Относительности теория специальная. Теория относительности - что это такое? Постулаты теории относительности. Время и пространство в теории относительности

  • Дата: 13.10.2019

Еще в начале 20-го века была сформулирована теория относительности. Что это такое и кто ее создатель, знает сегодня каждый школьник. Она настолько увлекательна, что ею интересуются даже люди, далекие от науки. В этой статье доступным языком описывается теория относительности: что это такое, каковы ее постулаты и применение.

Говорят, что к Альберту Эйнштейну, ее создателю, прозрение пришло в один миг. Ученый будто бы ехал на трамвае по швейцарскому Берну. Он посмотрел на уличные часы и вдруг осознал, что эти часы остановятся, если трамвай разгонится до скорости света. В этом случае времени бы не стало. Время в теории относительности играет очень важную роль. Один из постулатов, сформулированных Эйнштейном, - разные наблюдатели воспринимают действительность по-разному. Это относится в частности ко времени и расстоянию.

Учет положения наблюдателя

В тот день Альберт понял, что, выражаясь языком науки, описание любого физического явления или события зависит от того, в какой системе отсчета находится наблюдатель. К примеру, если какая-нибудь пассажирка трамвая уронит очки, они упадут по отношению к ней вертикально вниз. Если же посмотреть с позиции стоящего на улице пешехода, то траектория их падения будет соответствовать параболе, так как трамвай движется и одновременно падают очки. Таким образом, система отсчета у каждого своя. Предлагаем подробнее рассмотреть основные постулаты теории относительности.

Закон распределенного движения и принцип относительности

Несмотря на то что при смене систем отсчета описания событий меняются, существуют и универсальные вещи, которые остаются неизменными. Для того чтобы понять это, нужно задаться вопросом не падения очков, а закона природы, который вызывает это падение. Для любого наблюдателя, независимо от того, в движущейся или неподвижной системе координат он находится, ответ на него остается неизменным. Этот закон называется законом распределенного движения. Он одинаково действует как в трамвае, так и на улице. Иными словами, если описание событий всегда зависит от того, кто их наблюдает, то это не относится к законам природы. Они являются, как принято выражаться на научном языке, инвариантными. Вот в этом и состоит принцип относительности.

Две теории Эйнштейна

Данный принцип, как и любую другую гипотезу, необходимо было сначала проверить, соотнеся его с природными явлениями, действующими в нашей реальности. Эйнштейн вывел 2 теории из принципа относительности. Хотя они и родственные, но считаются отдельными.

Частная, или специальная, теория относительности (СТО) основывается на положении о том, что для всевозможных систем отсчета, скорость движения которых постоянна, законы природы остаются одними и теми же. Общая теория относительности (ОТО) данный принцип распространяет на любые системы отсчета, в том числе и те, которые движутся с ускорением. В 1905 году А. Эйнштейн опубликовал первую теорию. Вторую, более сложную в плане математического аппарата, завершил к 1916 году. Создание теории относительности, как СТО, так и ОТО, стало важным этапом в развитии физики. Остановимся подробнее на каждой из них.

Специальная теория относительности

Что это такое, в чем ее суть? Давайте ответим на этот вопрос. Именно этой теорией предсказывается множество парадоксальных эффектов, противоречащих нашим интуитивным представлениям о том, как устроен мир. Речь идет о тех эффектах, которые наблюдаются тогда, когда скорость движения приближается к скорости света. Наиболее известным среди них является эффект замедления времени (хода часов). Часы, которые движутся относительно наблюдателя, для него идут медленнее, нежели те, которые находятся у него в руках.

В системе координат при движении со скоростью, приближенной к скорости света, время растягивается относительно наблюдателя, а длина объектов (пространственная протяженность), напротив, сжимается вдоль оси направления этого движения. Данный эффект ученые называют сокращением Лоренца-Фицджеральда. Еще в 1889 году его описал Джордж Фицджеральд, итальянский физик. А в 1892 году Хендрик Лоренц, нидерландец, дополнил его. Этот эффект объясняет отрицательный результат, который дает опыт Майкельсона-Морли, в котором скорость движения нашей планеты в космическом пространстве определяется замером "эфирного ветра". Таковы основные постулаты теории относительности (специальной). Эйнштейн дополнил эти преобразования массы, сделанной по аналогии. Согласно ей, по мере того, как скорость тела приближается к скорости света, масса тела увеличивается. Например, если скорость составит 260 тыс. км/с, то есть 87% от скорости света, с точки зрения наблюдателя, который находится в покоящейся системе отсчета, масса объекта удвоится.

