Теорема фалеса формулировка. Фалес Милетский, или о том, как важно знать подобие треугольников и теорему Фалеса

  • Дата: 20.09.2019

Тема урока

Цели урока

  • Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
  • Сформулировать и доказать свойства квадрата, доказать его свойства.
  • Научиться применять свойства фигур при решении задач.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Проверить умение учащихся решать задачи.

План урока

  1. Историческая справка.
  2. Фалес как математик и его труды.
  3. Полезно вспомнить.

Историческая справка

  • Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга.


  • Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том, что вписанный угол, опирающийся на диаметр окружности, является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла.
  • Основы геометрии Фалес постигал в Египте.

Открытия и заслуги ее автора

А известно ли вам, что Фалес Милетский был одним из семи самых известных по тем временам, мудрецом Греции. Он основал Ионийскую школу. Идею, которую продвигал Фалес в этой школе, было единство всего сущего. Мудрец считал, что есть единое начало, от которого произошли все вещи.

Огромной заслугой Фалеса Милетского является создание научной геометрии. Этот великий учений сумел с египетского искусства измерения создать дедуктивную геометрию, базой которой есть общие основания.

Кроме огромных познаний в геометрии, Фалес еще и неплохо разбирался в астрономии. Эму первому удалось предсказать полное затмение Солнца. А ведь это происходило не в современном мире, а в далеком 585 году, еще до нашей эры.

Фалес Милетский был тем человеком, который сообразил, что север можно точно определить по созвездию Малой Медведицы. Но и это не было его последним открытием, так как он сумел в точности определить продолжительность года, разбить его на триста шестьдесят пять дней, а также установил время равноденствий.

Фалес на самом деле был всесторонне развитым и мудрым человеком. Кроме того, что он славился как прекрасный математик, физик, астроном, он еще и как настоящий метеоролог, смог довольно точно предсказать урожай оливок.

Но самое примечательное то, что Фалес никогда не ограничивался в своих познаниях только научно-теоретической областью, а всегда пытался закрепить доказательства своих теорий на практике. И самое интересное, то, что великий мудрец не сосредотачивался на какой-то одной области своих познаний, его интерес имел различные направленности.

Имя Фалеса стало нарицательным для мудреца уже тогда. Его важность и значимость для Греции была так велика, как для России имя Ломоносова. Конечно, его мудрость можно толковать по-разному. Но точно можно сказать, что ему были присущи и изобретательность, и практическая смекалка, и в какой-то степени отрешенность.

Фалес Милетский был отличным математиком, философом, астрономом, любил путешествовать, был купцом и предпринимателем, занимался торговлей, а также был неплохим инженером, дипломатом, провидцем и активно участвовал в политической жизни.

Он даже умудрился с помощью посоха и тени определить высоту пирамиды. А было это так. В один погожий солнечный день Фалес поставил свой посох на границе, где заканчивалась тень от пирамиды. Далее он дождался, когда длинна от тени его посоха сравнялась с его высотой, и замерил длину тени пирамиды. Вот так, казалось бы просто Фалес определил высоту пирамиды и доказал, что длина одной тени имеет отношение к длине другой тени, также, как и высота пирамиды относится к высоте посоха. Чем и поразил самого фараона Амасиса.

Благодаря Фалесу все известные в то время знания были переведены в область научного интереса. Он смог донести результаты до уровня, пригодного для научного потребления, выделив определенный комплекс понятий. И возможно с помощью Фалеса началось последующее развитие античной философии.

Теорема Фалеса играет одну важных ролей в математике. Она была известна не только в Древнем Египте и Вавилоне, но и в других странах и являлась почвой для развития математики. Да и в повседневной жизни, при строительстве зданий, сооружений, дорог и т.д., без теоремы Фалеса не обойтись.

Теорема Фалеса в культуре

Теорема Фалеса прославилась не только в математике, но ее приобщили еще и к культуре. Однажды аргентинская музыкальная группа Les Luthiers (исп.) на суд зрителей представила песню, которую посвятила известной теореме. Участники Les Luthiers в своем видеоклипе специально для этой песни предоставили доказательства для прямой теоремы для пропорциональных отрезков.

Вопросы

  1. Какие прямые называются параллельными?
  2. Где практически применяется теорема Фалеса?
  3. О чем гласит теорема Фалеса?

Список использованных источников

  1. Энциклопедия для детей. Т.11. Математика/Глав.ред.М.Д.Аксенова.-м.:Аванта+,2001.
  2. «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
  3. Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина «Геометрия, 7 – 9: учебник для общеобразовательных учреждений»
Предмети > Математика > Математика 8 класс

О параллельных и секущих.

Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том , что вписанный угол , опирающийся на диаметр окружности , является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла .

Формулировки

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

Более общая формулировка, также называемая теорема о пропорциональных отрезках

Параллельные прямые отсекают на секущих пропорциональные отрезки :

A 1 A 2 B 1 B 2 = A 2 A 3 B 2 B 3 = A 1 A 3 B 1 B 3 . {\displaystyle {\frac {A_{1}A_{2}}{B_{1}B_{2}}}={\frac {A_{2}A_{3}}{B_{2}B_{3}}}={\frac {A_{1}A_{3}}{B_{1}B_{3}}}.}

Замечания

  • В теореме нет ограничений на взаимное расположение секущих (она верна как для пересекающихся прямых, так и для параллельных). Также не важно, где находятся отрезки на секущих.
  • Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Доказательство в случае секущих

Рассмотрим вариант с несвязанными парами отрезков: пусть угол пересекают прямые A A 1 | | B B 1 | | C C 1 | | D D 1 {\displaystyle AA_{1}||BB_{1}||CC_{1}||DD_{1}} и при этом A B = C D {\displaystyle AB=CD} .

Доказательство в случае параллельных прямых

Проведем прямую BC . Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC , а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC . Тогда по второму признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD .

Вариации и обобщения

Обратная теорема

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

В обратной теореме Фалеса важно, что равные отрезки начинаются от вершины

Таким образом (см. рис.) из того, что C B 1 C A 1 = B 1 B 2 A 1 A 2 = … {\displaystyle {\frac {CB_{1}}{CA_{1}}}={\frac {B_{1}B_{2}}{A_{1}A_{2}}}=\ldots } , следует, что A 1 B 1 | | A 2 B 2 | | … {\displaystyle A_{1}B_{1}||A_{2}B_{2}||\ldots } .

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).

Этой теоремой пользуются в навигации: столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется направление с одного судна на другое.

Лемма Соллертинского

Следующее утверждение, двойственно к лемме Соллертинского :

Пусть f {\displaystyle f} - проективное соответствие между точками прямой l {\displaystyle l} и прямой m {\displaystyle m} . Тогда множество прямых будет множеством касательных к некоторому коническому сечению (возможно, вырожденному).

В случае теоремы Фалеса коникой будет бесконечно удалённая точка, соответствующая направлению параллельных прямых.

Это утверждение, в свою очередь, является предельным случаем следующего утверждения:

Пусть f {\displaystyle f} - проективное преобразование коники. Тогда огибающей множества прямых X f (X) {\displaystyle Xf(X)} будет коника (возможно, вырожденная).

В теореме нет ограничений на взаимное расположение секущих (она верна как для пересекающихся прямых, так и для параллельных). Также не важно, где находятся отрезки на секущих.



Доказательство в случае параллельных прямых

Проведем прямую BC. Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC, а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC. Тогда по второму признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD.

Также существует теорема о пропорциональных отрезках :

Параллельные прямые отсекают на секущих пропорциональные отрезки :

\frac{A_1A_2}{B_1B_2}=\frac{A_2A_3}{B_2B_3}=\frac{A_1A_3}{B_1B_3}.

Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Обратная теорема

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

Таким образом (см. рис.) из того, что \frac{CB_1}{CA_1}=\frac{B_1B_2}{A_1A_2}=\ldots = {\rm idem} следует, что прямые A_1B_1||A_2B_2||\ldots.

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).

Вариации и обобщения

Следующее утверждение, двойственно к лемме Соллертинского :

  • Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга.
  • Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том , что вписанный угол , опирающийся на диаметр окружности , является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла .

Напишите отзыв о статье "Теорема Фалеса"

Литература

  • Атанасян Л. C. и др. Геометрия 7-9. - Изд. 3-е. - М .: Просвещение, 1992.

