Температура плавления различных металлов. Температура плавления цветных и черных металлов

  • Дата: 13.10.2019

От температуры плавления металла зависит способ его плавки, материал футеровки плавильной печи или тигля и линейной формы. Температура плавления и плотность всех основных металлов приведены в табл.1.1.

Плотность металлов измеряется массой в единице объема. Значение плотности используют в расчетах массы расплава или отливок по геометрическим размерам или их объемы, если известна масса.

Из приведенных в табл.1 металлов самым легким является литий, а к наиболее тяжелым - вольфрам и золото, имеющие плотность более 19 г/см 3 . Температура плавления металлов охватывает промежуток от - 39 о С у ртути до 3400 о С у вольфрама.

Металлы, имеющие температуру плавления ниже 500 - 600 о С, называют легкоплавкими. В табл. 1.1 к легкоплавким относятся цинк и все другие металлы, расположенные до него. Принято также выделять тугоплавкие металлы, относя к ним те, которые обладают более высокой температурой плавления, чем железо, то есть по табл.1 это титан и далее до вольфрама.

Из табл. 1.1 видно, что по плотности металлы при комнатной температуре также имеют очень широкий промежуток значений.

Температура плавления и плотность металлов

В технике принято выделять группу легких металлов, служащих основой конструкционных металлических материалов. К легким металлам относят те, у которых плотность не превышает 5 г/см 3 , то есть в эту группу входят титан, алюминий, магний, бериллий, литий.

Температуру плавления сплава рассчитывают с учетом концентрации, атомной массы и понижения температуры плавления основного металла:

Например, температура плавления чистого железа снижается в присутствии 1-го массового %: Cu - 1 о С; V, Mo, M n - 2 o C; Al - 3,5 o C; Si - 12 o C; Ti - 18 o C; P - 28 o C; S - 30 o C; C - 73 o C; B - 90 o C.

С повышением температуры от комнатной до температуры плавления плотность большинства металлов уменьшается на 3-5 % вследствие того, что переход металла в жидкое состояние сопровождается увеличением объема. Исключение составляют гелий, висмут, сурьма, германий и кремний, которые при плавлении уменьшаются в объеме при соответствующем повышении плотности расплава.

Изменение плотности сплава при переходе из жидкого состояния в твердое предопределяет объемную усадку. В отливках из сплавов с положительным значением Д с усадка проявляется в виде усадочных раковин и мелких пор, а с отрицательным значением Д с - в виде наростов (выдавленных на поверхность отливки расплав).

Наряду с плотностью (с ), для описания свойств металлов используется обратная величина - удельный объем V = 1/с см 3 . С повышением температуры плотность всех металлов в твердом состоянии уменьшается, удельный объем соответственно увеличивается. Увеличение удельного объема твердого металла, не испытывающего полиморфных превращений, при нагреве на Дt может быть довольно точно описано линейной зависимостью. , где - температурный коэффициент объемного расширения. Как известно из физики, температурный коэффициент линейного расширения в данном температурном интервале.

Переход металла в жидкое состояние сопровождается в основном увеличением объема и соответствующим уменьшением плотности. В табл. 1 это выражено через изменение удельных объемов, удельные объемы жидкого и твердого металла при температуре плавления. Можно показать, что

Незначительное изменение объема металлов при плавлении свидетельствует о том, что расстояние между атомами в жидком металле мало отличается от межатомных расстояний в кристаллической решетке.

Повышение температуры жидкого металла вызывает постепенное изменение его свойств и приводит к постепенным структурным перестройкам, которые выражаются в понижении координационного числа и постепенном исчезновении ближнего порядка в расположении атомов. Вызываемое повышением температуры увеличение удельного объема расплава может быть приближенно описано линейной зависимостью. Температурный коэффициент объемного расширения жидкого металла существенно больше, чем такой же коэффициент твердого металла. Обычно.