Подтверждения СТО

Все эти положения, как бы они ни противоречили здравому смыслу, со времени Эйнштейна находят прямое и полное подтверждение во множестве экспериментов. Один из них провели ученые Мичиганского университета. Этим любопытным опытом подтверждается теория относительности в физике. Исследователи поместили на борт авиалайнера, который регулярно совершал трансатлантические рейсы, сверхточные Каждый раз после возвращения его в аэропорт показания этих часов сверялись с контрольными. Оказалось, что часы на самолете каждый раз все больше отставали от контрольных. Конечно, речь шла лишь о незначительных цифрах, долях секунды, но сам факт весьма показателен.

Последние полвека исследователи изучают элементарные частицы на ускорителях - огромных аппаратных комплексах. В них пучки электронов или протонов, то есть заряженных разгоняются до тех пор, пока их скорости не приближаются к скорости света. После этого ими обстреливаются ядерные мишени. В данных опытах нужно учитывать то, что масса частиц увеличивается, в противном случае результаты эксперимента не поддаются интерпретации. В этом отношении СТО уже давно не просто гипотетическая теория. Она стала одним из инструментов, которые используются в прикладной инженерии, наравне с ньютоновскими законами механики. Принципы теории относительности нашли большое практическое применение в наши дни.

СТО и законы Ньютона

Кстати, говоря о (портрет этого ученого представлен выше), следует сказать, что специальная теория относительности, которая, казалось бы, им противоречит, в действительности воспроизводит уравнения законов Ньютона практически в точности, если ее использовать для описания тел, скорость движения которых намного меньше скорости света. Другими словами, если применяется специальная теория относительности, физика Ньютона вовсе не отменяется. Эта теория, напротив, дополняет и расширяет ее.

Скорость света - универсальная константа

Используя принцип относительности, можно понять, почему в данной модели строения мира очень важную роль играет именно скорость света, а не что-то еще. Этим вопросом задаются те, кто только начинает знакомство с физикой. Скорость света является универсальной константой благодаря тому, что она определена в качестве таковой естественнонаучным законом (подробнее об этом можно узнать, изучив уравнения Максвелла). Скорость света в вакууме, в силу действия принципа относительности, в любой системе отсчета является одинаковой. Можно подумать, что это противоречит здравому смыслу. Выходит, что до наблюдателя одновременно доходит свет как от неподвижного источника, так и от движущегося (независимо от того, с какой скоростью он движется). Однако это не так. Скорости света, благодаря особой ее роли, отводится центральное место не только в специальной, но и в ОТО. Расскажем и о ней.

Общая теория относительности

Она используется, как мы уже говорили, для всех систем отсчета, не обязательно тех, скорость движения которых относительно друг друга является постоянной. Математически эта теория выглядит намного сложнее, нежели специальная. Этим и объясняется то, что между их публикациями прошло 11 лет. ОТО включает в себя специальную в качестве частного случая. Следовательно, законы Ньютона также входят в нее. Однако ОТО идет намного дальше ее предшественниц. К примеру, в ней по-новому объясняется гравитация.

Четвертое измерение

Благодаря ОТО мир становится четырехмерным: время добавляется к трем пространственным измерениям. Все они неразрывны, следовательно, нужно говорить уже не о пространственном расстоянии, существующем в трехмерном мире между двумя объектами. Речь теперь идет о простанственно-временных интервалах между различными событиями, объединяющими как пространственную, так и временную удаленность их друг от друга. Другими словами, время и пространство в теории относительности рассматриваются как некий четырехмерный континуум. Его можно определить как пространство-время. В данном континууме те наблюдатели, которые движутся относительно друг друга, будут иметь разные мнения даже о том, одновременно ли произошли два каких-либо события, или же одно из них предшествовало другому. Однако причинно-следственные связи при этом не нарушаются. Другими словами, существования такой системы координат, где два события происходят в разной последовательности и не одновременно, не допускает даже ОТО.