Примечания

См. также

  • Теорема Фалеса об угле, опирающемся на диаметр окружности

Отрывок, характеризующий Теорема Фалеса

– Я ничего не думаю, я только не понимаю этого…
– Подожди, Соня, ты всё поймешь. Увидишь, какой он человек. Ты не думай дурное ни про меня, ни про него.
– Я ни про кого не думаю дурное: я всех люблю и всех жалею. Но что же мне делать?
Соня не сдавалась на нежный тон, с которым к ней обращалась Наташа. Чем размягченнее и искательнее было выражение лица Наташи, тем серьезнее и строже было лицо Сони.
– Наташа, – сказала она, – ты просила меня не говорить с тобой, я и не говорила, теперь ты сама начала. Наташа, я не верю ему. Зачем эта тайна?
– Опять, опять! – перебила Наташа.
– Наташа, я боюсь за тебя.
– Чего бояться?
– Я боюсь, что ты погубишь себя, – решительно сказала Соня, сама испугавшись того что она сказала.
Лицо Наташи опять выразило злобу.
– И погублю, погублю, как можно скорее погублю себя. Не ваше дело. Не вам, а мне дурно будет. Оставь, оставь меня. Я ненавижу тебя.
– Наташа! – испуганно взывала Соня.
– Ненавижу, ненавижу! И ты мой враг навсегда!
Наташа выбежала из комнаты.
Наташа не говорила больше с Соней и избегала ее. С тем же выражением взволнованного удивления и преступности она ходила по комнатам, принимаясь то за то, то за другое занятие и тотчас же бросая их.
Как это ни тяжело было для Сони, но она, не спуская глаз, следила за своей подругой.
Накануне того дня, в который должен был вернуться граф, Соня заметила, что Наташа сидела всё утро у окна гостиной, как будто ожидая чего то и что она сделала какой то знак проехавшему военному, которого Соня приняла за Анатоля.
Соня стала еще внимательнее наблюдать свою подругу и заметила, что Наташа была всё время обеда и вечер в странном и неестественном состоянии (отвечала невпопад на делаемые ей вопросы, начинала и не доканчивала фразы, всему смеялась).
После чая Соня увидала робеющую горничную девушку, выжидавшую ее у двери Наташи. Она пропустила ее и, подслушав у двери, узнала, что опять было передано письмо. И вдруг Соне стало ясно, что у Наташи был какой нибудь страшный план на нынешний вечер. Соня постучалась к ней. Наташа не пустила ее.
«Она убежит с ним! думала Соня. Она на всё способна. Нынче в лице ее было что то особенно жалкое и решительное. Она заплакала, прощаясь с дяденькой, вспоминала Соня. Да это верно, она бежит с ним, – но что мне делать?» думала Соня, припоминая теперь те признаки, которые ясно доказывали, почему у Наташи было какое то страшное намерение. «Графа нет. Что мне делать, написать к Курагину, требуя от него объяснения? Но кто велит ему ответить? Писать Пьеру, как просил князь Андрей в случае несчастия?… Но может быть, в самом деле она уже отказала Болконскому (она вчера отослала письмо княжне Марье). Дяденьки нет!» Сказать Марье Дмитриевне, которая так верила в Наташу, Соне казалось ужасно. «Но так или иначе, думала Соня, стоя в темном коридоре: теперь или никогда пришло время доказать, что я помню благодеяния их семейства и люблю Nicolas. Нет, я хоть три ночи не буду спать, а не выйду из этого коридора и силой не пущу ее, и не дам позору обрушиться на их семейство», думала она.

Анатоль последнее время переселился к Долохову. План похищения Ростовой уже несколько дней был обдуман и приготовлен Долоховым, и в тот день, когда Соня, подслушав у двери Наташу, решилась оберегать ее, план этот должен был быть приведен в исполнение. Наташа в десять часов вечера обещала выйти к Курагину на заднее крыльцо. Курагин должен был посадить ее в приготовленную тройку и везти за 60 верст от Москвы в село Каменку, где был приготовлен расстриженный поп, который должен был обвенчать их. В Каменке и была готова подстава, которая должна была вывезти их на Варшавскую дорогу и там на почтовых они должны были скакать за границу.
У Анатоля были и паспорт, и подорожная, и десять тысяч денег, взятые у сестры, и десять тысяч, занятые через посредство Долохова.
Два свидетеля – Хвостиков, бывший приказный, которого употреблял для игры Долохов и Макарин, отставной гусар, добродушный и слабый человек, питавший беспредельную любовь к Курагину – сидели в первой комнате за чаем.
В большом кабинете Долохова, убранном от стен до потолка персидскими коврами, медвежьими шкурами и оружием, сидел Долохов в дорожном бешмете и сапогах перед раскрытым бюро, на котором лежали счеты и пачки денег. Анатоль в расстегнутом мундире ходил из той комнаты, где сидели свидетели, через кабинет в заднюю комнату, где его лакей француз с другими укладывал последние вещи. Долохов считал деньги и записывал.
– Ну, – сказал он, – Хвостикову надо дать две тысячи.
– Ну и дай, – сказал Анатоль.
– Макарка (они так звали Макарина), этот бескорыстно за тебя в огонь и в воду. Ну вот и кончены счеты, – сказал Долохов, показывая ему записку. – Так?
– Да, разумеется, так, – сказал Анатоль, видимо не слушавший Долохова и с улыбкой, не сходившей у него с лица, смотревший вперед себя.



План:

    Введение
  • 1 Обратная теорема
  • 2 Теорема Фалеса в культуре
  • 3 Интересные факты
  • Примечания

Введение

Эта теорема о параллельных прямых. Об угле, опирающемся на диаметр, см. другую теорему.

