков придется израсходовать, знаете ли. Зато количество энергии, выделившейся в активной зоне реактора – величина измеряемая с хорошей точностью. А теоретическая атомная физика помогает понять все остальное. 1 грамм урана при своем делении за сутки выделяет 1 МВт тепловой энергии и 1 грамм продуктов деления. Полную массу загруженного в реактор урана мы тоже знаем – стало быть, глубина выгорания является величиной, легко и точно измеряемой.

Разумеется, разные соединения урана характеризуются разной глубиной его выгорания. Например, 1 тонна чистого, металлического урана за сутки выделяет от 3’000 до 3’500 МВт тепловой энергии, а вот соединения урана – куда больше. Горящий в «классических», тепловых реакторах диоксид урана – вещество пористое, поэтому способен накопить внутри себе куда больше продуктов деления без изменения формы ТВС, без деформации трубок. Потому глубина выгорания топлива в реакторах типов РБМК и ВВЭР – от 20 000 до 100 000 МВт на тонну оксида урана за сутки. Логически совершенно очевидно: чем больше глубина выгорания топлива, тем больше мы получаем энергии с каждой тонны этого топлива. 100 000 – это пока теория, а практика дает среднюю цифру для ВВЭР-реакторов в 50 000 МВт на тонну оксида урана за сутки. Чем больше глубина выгорания – тем экономичнее топливо, тем меньше цена генерируемой электроэнергии. Чтобы экономика МОКС-топлива не проигрывала экономике обычного ядерного топлива (диоксида урана), глубина его выгорания должна составлять не менее 70 000 МВт в сутки на тонну топлива. Еще выше требуется глубина выгорания для СНУП-топлива – его производство дороже не только производства «классического» топлива, но и дороже производства МОКС-топлива.

Но тут, если вы заметили, мы даем просто определения характеристик, а подробности того, как идет борьба за увеличение глубины выгорания ядерного топлива требует, разумеется, отдельной статьи и, возможно, даже не одной. Нефть и газ дешевеют – значит, Росатом обязан увеличивать глубину выгорания и «классического» ядерного топлива, предназначенного для ВВЭР. Спасибо, Ольга – подсказки от вас обеспечили нам работу вот уже на 3-4 заметки.

«Однако свинцовый реактор имеет потенциальные преимущества перед натриевым. Свойства основных компонентов БРЕСТ (свинцовый теплоноситель и плотное нитридное топливо) естественным образом исключают два класса наиболее тяжелых аварий – с неконтролируемым ростом мощности и потерей отвода тепла. За счет упрощения систем безопасности (по сравнению с ВВЭР) может быть достигнута экономическая конкурентоспособность.»

Нет, это просто прекрасно: написать в скобочках «свинцовый теплоноситель» и устремиться дальше. А что такое несколько сотен тонн расплавленного свинца, циркулирующего по трубам – вы вообще представляете? Ну, вот на пальцах: что за материал для этих труб, какой такой насос рассчитан прокачку свинца, где и как разогреть тот свинец, как поддерживать его в жидком состоянии? Главный циркуляционный насос ВВЭР – уже произведение инженерного искусства, так он ведь воду гоняет, а тут речь совсем о другой жидкости. Вот хоть что делайте, но БРЕСТ требует еще одной статьи и снова есть подозрение, что в одну уложиться невозможно будет. Уж слишком много действительно прорывных технологий требуется для такого реактора – Росатом подобрал очень точное название. И от «Геоэнергетики» – новая порция благодарности Ольге Ганжур, на подсказках которой мы видим вот уже от 4 до 6 статей.

«БН-1200 обладает коэффициентом воспроизводства 1,2. Это значит, что одна такая установка произведет компоненты топлива для себя и для двух традиционных реакторов типа ВВЭР.»

Ой. Коэффициент 1,2 означает нечто совсем иное: каждый загруженный в БН-1200 килограмм плутония на выходе превратится в кило двести грамм, вот и все. По какой такой причине он станет компонентом топлива сразу для трех реакторов, спрашивается? Нет, Ольга при этом совершенно права, просто надо намного подробнее рассказать о новом виде ОЯТ – отработанном МОКС- топливе реакторов на быстрых нейтронах. Исходный состав топлива – уран в комплекте с плутонием, на выходе мы получим совсем другой состав, чем в случае с урановым топливом. Да-да, все правильно – это готовый материал еще для одной статьи от нашего сайта.