ОТО и закон всемирного тяготения

Согласно закону всемирного тяготения, открытому Ньютоном, сила взаимного притяжения существует во Вселенной между любыми двумя телами. Земля с этой позиции вращается вокруг Солнца, так как между ними имеются силы взаимного притяжения. Тем не менее, ОТО заставляет взглянуть с другой стороны на это явление. Гравитация, согласно данной теории, - следствие "искривления" (деформации) пространства-времени, которое наблюдается под воздействием массы. Чем тело тяжелее (в нашем примере, Солнце), тем больше "прогибается" под ним пространство-время. Соответственно, его гравитационное поле тем сильнее.

Для того чтобы лучше понять суть теории относительности, обратимся к сравнению. Земля, согласно ОТО, вращается вокруг Солнца, как маленький шарик, который катится вокруг конуса воронки, созданной в результате "продавливания" Солнцем пространства-времени. А то, что мы привыкли считать силой тяжести, является на самом деле внешним проявлением данного искривления, а не силой, в понимании Ньютона. Лучшего объяснения феномена гравитации, чем предложенное в ОТО, на сегодняшний день не найдено.

Способы проверки ОТО

Отметим, что ОТО проверить непросто, так как ее результаты в лабораторных условиях почти соответствуют закону всемирного тяготения. Однако ученые все-таки провели ряд важных экспериментов. Их результаты позволяют сделать вывод о том, что теория Эйнштейна является подтвержденной. ОТО, кроме того, помогает объяснить различные явления, наблюдаемые в космосе. Это, например, небольшие отклонения Меркурия от своей стационарной орбиты. С точки зрения ньютоновской классической механики их нельзя объяснить. Это также то, почему электромагнитное излучение, исходящее от далеких звезд, искривляется при прохождении его вблизи от Солнца.

Результаты, предсказанные ОТО, на самом деле существенно отличаются от тех, которые дают законы Ньютона (портрет его представлен выше), лишь тогда, когда присутствуют сверхсильные гравитационные поля. Следовательно, для полноценной проверки ОТО необходимы либо очень точные измерения объектов огромной массы, либо черные дыры, поскольку наши привычные представления по отношению к ним неприменимы. Поэтому разработка экспериментальных способов проверки этой теории является одной из главных задач современной экспериментальной физики.

Умы многих ученых, да и далеких от науки людей занимает созданная Эйнштейном теория относительности. Что это такое, мы вкратце рассказали. Эта теория переворачивает наши привычные представления о мире, поэтому интерес к ней до сих пор не угасает.

Вы сидите лицом по ходу движению звездолета и смотрите на лампочку, которая находится в его носовой части. Свет от лампочки, не обращая внимания на ее движение, перемещается относительно звезд со скоростью С = 300 000 км/с. Вы движетесь навстречу свету со скоростью , стало быть, относительно вас свет должен иметь скорость

Вы измеряете эту скорость, сопоставляете ее с известным значением С и приходите к выводу, что двигаетесь со скоростью 50 000 км/с, таким образом, электромагнитные явления вроде бы позволяют отличить покой от равномерного прямолинейного движения. То есть получается парадокс: с одной стороны скорость света 300 000 км/с не должна зависеть от того, движется или покоится источник света, с другой стороны, согласно классическому закону сложения скоростей, она должна зависеть от выбора системы отсчета.

Выходы предлагались разные, одно из мнений, сторонником, которого был Лоренц, гласило: инерциальные системы отсчета, равноправные в механических явлениях, не являются равноправными в законах электродинамики.

То есть в электродинамике существует некая привилегированная, главная, абсолютная система отсчета, которую ученые связывали с так называемым эфиром.

Проверить справедливость наличия системы отсчета, связанной с эфиром, и наличие собственно этого эфира попытались американские ученые Майкельсон и Морли. Они проверяли, существует ли так называемая абсолютная система отсчета, связанная с эфиром, и движущиеся относительно нее все остальные системы отсчета, то есть так называемый эфирный ветер, которые могли влиять на величину скорости света. И, как вы только что убедились, никакого эфирного ветра не существует. Физика того времени столкнулась с неразрешимым парадоксом: что же справедливо - классическая механика, электродинамика Максвелла или что-то другое.

На момент публикации своей работы Альберт Эйнштейн не был признанным мировым ученым, идеи, которые он высказал, казались настолько революционными, что в первое время у них практически не было сторонников. Тем не менее огромное количество экспериментов и измерений, которые были проведены после этого, показали справедливость точки зрения Альберта Эйнштейна.