Сплавы как в твердом, так и в жидком состоянии в общем случае не являются совершенными растворами, и сплавление двух и более металлов всегда сопряжено с изменением объема. Как правило, отмечается уменьшение объема сплава в сравнении с суммарным объемом чистых компонентов с учетом их содержания в сплаве. Однако для технических расчетов можно пренебречь уменьшением объема при сплавлении. В этом случае удельный объем сплава может быть определен по правилу аддитивности, то есть по значениям удельных объемов чистых компонентов с учетом их содержания в сплаве. Таким образом, удельный объем сплава, который состоит из компонентов, содержащихся в процентах по массе в количестве, соответственно равен

Здесь - удельные объемы чистых компонентов при той же температуре, для которой вычисляется удельный объем сплава. Важно иметь в виду, что указанное правило аддитивности в том виде, как оно написано выше, справедливо именно для удельного объема сплава. Если заменить удельные объемы плотностями, то получается значительно более сложное выражение, поэтому целесообразнее пользоваться именно удельными объемами.

В научных исследованиях часто используется величина, называемая атомным объемом или объемом грамм-атома металла или сплава. Эту величину находят делением атомной массы на плотность. Для металлов атомный объем имеет пределы 5 - 20 см 3 , чаще 8 - 12 см 3 .

Плотность зависит от природы вещества (сплава), от комплекса индивидуальных свойств элементов, входящих в его состав, и вида их взаимодействия. Одно и то же вещество (металл) может иметь разную плотность в зависимости от кристаллического строения, типа кристаллической решетки. Например, Fe б = 768 и Fe г = 7,76; С алм = 3,51, С граф = 2,23; б кварц = 2,65, в кварц = 2,51 и др.

Важно учитывать различие понятий «плотность» и «удельный вес» материала.

Плотность - это отношение массы вещества к занимаемому объему:

где m - масса, г(кг); V - объем, см 3 (м 3); с - плотность, г/см 3 (кг/м 3).

Удельный вес определяют как отношение веса вещества к занимаемому объему:

где P - вес, г (кг); г - удельный вес, см 3 (м 3).

Вес находят по отношению:

где g - ускорение свободного падения; k - коэффициент пропорциональности, зависящий от выбора единиц измерения, входящих в формулу величин.

И, следовательно

В одной и той же системе единиц плотность и удельный вес не совпадают численно. Например, для дистиллированной воды в различных системах единиц с и г имеют разные значения (табл. 1.2).

Совпадение численных значений плотности и удельного веса, взятых из разных систем единиц измерения, является иногда причиной замены одной величины другой.

Масса тела - неизменная величина и является мерой гравитационных и инерционных свойств вещества, а вес - величина переменная, зависящая от ускорения свободного падения в точке наблюдения. Поэтому удельный вес не может являться справочной величиной.

Отношение масс двух тел в одной и той же точке наблюдения равно от- ношению весов этих тел:

Поэтому при взвешивании находят массу тела в сопоставлении ее с массой гирь. В результате взвешивания определяют массу материала.

На практике плотность определяют для выявления изменений в конечном металле по сравнению с исходным необработанным. Поэтому имеет значение не сам факт установления плотности, а факт разницы плотностей, или что еще более показательно - отношение плотностей:

Методы определения плотности классифицируются по групповым признакам: весовым, объемным, иммерсионным.

К весовым методам относятся гидростатическое взвешивание, микрометрический метод, ареометрический метод постоянного объема и массы и др. Это наиболее распространенные и точные методы.

К объемным - определение объема образца путем линейных измерений (образец правильной формы) с помощью газовых или жидкостных волюмометров. Объемные методы (по геометрическим размерам) дают возможность сделать точные вычисления при больших объемах образцов.

Уравновешивание плотности в жидкости называют иммерсионным методом. К нему также относится метод термоградиентной трубки и др.

Кроме перечисленных, используют еще и механические, радиационные, рефрактометрические, аналитические и другие методы определения плотности по косвенным показателям.