Остается надеяться, что 7 – счастливое число, и нам их будет достаточно для того, чтобы полностью описать все то, чего статья в КП только коснулась. В общем – большое спасибо большому СМИ, который не дает «Геоэнергетике» скучать и жаловаться на отсутствие тем! И – низкий поклон Ольге Ганжур за ее попытку одной статьей «закрыть» ВСЮ тему закрытого ядерного топливного цикла.

Если мы ничего не упустили – это первая такого рода попытка в федеральных СМИ. И это – просто здорово: значит, все больше людей интересуются этой замечательной темой, все больше людей хотят понимать, что такое наш атомный проект. Это настолько здорово, что, если вы заметили, «Геоэнергетика» ни словечка не проронила про конкурентов Росатома, не ёрничала по этому поводу. Даже если очень захотеть, все равно не получится: в создании технологии реакторов на быстрых нейтронах Россия нашла настолько далеко вперед, что конкурентов найти просто не удается.

Вконтакте

Россия завершает разработку революционного ядерного реактора четвёртого поколения. Реактор «Брест», также известный как «проект Прорыв», решит такое количество международных проблем, что может получить Нобелевскую премию мира.

Ядерные станции дают нашей стране 17% электроэнергии, на Северо-Западе РФ - более 40%. В стране пашут 10 АЭС, 33 энергоблока. Всё это - обычные реакторы так называемого разомкнутого цикла. Они работают на низкообогащённом уране, сильно не дожигают топливо, в результате копятся горы радиоактивных отходов.

Набралось уже 18 тыс. т отработанного урана, и каждый год добавляется 670 тонн. В мире 345 тыс. т этих проблемных отходов, из них 110 тыс. у США. Промышленные технологии переработки есть только у двух стран: России и Франции.

Проблему может решить только реактор нового типа, действующий по замкнутому циклу. Заодно он поможет справиться с утечками военных ядерных технологий. Замкнутые реакторы можно поставлять любым странам, поскольку на них в принципе нельзя получить сырьё для ядерных зарядов.

Но главное - безопасность. Замкнутый цикл можно запустить на старом, отработанном топливе. «Даже грубые подсчёты говорят, что запасов отработанного урана, накопленных за 60 лет работы атомной отрасли, хватит на несколько сотен лет генерации», - говорит доктор физматнаук А. Крюков.

«Брест» и есть тот революционный проект. Работы над ним начались ещё в конце 1980-х гг., их ведёт знаменитый разработчик ядерных установок для подводных лодок НИИ Энерготехники (НИИЭТ). Поворотным моментом стало выступление В. Путина на «саммите тысячелетия» в ООН.

Там он пообещал миру новую ядерную энергетику, чистую, безопасную, исключающую оружейное применение. Речь шла как раз о «Брестах». С тех пор дело сильно двинулось вперёд. В 2010 г. правительство приняло госпрограмму «Ядерные технологии нового поколения до 2015 года» с бюджетом 160 млрд рублей.

Срок подошёл, проект готов, технические документы уже на госкомиссии. Тем временем Росатом начал завода, на котором отработанное топливо будет превращаться в обогащённые таблетки для «Бреста».

Первый опытный образец получит мощность 300 МВт, серийные «Бресты» будут на 700-1200 мегаватт. Это больше мощности основной тягловой лошадки сегодняшней российской атомной энергетики, реактора ВВЭР-1000.