Сформулируем еще раз проблемы, с которыми столкнулась физика того времени и поговорим о тех решениях, которые предложил Эйнштейн.

Не удается обнаружить привилегированную систему отсчета, связанную с неподвижным мировым эфиром.

Значит, ее нет вовсе, нет этой привилегированной абсолютной системы отсчета? Альберт Эйнштейн расширил действие принципа Галилея в механике на всю физику, и так получился принцип относительности от Эйнштейна: всякое физическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчета .

То есть не всякое механическое явление, а любое физическое явление.

Следующая трудность: электродинамика противоречит механике в том, что уравнения Максвелла не инвариантны относительно преобразований Галилея, то есть это как раз та трудность, связанная со скоростью света.

Может, Максвелл неправ? Ничего подобного, электродинамика Максвелла вполне справедлива. Значит, все остальные области физики несправедливы, неверны преобразования Галилея, которые связывают эти части физики? Ведь из них вытекает классический закон сложения скоростей, который мы используем при решении задач, таких как: поезд едет со скоростью 40 км/ч, а пассажир идет по вагону со скоростью 5 км/ч и относительно наблюдателя на земле, этот пассажир будет двигаться со скоростью 45 км/ч (рис. 2).

Рис. 2. Пример классического сложения скоростей ()

Эйнштейн фактически заявляет: раз преобразования Галилея несправедливы, то и этот закон сложения скоростей несправедлив. Полный слом устоев, абсолютно очевидный жизненный пример, абсолютно очевидный жизненный закон оказывается несправедливым, в чем же здесь проблема? Проблема глубоко внутри тех основ классической механики, которые закладывались еще Ньютоном. Оказывается, что главная проблема классической механики состоит в том, что предполагается, что все взаимодействия в рамках механики распространяются мгновенно. Рассмотрим, например, гравитационное притяжение тел.

Если сместить одно из тел в сторону, то, согласно закону всемирного тяготения, второе тело почувствует этот факт мгновенно, как только изменится расстояние от него до первого тела, то есть взаимодействие передается с бесконечной скоростью. В реальности механизм взаимодействия состоит в следующем: изменение положения первого тела меняет гравитационное поле вокруг него. Это изменение поля начинает бежать с какой-то скоростью во все точки пространства, и, когда достигает точки, в которой находится второе тело, соответствующим образом изменяется и взаимодействие первого и второго тел. То есть скорость распространения взаимодействия обладает какой-то конечной величиной. Но если взаимодействия передаются с какой-то конечной скоростью, значит, в природе должна существовать какая-то предельно допустимая скорость распространения этих взаимодействий, максимальная скорость, с которой взаимодействие может передаваться. Об этом гласит второй постулат, который отводит исключительную роль скорости света, принцип инвариантности скорости света: в каждой инерциальной системе отсчета свет движется в вакууме с одной и той же скоростью. Величина этой скорости не зависит от того, покоится или движется источник света .

Таким образом, описанный выше пример с лампочкой в звездолете в реальности нам провести не удастся, это будет противоречить этому постулату теории Эйнштейна. Скорость света относительно наблюдателя в звездолете будет равна С, а не С +V, как мы говорили до этого, и наблюдатель не сможет заметить факт движения звездолета. Классический закон сложения скоростей применительно скорости света не работает, как это ни странно для нас, но скорость света для наблюдателя на Земле и для космонавта будет совершенно одинаковой и равной 300 000 км/с. Именно это положение лежит в основе теории относительности и было вполне успешно доказано огромным количеством экспериментов.

Механика, которая была построена на основании этих двух постулатов, носит название релятивистской механики (от английского relativity - «относительность»). Может показаться, что релятивистская механика отменяет классическую механику Ньютона, поскольку в ее основе лежат другие постулаты, но дело в том, что классическая механика Ньютона - это частный случай релятивистской механики Эйнштейна, который проявляется при скоростях, значительно меньших, чем скорость света. В окружающем нас мире мы и живем в таких скоростях, скорости, с которыми мы сталкиваемся, гораздо меньше скорости света. Поэтому для описания нашей жизни достаточно классической механики Ньютона.

Для небольших скоростей, значительно меньших скорости света, мы вполне успешно пользуемся классической механикой, если же мы работаем со скоростями, близкими к скорости света, или хотим большой точности в описании явлений - мы должны пользоваться специальной теорией относительности, то есть релятивистской механикой.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Pppa.ru ().
  2. Sfiz.ru ().
  3. Eduspb.com ().