Чтобы расплавленный металл хорошо заполнял форму, поверхностное натяжение и вязкость его не должны препятствовать поступательному движению расплава до тех пор, пока она не будет полностью заполнена. Вязкость, поверхностное натяжение и диффузия влияют на процессы рафинирования, легирования, модифицирования сплавов.

Температура плавления металла – это минимальная температура, при которой он переходит из твердого состояния в жидкое. При плавлении его объем практически не изменяется. Металлы классифицируют по температуре плавления в зависимости от степени нагревания.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в , разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура составляет 232 градуса, а цинка – 419.

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса. Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.

Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э. С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.

В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным - физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.

Процесс плавления металла

Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании - при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне:

  1. Солидус - линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус - окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на:

  • Легкоплавкие, до 600 °C. К ним относятся , цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения - точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

Таблица температур плавления

Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

Название T пл, °C
Алюминий 660,4
Медь 1084,5
Олово 231,9
Цинк 419,5
Вольфрам 3420
Никель 1455
Серебро 960
Золото 1064,4
Платина 1768
Титан 1668
Дюралюминий 650
Углеродистая сталь 1100−1500
1110−1400
Железо 1539
Ртуть -38,9
Мельхиор 1170
Цирконий 3530
Кремний 1414
Нихром 1400
Висмут 271,4
Германий 938,2
Жесть 1300−1500
Бронза 930−1140
Кобальт 1494
Калий 63
Натрий 93,8
Латунь 1000
Магний 650
Марганец 1246
Хром 2130
Молибден 2890
Свинец 327,4
Бериллий 1287
Победит 3150
Фехраль 1460
Сурьма 630,6
карбид титана 3150
карбид циркония 3530
Галлий 29,76

Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность - возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа - Мега Паскалях.

Существуют следующие группы прочности металлов:

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и .

Таблица прочности металлов

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 - 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым - меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Вольфрам

Самая высокая температура плавления - у металла вольфрама. Выше него по этому показателю стоит только неметалл углерод. Вольфрам представляет собой светло-серое блестящее вещество, очень плотное и тяжелое. Он кипит при 5555 °C, что почти приравнивается к температуре фотосферы Солнца.

При комнатных условиях он слабо реагирует с кислородом и не подвергается коррозии. Несмотря на свою тугоплавкость, он довольно пластичен и поддается ковке уже при нагревании до 1600 °C. Эти свойства вольфрама используют для нитей накаливания в лампах и кинескопах электродов для сварки. Большую часть добытого металла сплавляют со сталью, чтобы повысить ее прочность и твердость.

Широкое применение вольфрам имеет в военной сфере и технике. Он незаменим для изготовления боеприпасов, брони, двигателей и наиболее важных частей военного транспорта и самолетов. Из него также делают хирургические инструменты, ящики для хранения радиоактивных веществ.

Ртуть

Ртуть - единственный металл, температура плавления которого имеет минусовое значение. К тому же это один из двух химических элементов, простые вещества которых при нормальных условиях, существуют в виде жидкостей. Интересно, что кипит металл при нагревании до 356,73 °C, а это намного выше температуры его плавления.

Имеет серебристо-белый цвет и ярко выраженный блеск. Она испаряется уже при комнатных условиях, конденсируясь в небольшие шарики. Металл очень токсичен. Он способен накапливается во внутренних органах человека, вызывая болезни головного мозга, селезенки, почек и печени.

Ртуть - один из семи первых металлов, о которых узнал человек. В Средние века она считалась главным алхимическим элементом. Несмотря на ядовитость, когда-то ее применяли в медицине в составе зубных пломб, а также как лекарство от сифилиса. Сейчас ртуть почти полностью исключили из медицинских препаратов, но широко используют ее в измерительных приборах (барометрах, манометрах), для изготовления ламп, переключателей, дверных звонков.

Сплавы

Чтобы изменить свойства того или иного металла, его сплавляют с другими веществами. Так, он может не только приобрести большую плотность, прочность, но и снизить или повысить температуру плавления.