Достоинства реактора:

  • естественная радиационная безопасность при любых возможных авариях по внутренним и внешним причинам, включая диверсии, не требующая эвакуации населения;
  • долговременная (практически неограниченная во времени) обеспеченность топливными ресурсами за счет эффективного использования природного урана;
  • нераспространение ядерного оружия за счет исключения наработки плутония оружейного качества и пристанционной реализации технологии сухой переработки топлива без разделения урана и плутония;
  • экологичность производства энергии и утилизации отходов за счет замыкания топливного цикла с трансмутацией и сжиганием в реакторе актиноидов, трансмутацией долгоживущих продуктов деления, очисткой РАО от актиноидов, выдержкой и захоронением РАО без нарушения природного радиационного равновесия;
  • экономическая конкурентоспособность за счет естественной безопасности АЭС и технологий топливного цикла, отказа от сложных инженерных систем безопасности, подпитки реактора только 238U, высоких параметров свинца, обеспечивающих закритические параметры паротурбинного контура и высокий КПД термодинамического цикла, удешевления строительства.
  • Сочетание природных свойств свинцового теплоносителя, мононитридного топлива, физических характеристик быстрого реактора, конструкторских решений активной зоны и контуров охлаждения выводит БРЕСТ на качественно новый уровень естественной безопасности и обеспечивает его устойчивость без срабатывания активных средств аварийной защиты в крайне тяжелых авариях, непреодолимых ни одним из существующих и проектируемых реакторов:

  • самоход всех органов регулирования
  • отключение (заклинивание) всех насосов первого контура
  • отключение (заклинивание) всех насосов второго контура
  • разгерметизация корпуса ректора
  • разрыв трубопроводов второго контура по любому сечению или трубок парогенератора
  • наложение различных аварий
  • неограниченное по времени расхолаживание при полном отключении питания и др.
  • Даже предельные аварии диверсионного происхождения с разрушением внешних барьеров (здания реактора, крышки корпуса и др.) не приводят к радиоактивным выбросам, требующим эвакуации населения и длительного отчуждения земли.

    Выполненные экономические оценки и сравнения подтверждают возможность снижения капитальных затрат на АЭС и стоимости производимой электроэнергии по сравнению с АЭС с реактором ВВЭР.

    Реализовать проект НИКИЭТ предлагается путём строительства опытно-демонстрационной станции с реакторной установкой БРЕСТ-ОД-300 с пристанционным топливным циклом на площадке Белоярской АЭС.

    Такой комплекс, расположенный рядом с реактором, - очередное преимущество БРЕСТа с точки зрения создания ЗЯТЦ. По мнению сторонников быстрых энергетических реакторов этого типа, характеристики безопасности делают возможным их строительство вблизи крупных населённых пунктов, в том числе в роли атомных станций теплоснабжения.

    «Росатом» поставил себе задачу создать конкурентоспособный коммерческий быстрый реактор к 2030 году. Идеями о том, как этого достичь, поделились участники третьей ежегодной конференции «Прорыв» в Екатеринбурге.

    «Борьба за место в мировой энергетической системе резко обострилась,- сразу подчеркнул актуальность задачи заместитель гендиректора «Росатома», глава блока по управлению
    инновациями Вячеслав Першуков.- Поэтому основной критерий проекта - не реализуемость, а конкурентоспособность».

    Что касается конкурентоспособности видов генерации, то атомная энергетика сегодня имеет явное преимущество по стоимости электроэнергии. Однако темпы роста возобновляемых источников заставляют задуматься. «Солнечная и ветровая генерация в обозримом будущем могут стать основными конкурентами атомной энергетики. Все будет зависеть от конкретной страны, ее географического положения и финансово-экономического благополучия»,- рассуждает Вячеслав Першуков.

    ЦЕЛЕВАЯ LCOE МЕГАВАТТ-ЧАСА ДЛЯ ПЭК С РЕАКТОРАМИ НА БЫСТРЫХ НЕЙТРОНАХ И ЗЯТЦ

    Но конкуренция намечается и внутри атомной генерации: реакторы на быстрых нейтронах и реакторы на тепловых. Поэтому среди задач проекта «Прорыв» не только создание технологии и демонстрация замыкания топливного цикла на промышленной основе (впервые в мире), но и экономика. «К 2030 году мы должны создать прототип коммерческого реактора на быстрых нейтронах. За вполне конкретные деньги»,- обрисовал задачу Вячеслав Першуков. Он добавил, что в мире началась гонка ядерных реакторов четвертого поколения, основные ее участники - Россия, Франция, США, Япония, Корея, Китай, Индия: «Все занимаются и реакторами на тепловых нейтронах поколения III+, и у каждой из этих стран в разной степени завершенности работы по тематике быстрых реакторов». Пока Россия в этой гонке занимает лидирующее положение. Однако, если разработка новых продуктов затянется, можно потерять и лидерство, и рынок, а также инвестиции.