Домашнее задание

  1. Дать определение принципу относительности Эйнштейна.
  2. Дать определение принципу относительности Галилея.
  3. Дать определение принципу инвариантности Эйнштейна.

После того как математики создали правила в пространстве понятий и чисел, ученые были уверены, что им остается лишь ставить эксперименты и с помощью логических построений объяснять устройство всего сущего. В разумных пределах законы математики работают. Но эксперименты, выходящие за рамки ежедневных понятий и представлений, требуют новых принципов и законов.

Идея

В середине XIX века повсеместно распространилась удобная идея о всеобщем эфире, которая устраивала большинство ученых и исследователей. Таинственный эфир стал наиболее распространенной моделью, объясняющей известные на то время физические процессы. Но к математическому описанию гипотезы эфира постепенно добавлялись множество необъяснимых фактов, которые объяснялись различными дополнительными условиями и допущениями. Постепенно стройная теория эфира обросла «костылями», их становилось слишком много. Требовались новые идеи для объяснения устройства нашего мира. Постулаты специальной теории относительности соответствовали всем требованиям - они были кратки, непротиворечивы и полностью подтверждались экспериментами.

Опыты Майкельсона

Последней каплей, которая «сломала спину» гипотезе эфира, стали исследования в области электродинамики и объясняющие их уравнения Максвелла. При приведении результатов опытов к математическому решению, Максвелл использовал теорию эфира.

В своем эксперименте исследователи заставили два луча, идущих в разных направлениях, излучаться синхронно. При условии что свет движется в «эфире», один луч света должен был двигаться медленнее другого. Несмотря на многочисленные повторения опыта, результата был один и тот же - свет двигался с постоянной скоростью.

Иначе нельзя было объяснить тот факт, что, согласно расчетам, скорость света в гипотетическом эфире» всегда была одинаковой, независимо от того, с какой скоростью двигался наблюдатель. Но чтобы объяснить результаты исследований, требовалось, чтобы система отсчета была « идеальной». А это противоречило постулату Галилея об инвариантности всех инерциальных систем отсчета.

Новая теория

В начале ХХ века целая плеяда ученых приступила к разработке теории, которая примиряла бы результаты исследований электромагнитных колебаний с принципами классической механики.

При разработке новой теории было учтено, что:

Движение с около световыми скоростями меняет формулу второго закона Ньютона, связывающего ускорение с силой и массой;

Уравнение для импульса тела должно иметь другую, более сложную формулу;

Скорость света оставалась постоянной, вне зависимости от выбранной системы отсчета.

Усилия А. Пуанкаре, Г. Лоренца и А. Эйнштейна привели к созданию специальной теории относительности, которая согласовала все недостатки и объяснила существующие наблюдения.

Основные понятия

Основы специальной теории относительности заключаются в определениях, которыми оперирует данная теория

1. Система отсчета - материальное тело, которое можно принять за начало системы отсчета и координату времени, в течение которого наблюдатель будет следить за движением объектов.

2. Инерциальная система отсчета - та, которая движется равномерно и прямолинейно.

3. Событие. Специальная и общая теория относительности рассматривают событие как локализованный в пространстве физический процесс с ограниченной длительностью. Координаты объекта могут быть заданы в трехмерном пространстве как (x, y, z) и периодом времени t. Стандартным примером такого процесса является световая вспышка.

Специальная теория относительности рассматривает инерциальные системы отсчета, в которых первая система движется возле второй с постоянной скоростью. В этом случае поиск соотношений координат объекта в этих инерциальных системах является приоритетным для СТО и входит в ее основные задачи. Специальная теория относительности сумела решить этот вопрос при помощи формул Лоренца.

Постулаты СТО

При разработке теории Эйнштейн отмел все многочисленные допущения, которые были необходимыми для поддержания теории эфира. Простота и математическая доказуемость - вот два кита, на которых держалась его специальная теория относительности. Кратко ее предпосылки можно свести к двум постулатам, которые были необходимы для создания новых законов:

  1. Все физические законы в инерциальных системах выполняются одинаково.
  2. Скорость света в вакууме постоянна, она не зависит от расположения наблюдателя и его скорости.