Сплав может состоять из двух или больше химических элементов, но хотя бы один из них должен быть металлом. Такие «смеси» очень часто используют в промышленности, ведь они позволяют получить именно те качества материалов, которые необходимы.

Температура плавления металлов и сплавов зависит от чистоты первых, а также от пропорций и состава вторых. Для получения легкоплавких сплавов чаще всего используют свинец, ртуть, таллий, олово, кадмий, индий. Те, в составе которых находится ртуть, называются амальгамами. Соединение натрия, калия и цезия в соотношении 12%/47%/41% становится жидкостью уже при минус 78 °C , амальгама ртути и таллия - при минус 61°C. Самым тугоплавким материалом является сплав тантала и карбидов гафния в пропорциях 1:1 с температурой плавления 4115 °C.

Сталь - это сплав железа, к которому примешивают углерод. Её главная польза в строительстве - прочность, ведь это вещество длительное время сохраняет объем и форму. Все дело в том, что частицы тела находятся в положении равновесия. В этом случае сила притяжения и сила отталкивания между частицами являются равными. Частицы находятся в чётко обозначенном порядке.

Есть четыре вида этого материала: обычная, легированная, низколегированная, высоколегированная сталь. Они отличаются количеством добавок в своём составе. В обычной содержится малое количество, а дальше возрастает. Используют следующие добавки:

  • Марганец.
  • Никель.
  • Хром.
  • Ванадий.
  • Молибден.

Температуры плавления стали

При определённых условиях твёрдые тела плавятся, то есть переходят в жидкое состояние. Каждое вещество делает это при определённой температуре.

  • Плавление - это процесс перехода вещества из твёрдого состояния в жидкое.
  • Температура плавления - это температура, при которой твёрдое кристаллическое вещество плавится, переходит в жидкое состояние. Обозначается t.

Физики используют определённую таблицу плавления и кристаллизации, которая приведена ниже:

На основании таблицы можно смело сказать, что температура плавления стали равна 1400 °C.

Нержавеющая сталь - это один из многих железных сплавов, которые содержатся в стали. Она содержит в себе Хром от 15 до 30%, который делает её ржаво-устойчивой, создавая защитный слой оксида на поверхности, и углерод. Самые популярные марки такой стали зарубежные. Это 300-я и 400-я серии. Они отличаются своей прочностью, устойчивостью к неблагоприятным условиям и пластичностью. 200-я серия менее качественная, но более дешёвая. Это и является выгодным для производителя фактором. Впервые её состав заметил в 1913 году Гарри Бреарли, который проводил над сталью много разных экспериментов.

На данный момент нержавейку разделяют на три группы:

  • Жаропрочная - при высоких температурах имеет высокую механическую прочность и устойчивость. Детали, которые из неё изготавливаются применяют в сферах фармацевтики, ракетной отрасли, текстильной промышленности.
  • Ржаво-стойкая - имеет большую стойкость к процессам ржавления. Её используют в бытовых и медицинских приборах, а также в машиностроении для изготовления деталей.
  • Жаростойкая - является устойчивой при коррозии в высоких температурах, подходит для использования на химических заводах.

Температура плавления нержавеющей стали колеблется в зависимости от её марки и количества сплавов приблизительно от 1300 °C до 1400 °C.

Чугун - это сплав углерода и железа, он содержит примеси марганца, кремния, серы и фосфора. Выдерживает невысокие напряжения и нагрузки. Один из его многочисленных плюсов - это невысокая стоимость для потребителей. Чугун бывает четырех видов:

Температуры плавления стали и чугуна отличаются, как утверждает таблица, приведённая выше. Сталь имеет более высокую прочность и устойчивость к высоким температурам, чем чугун, температуры отличаются на целых 200 градусов. У чугуна это число колеблется приблизительно от 1100 до 1200 градусов в зависимости от содержащихся в нем примесей.