Теорема Фалеса - одна из теорем планиметрии.

В теореме нет ограничений на взаимное расположение секущих (она верна как для пересекающихся прямых, так и для параллельных). Также неважно, где находятся отрезки на секущих.


Доказательство в случае секущих

Доказательство теоремы Фалеса

Рассмотрим вариант с несвязанными парами отрезков: пусть угол пересекают прямые A A 1 | | B B 1 | | C C 1 | | D D 1 и при этом A B = C D .


Доказательство в случае параллельных прямых

Проведем прямую BC. Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC, а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC. Тогда по первому признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD. ■

Также существует обобщённая теорема Фалеса :

Параллельные прямые отсекают на секущих пропорциональные отрезки:

Теорема Фалеса является частным случаем обобщённой теоремы Фалеса, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.


1. Обратная теорема

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

В обратной теореме Фалеса важно, что равные отрезки начинаются от вершины

Таким образом (см. рис.) из того, что следует, что прямые .

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).


2. Теорема Фалеса в культуре

Аргентинская музыкальная группа Les Luthiers (исп. ) представила песню, посвящённую теореме. В видеоклипе для этой песни приводится доказательство для прямой теоремы для пропорциональных отрезков.

3. Интересные факты

  • Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга.
  • Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том, что вписанный угол, опирающийся на диаметр окружности, является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла.
  • Основы геометрии Фалес постигал в Египте .

Примечания

  1. El Teorema de Thales por Les Luthiers en You Tube - www.youtube.com/watch?v=czzj2C4wdxY
  2. 3. Путешествие в Египет / Главная / Античная литература и философия. Фалес из Милета - www.fales-iz-mileta.narod.ru/3_puteshestvie_v_egipet
скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 16.07.11 23:06:34
Похожие рефераты:

О параллельных и секущих.

Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том , что вписанный угол , опирающийся на диаметр окружности , является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла .

Формулировки

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

Более общая формулировка, также называемая теорема о пропорциональных отрезках

Параллельные прямые отсекают на секущих пропорциональные отрезки :

A 1 A 2 B 1 B 2 = A 2 A 3 B 2 B 3 = A 1 A 3 B 1 B 3 . {\displaystyle {\frac {A_{1}A_{2}}{B_{1}B_{2}}}={\frac {A_{2}A_{3}}{B_{2}B_{3}}}={\frac {A_{1}A_{3}}{B_{1}B_{3}}}.}

Замечания

  • В теореме нет ограничений на взаимное расположение секущих (она верна как для пересекающихся прямых, так и для параллельных). Также не важно, где находятся отрезки на секущих.
  • Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Доказательство в случае секущих

Рассмотрим вариант с несвязанными парами отрезков: пусть угол пересекают прямые A A 1 | | B B 1 | | C C 1 | | D D 1 {\displaystyle AA_{1}||BB_{1}||CC_{1}||DD_{1}} и при этом A B = C D {\displaystyle AB=CD} .

  1. Проведём через точки A {\displaystyle A} и C {\displaystyle C} прямые, параллельные другой стороне угла. A B 2 B 1 A 1 {\displaystyle AB_{2}B_{1}A_{1}} и C D 2 D 1 C 1 {\displaystyle CD_{2}D_{1}C_{1}} . Согласно свойству параллелограмма: A B 2 = A 1 B 1 {\displaystyle AB_{2}=A_{1}B_{1}} и C D 2 = C 1 D 1 {\displaystyle CD_{2}=C_{1}D_{1}} .
  2. Треугольники △ A B B 2 {\displaystyle \bigtriangleup ABB_{2}} и △ C D D 2 {\displaystyle \bigtriangleup CDD_{2}} равны на основании второго признака равенства треугольников

Доказательство в случае параллельных прямых

Проведем прямую BC . Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC , а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC . Тогда по второму признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD .

Вариации и обобщения

Обратная теорема

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

Таким образом (см. рис.) из того, что C B 1 C A 1 = B 1 B 2 A 1 A 2 = … {\displaystyle {\frac {CB_{1}}{CA_{1}}}={\frac {B_{1}B_{2}}{A_{1}A_{2}}}=\ldots } , следует, что A 1 B 1 | | A 2 B 2 | | … {\displaystyle A_{1}B_{1}||A_{2}B_{2}||\ldots } .

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).

Этой теоремой пользуются в навигации: столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется направление с одного судна на другое.

Лемма Соллертинского

Следующее утверждение, двойственно к лемме Соллертинского :

Пусть f {\displaystyle f} - проективное соответствие между точками прямой l {\displaystyle l} и прямой m {\displaystyle m} . Тогда множество прямых X f (X) {\displaystyle Xf(X)} будет множеством касательных к некоторому