Эти постулаты специальной теории относительности сделали бесполезной теории о мифическом эфире. Взамен этой субстанции была предложена концепция четырехмерного пространства, связавшего воедино время и пространство. При указании местонахождении тела в пространстве нужно учитывать и четвертую координату - время. Данное представление кажется довольно искусственным, но следует учесть, что подтверждение данной точки зрения лежит в пределах скоростей, соизмеримых со скоростью света, а в повседневном мире законы классической физики выполняют свою работу на «отлично». Принцип относительности Галилея выполняется для всех инерциальных систем отсчета: если в СО k соблюдается правило F = ma, то оно будет правильным и в другой системе отсчета k’. В классической физике время - величина определенная, и его значение неизменно и не зависит от движения инерциальной СО.

Преобразования в СТО

Коротко координаты точки и время можно обозначить так:

x" = x - vt и t" = t.

такую формулу дает классическая физика. Специальная теория относительности предлагает эту формулу в более усложненном виде.

В этом уравнении величины (x,x’ y,y’ z,z’ t,t’) обозначают координаты объекта и течение времени в наблюдаемых системах отсчета, v -скорость объекта, а с - скорость света в вакууме.

Скорости объектов в таком случае должны соответствовать не стандартной Галилеевской

формуле v= s/t, а такому преобразованию Лоренца:

Как можно видеть, при пренебрежимо малой скорости тела эти уравнения вырождаются во всем известные уравнения классической физики. Если предпочесть другую крайность и задать скорость объекта равной скорости света, то в этом предельном случае все равно получается c. Отсюда специальная теория относительности делает вывод, что ни одно тело в наблюдаемом мире не может двигаться ос скоростью, превышающей скорость света.

Следствия СТО

При дальнейшем рассмотрении преобразований Лоренца становится ясно, что со стандартными объектами начинают происходить нестандартные вещи. Следствия специальной теории относительности - это изменение длины объекта и течения времени. Если длина отрезка в одной системе отсчета будет равна l, то наблюдения из другой ОС, дадут такое значение:

Таким образом, выясняется, что наблюдатель из второй системы отсчета увидит отрезок более коротким, чем первый.

Удивительные превращение коснулись и такой величины, как время. Уравнение для координаты t будет выглядеть таким образом:

Как можно видеть, время во второй системе отсчета течет медленнее, чем в первой. Естественно, оба этих уравнения дадут результаты только при скоростях, сравнимых со скоростью света.

Первым вывел формулу замедления времени Эйштейн. Он же и предолжил разгадать так называемый «парадокс близнецов». По условию этой задачи имеются братья-близнецы, один из которых остался на Земле, а второй улетел на ракете в космос. Согласно формуле, написанной выше, братья будут стареть по разному, так как время для путешествующего брата течет медленнее. Этот парадокс имеет решение, если учесть, что брат-домосед все время находился в инерциальной системе отсчета, а близнец-непоседа путешествовал в неинерциальной СО, которая двигалась с ускорением.

Изменение массы

Еще одним следствием СТО является изменение массы наблюдаемого объекта в различных СО. Поскольку все физические законы одинаково действуют во всех инерциальных системах отсчета, фундаментальные законы сохранения - импульса, энергии и момента импульса - должны соблюдаться. Но поскольку скорость для наблюдателя в неподвижной СО больше, чем в движущейся, то, согласно закону сохранения импулься, масса объекта должна измениться на величину:

В первой системе отсчета объект должен иметь большую массу тела, чем во второй.

Приняв скорость тела равной скорости света, получаем неожиданный вывод - масса объекта достигает бесконечной величины. Разумеется, любое материальное тело в обозримой вселенной имеет свою конечную массу. Уравнение лишь говорит о том, что никакой физический объект не может двигаться ос скоростью света.

Соотношение массы и энергии

При скорости объекта, много меньшей скорости света, уравнение для массы можно привести к виду:

Выражение m 0 c представляет собой некое свойство объекта, которое зависит только от его массы. Эта величина получила название энергии покоя. Сумма энергий покоя и движения может быть записана так:

mc 2 = m 0 c + E кин.

Отсюда вытекает, что полная энергия объекта может быть выражена формулой:

Простота и элегантность формулы энергии тела придали законченность,

где Е - полная энергия тела.

Простота и элегантность знаменитой формулы Эйнштейна придали законченность специальной теории относительности, сделав ее внутренне непротиворечивой и не требующей многих допущений. Таким образом, исследователи объяснили многие противоречия и дали толчок для изучения новых явлений природы.