    В поисках экономии

    Предварительные соображения, как оптимизировать стоимость «Прорыва», уже есть. Во-первых, сроки. «Росатом» в рамках программы инновационного развития намерен сократить срок реализации проектов от идеи до разработки для обычных технологий до пяти, максимум 10 лет, для ядерных - до 10, максимум 20 лет. В мировой практике разработка инновационного продукта занимает около пяти лет при непрерывных инвестициях в НИОКР, подчеркнул Вячеслав Першуков. «Раньше для создания нового топлива требовалось порядка 30 лет. В проекте «Прорыв» мы разрабатываем новое плотное топливо за семь-восемь лет»,- отметил он. По его мнению, это возможно благодаря переходу на проектное управление.

    Кстати, судя по всему, наконец-то будет поставлена точка в многолетнем споре, что лучше - натриевый теплоноситель или свинцовый. Ответ в нынешних реалиях очевиден: лучше то, что дешевле.

    Другие направления экономии - снижение потребления электроэнергии на собственные нужды, уменьшение капвложений. Приведенная стоимость производства электроэнергии (LCOE) должна быть ниже 38 долларов за мегаватт-час. «Я думаю, мы еще найдем механизм снижения стоимости капитальных вложений, что позволит вписаться в условия конкурентоспособности»,- сказал Вячеслав Першуков.

    К слову, быстрые реакторы с замкнутым топливным циклом априори имеют преимущество в экономике перед тепловыми - благодаря использованию плутония. «Мы сравнивали затраты на строительство АЭС с тепловыми реакторами и открытым топливным циклом и на АЭС с быстрыми реакторами и замкнутым топливным циклом. Вовлекаем в топливный цикл плутоний - цена за киловатт-час снижается более чем на 10% как в рублях, так и в долларах»,- рассказал Вячеслав Першуков.

    Еще один инструмент - ПСР. Только за год благодаря Производственной системе «Росатом» стоимость проекта удалось сократить на 5 млрд рублей. Как помогут снизить стоимость технологические улучшения, показал на примере научный руководитель «Прорыва» Евгений Адамов: «Мы пришли к тому, что на первом этапе целесообразно пользоваться комбинированной технологией переработки ОЯТ. Пирохимическая технология должна максимально снять радиоактивность, а после этого привычная нам гидрометаллургия доочищает до такого уровня, что на фабрикации топлива мы будем иметь дело с чистыми компонентами. На промышленной стадии, скорее всего, экономически недопустимо будет использовать две в затылок поставленные технологии. Мы рассчитываем остановиться на одной, надеемся, что это будет пиротехнология».

    ВЯЧЕСЛАВ ПЕРШУКОВ:
    «МЫ СРАВНИВАЛИ
    ЗАТРАТЫ НА СТРОИ-
    ТЕЛЬСТВО АЭС С ТЕП-
    ЛОВЫМИ РЕАКТОРАМИ
    И ОТКРЫТЫМ ТОПЛИВ-
    НЫМ ЦИКЛОМ И НА АЭС
    С БЫСТРЫМИ РЕАКТО-
    РАМИ И ЗАМКНУТЫМ
    ТОПЛИВНЫМ ЦИКЛОМ.
    ВОВЛЕКАЕМ В ТОПЛИВ-
    НЫЙ ЦИКЛ ПЛУТОНИЙ -
    ЦЕНА ЗА КИЛОВАТТ-ЧАС
    СНИЖАЕТСЯ БОЛЕЕ ЧЕМ
    НА 10% КАК В РУБЛЯХ,
    ТАК И В ДОЛЛАРАХ»

    Текущий статус

    С точки зрения содержания конференция была не совсем традиционной, так как рассматривались не технические аспекты, а экономика проекта и его место в энергосистеме будущего. Но вопросы о ходе работ не остались без внимания. Вячеслав Першуков доложил, что 80% НИОКР завершены и сейчас стоит вопрос о технологическом освоении их результатов. Готовы проекты реакторной установки, тестируется топ ливо. Испытывают 15 сборок со СНУП-топливом, 11 поставлено в БН-600, четыре извлечены - все сохранили герметичность. Послереакторные исследования показали, что выгорание составило примерно 5,5% т. а. - уровень, достигаемый в тепловых реакторах. Однако участники проекта считают, что у быстрых реакторов этот показатель должен составлять 12% т. а., и намерены продолжить работу, сообщил Евгений Адамов.