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

Её практическую применимость и основные моменты. Сейчас же мы поговорим о ключевых постулатах и выводах Специальной теории относительности, разберёмся в её основах и следствиях.

СТО, также именуемая частной теорией относительности, представляет собой проработанную описательную модель для законов механики, движения и отношений пространства-времени, созданная лауреатом Нобелевской премии Альбертом Эйнштейном в 1905 году.

Специальная теория относительности является частью общей теории относительности. Давайте же рассмотрим и простым языком попробуем выявить её основные следствия:

1. Замедление времени

Представьте себе, что однажды вам и вашему другу посчастливилось стать обладателями двух космических кораблей. Вы летите с одинаковой скоростью вблизи друг друга. Так вот, потехи ради, вы решаете посветить своему товарищу лазерной указкой прямо в глаза.

Тогда с вашей точки зрения если скорость света умножить на время прохождения светового импульса, то получится расстояние между вашими кораблями.

Но с точки зрения неподвижного наблюдателя свет двигался по наклонной траектории и преодолел больший путь. И что самое главное: свет двигался с той же скоростью. Значит ему для этого потребовалось больше времени.

Обратите внимание, получается прямоугольный треугольник, и мы можем воспользоваться старой доброй теоремой Пифагора. Из полученной формулы выразится отношение времён.

Получается, что на одно и то же действие с точки зрения движущихся объектов времени нужно меньше, чем неподвижных. В движении время замедляется, и чем быстрее мы движемся, тем сильнее этот эффект.

Предположив, что скорость света постоянна, и использовав только лишь теорему Пифагора, мы доказали то, что 100 лет назад просто «взорвало» мозг лучшим физикам планеты!

Конечно же не стоит забывать, что на малых скоростях эффект замедления времени проявляется ничтожно слабо. Однако очень точные эксперименты (Хафеле-Китинга, 1971 год), в которых атомные часы сутками летают вокруг Земли, этот эффект подтверждают.

2. Продольное сокращение

По ходу движения предметы сокращаются в размерах, причем в такое количество раз, во сколько замедляется время.

Например, если человек, движущийся со скоростью 280 000 км/с, будет в 3 раза тоньше себя обычного. Так что совет девушкам: бегайте быстрее и будете стройнее!

3. Одновременность

События одновременны с точки зрения подвижного наблюдателя будут происходить в разные моменты времени относительно неподвижного.

Действительно, вновь представьте себе космолёт, спереди и сзади которого установлены габаритные огни, которые загораются при попадании на них светового сигнала, посылаемого из центра корабля.

Относительно космолёта лампочки будут загораться одновременно, но относительно неподвижного наблюдателя световой сигнал движется влево-вправо с одинаковой скоростью, а значит задняя лампочки загорится быстрее передней.

Таким образом, одновременность – тоже понятие относительное.

4. Масса и энергия

Согласно теории относительности, при движении масса тел увеличивается, причем на околосветовых скоростях растёт вплоть до бесконечности!

Поэтому массивный объект невозможно разогнать до скорости света, так как для достижения этой цели не хватит никаких запасов энергии.

Максимально быстро могут двигаться лишь безмассовые частицы, как, например, фотоны или .

Что касается энергии, то теория относительности не разделяет её на кинетическую и потенциальную. Существует так называемая полная энергия тела, рассчитываемая по особой формуле.

Если тело покоится, то эта формула преобразуется в энергию покоя (E=mc^2) – символ теории относительности Эйнштейна. Она существует у абсолютно каждого тела, даже у вашего. Можете её рассчитать и написать результат в комментариях к статье.

Извлечь энергию покоя достаточно трудно, ведь для этого масса должна куда-нибудь исчезнуть. Но это как раз происходит в ядерных реакциях.

Там масса продуктов реакции чуть-чуть меньше, чем масса изначальных реагентов (64 кг VS 63,9994 кг). Такая потеря массы и превращается в колоссальную энергию: 54*10^12 Дж от каких-то 0,0006 кг.

Таким образом, мы наглядно увидели, какие потрясающие открытия дал нам гениальный Альберт Эйнштейн со своей теорией относительности. К слову, совсем недавно её ещё и доказало сенсационное открытие . Любите науку, читайте ВикиНауку!