    Сооружается первая очередь ОДЭК - модуль фабрикации, реактор МБИР в Димитровграде - исследовательская база для отработки реакторной технологии. «Технология начнет отрабатываться в 2020 году. К этому времени необходимо сформировать научную программу для ОДЭК и программу коммерциализации результатов»,- подчеркнул Вячеслав Першуков.

    В свою очередь, Евгений Адамов проинформировал, что ведутся работы по активной зоне: «Это ряд гидравлических, коррозионных испытаний. Все беспокоятся о коррозионной стойкости металла в свинце - такие испытания проведены на несколько десятков тысяч часов: 60 тыс. часов для свинца-висмута, 16 тыс.- для свинца. И при соблюдении требований к содержанию кислорода в тяжелом теплоносителе мы имеем достаточно хорошую работоспособность конструкционных материалов». Макет топливной сборки для БРЕСТ-300 изготовлен на НЗХК. По прогнозам Евгения Адамова, в середине
    2018 года должно начаться производство топлива для первой загрузки.

    Ведутся работы по парогенератору - на расчетном уровне и на экспериментальных стендах, и по главному циркуляционному насосу. «Разработчик, ЦКБМ, сталкивается с тяжелыми условиями, поскольку эта среда в 10 раз плотнее воды, а надо в секунду перекачать 12 т теплоносителя»,- замечает Евгений Адамов. В целом, заключил он, работы ведутся, параметры подтверждаются, однако по полномасштабному стенду работы пока еще не начаты.

    Далее

    Проект Прорыв – один из главных современных мировых проектов в ядерной энергетике, реализуемый в России ведущими отраслевыми учеными и специалистами, в рамках которого предусматривается создание ядерных энергетических технологий нового поколения на базе замкнутого ядерного топливного цикла с использованием реакторов на быстрых нейтронах.

    Проект «Прорыв» осуществляется в рамках федеральной целевой программы «Ядерные энерготехнологии нового поколения на период 2010 - 2015 годов и на перспективу до 2020 года». На сегодняшний день в девяти центрах ответственности проекта трудятся специалисты ведущих научных, проектных и производственных организаций Росатома.

    В ближайшие пять лет на площадке Сибирского химического комбината планируется возвести опытно-демонстрационный энергетический комплекс в составе энергоблока с реактором БРЕСТ-ОД-300 со свинцовым теплоносителем и замыкающего ядерный топливный цикл пристанционного завода, который включает в себя модуль переработки облученного смешанного уран-плутониевого (нитридного) топлива и модуль фабрикации/рефабрикации для изготовления стартовых твэлов из привозных материалов, а впоследствии твэлов из переработанного облученного ядерного топлива.

    Система управления проектом «Прорыв» в 2014 году победила во Всероссийском конкурсе «Проектный Олимп», проводимом Аналитическим центром при Правительстве Российской Федерации, в номинации «Системы управления проектами с совокупным бюджетом более 500 млн руб. в госкорпорациях, институтах развития, государственных компаниях».

    Научный руководитель проектного направления «Прорыв» Евгений Олегович Адамов:
    «Проект «Прорыв» сегодня выполняется с опережением сроков по отношению к другим проектам ядерной энергетики мирового уровня примерно на 10 лет, более половины НИОКР по проекту завершены. Внедрение результатов проекта поэтапно в диапазоне 2020-2030-х гг. даст старт развитию крупномасштабной ядерной энергетики, создаст предпосылки укрепления России в качестве лидера на мировом рынке ядерных технологий и продуктов».

    Многопрофильность проекта, потребовавшая привлечения ряда отраслевых предприятий, университетов и институтов РАН, определила необходимость возвращения к практике проектного управления, некогда успешно использованной при решении задач создания ядерного оружия и ракетных средств его доставки. Вместо формирования новых предприятий, как в эпоху первого атомного проекта, на существующих профильных базовых предприятиях ГК «Росатом» были выделены Центры ответственности (ЦО) по реакторным установкам, разработки технологий смешанного уран-плутониевого топлива, по переработке ОЯТ, обращению с РАО, созданию кодов нового поколения. Данные ЦО объединены в рамках проектного подхода под единым научным и административным руководством. Такой метод управления является для отрасли пилотным, и это еще одна новация, которая в случае успеха будет применяться в дальнейшем.

    Основные положения проекта

    1. Исключение тяжелых аварий АЭС (реактивностные, потери охлаждения, пожары, взрывы), требующих эвакуации населения.
    2. Замыкание ядерного топливного цикла для полного использования энергетического потенциала уранового сырья.
    3. Последовательное приближение к радиационно-эквивалентному захоронению РАО (это означает, что на хранение будут отправлены отходы с той же радиоактивностью, что и извлеченное ранее из недр сырье).
    4. Технологическое усиление нераспространения ядерного оружия (новые реакторы не могут использоваться для его производства).
    5. Приведение капитальных затрат при сооружении АЭС с быстрыми реакторами, по крайней мере, до уровня АЭС с реакторами на тепловых нейтронах.
    6. Обеспечение конкурентоспособности ядерной энергетики в сравнении с другими видами электрогенерации.
    7. Обеспечение масштабного развития ядерной энергетики России к концу текущего столетия до 350 ГВт на существующей минеральной ресурсной базе (фактически, создается база для крупномасштабной ядерной энергетики).
    8. Переработка ОЯТ, включая накопленные тепловыми реакторами объемы.
    9. Разработка и утверждение стратегии коммерциализации.

    Центры ответственности

    Центр ответственности (ЦО) представляет собой выделенное подразделение базового предприятия, объединяющее группу высококвалифицированных специалистов, обладающих необходимым набором компетенций для решения научно-технических задач в рамках частных проектов «Прорыва».

    Частное учреждение Госкорпорации «Росатом» «Инновационно-технологический центр проекта «Прорыв»» (ИТЦП) является системным интегратором проекта по техническому заданию, утвержденному ГК «Росатом», выдающим технические задания на частные проекты, осуществляющие ключевые научно-исследовательские и опытно-конструкторские работы по обликовому проекту объектов «Прорыва». Частное учреждение «ИТЦП «Прорыв»» создает и поддерживает единое информационное пространство, а также математические модели проекта.

    На базе Частного учреждения «ИТЦП «Прорыв» функционирует три Центра ответственности:

    1. ЦО объединённый проект «Разработка базовых технологий переработки ОЯТ и обращения с РАО»
    Основной целью ЦО является создание базовых технологий и экспериментального оборудования для переработки ОЯТ и обращения с РАО для МП ОДЭК в рамках формирования в России крупномасштабной ядерной энергетики с естественной безопасностью на основе ЗЯТЦ с использованием реакторов на быстрых нейтронах.

    2. ЦО «Разработка, изготовление и передача в эксплуатацию опытно-промышленных технологических линий (ОПТЛ) ПЯТЦ»
    Ключевая цель деятельности ЦО – надзор за эффективностью и соответствием техническим требованиям при разработке, изготовлении и передаче в эксплуатацию опытно-промышленных технологических линий пристанционного ядерного топливного цикла (ПЯТЦ), включая модуль фабрикации/рефабрикации (МФР), модуль переработки отработавшего ядерного топлива ректоров на быстрых нейтронах (МП).

    3. ЦО «Интегрирующие проекты»
    Данный центр ответственности занимается создание единого упорядоченного массива актуальной информации проектного направления «Прорыв», содержащего оптимизированную проектно-сметную, конструкторскую, технологическую документацию об объектах и моделях. Такой подход позволяет в виртуальном пространстве получить 3D представление объекта, характеризующее глубину и детализацию его проработки и обоснования, а также имитировать все стадии его жизненного цикла для опережающего анализа характеристик объекта и технологического процесса и своевременной оптимизации технических решений, в том числе по выводу объекта из эксплуатации и реабилитации территории.

    4. ЦО объединённый проект «Разработка твэл и ТВС со СНУП-топливом, технологий для их производства (Плотное топливо и КМ)»
    Расположен на базе АО «ВНИИНМ». Основными задачами ЦО являются разработка твэлов и ТВС со СНУП-топливом, технологий для их производства, разработка технологии для фабрикации твэлов и ТВС, а также конструкционных материалов твэлов и ТВС.

    5. ЦО «БРЕСТ»
    Функционирует на базе АО «НИКИЭТ» и отвечает за реализацию частного проекта БРЕСТ-ОД-300. Реакторная установка БРЕСТ-ОД-300 предназначена для практического подтверждения основных технических решений, закладываемых в реакторные установки со свинцовым теплоносителем в замкнутом ядерном топливном цикле, и основных положений концепции естественной безопасности, на которой эти решения основываются.

    6. ЦО «БН-1200»
    Функционирует на базе АО «ОКБМ Африкантов», основная цель - разработка материалов проекта энергоблока нового поколения с реактором на быстрых нейтронах с натриевым теплоносителем БН-1200.

    7. ЦО «Коды нового поколения»
    Сформирован в 2013 г. на базе ИБРАЭ РАН. Основной задачей центра ответственности является разработка универсальных расчетных кодов для моделирования различных режимов работы действующих и проектируемых АЭС с реакторными установками на быстрых нейтронах с жидкометаллическими теплоносителями и объектов замкнутого ядерного топливного цикла, а также воздействия этих объектов на человека и окружающую среду.

    8. ЦО «Проектные коды»
    Расположен на базовом предприятии АО «ГНЦ РФ-ФЭИ». Данный ЦО отвечает за разработку проектных кодов.

    9. ЦО «Проектирование ОДЭК и ПЭК»
    ЦО отвечает за проектирование опытно-демонстрационного энергокомплекса (ОДЭК) и создание на его основе промышленного энергокомплекса (ПЭК).
    Информационный обмен между участниками проекта «Прорыв» осуществляется в рамках Единого информационного пространства (ЕИП) проекта.

    ЕИП – совокупность каналов передачи данных, аппаратно-программного обеспечения и методологий, обеспечивающая совместную работу участников проекта, создание, наполнение и использование информационной модели проекта «Прорыв», общие информационные сервисы для частных проектов, интеграцию с ИТ-системами частных проектов (ИТЧП).
    Основными компонентами ЕИП являются защищенная сеть передачи данных и информационные ресурсы ЕИП.

    Росатом уволил видного ученого за критику проекта «Прорыв»

    © CC0

    Главный специалист ОКБ «Гидропресс» (принадлежит Росатому), один из ведущих специалистов по ядерной физике и атомной энергетики СССР и России, доктор технических наук, профессор Игорь Острецов уволен из-за критического интервью местной газете в Красноярском крае. Ученый за защитой обратился к президенту и правительству РФ.

    Как говорится в обращении Острецова, опубликованного в «Сегодняшней газете» , примерно месяц назад он дал этому изданию интервью о перспективах развития атомной энергетики. «Сегодня Росатом дал указание уволить меня. Это происходит уже второй раз. Первый раз меня увольняли из ВНИИ атомного машиностроения в 9--м году, тоже по приказу Росатома. Тогда я два раза восстанавливался по суду. Увольняют меня по той причине, что я высказываю свою позицию о путях развития атомной энергетики - — в частности, о полной абсурдности программы „Прорыв“. В данное время аналогичную позицию по этому вопросу занимает, например, Курчатовский институт. Кроме того, мне стало известно, что этот вопрос решением Вашей администрации передан на экспертизу в этот институт. У меня нет сомнения в том, что весьма дорогостоящая и бессмысленная программа „Прорыв“ будет закрыта, в том числе и моими усилиями. Прошу Вас защитить меня от нападок некоторых руководителей Росатома, тем более, что я уверен в том, что [гендиректору Росатома Сергею] Кириенко о моем очередном увольнении ничего не известно», — говорится в обращении ученого к Путину.

    Программа «Прорыв» — проект, консолидирующий достижения в разработке реакторов большой мощности на быстрых нейтронах, технологии замкнутого ядерного топливного цикла, а также новых видов топлива с целью создания ядерно-энергетического комплекса, включающего в себя АЭС с реакторами на быстрых нейтронах.