Корпускулярно волновой дуализм микрообъектов. Корпускулярно-волновой дуализм. Принцип дополнительности

  • Дата: 13.10.2019

Введение

Почти одновременно были выдвинуты две теории света: корпускулярная теория Ньютона и волновая теория Гюйгенса.

Согласно корпускулярной теории, или теории истечения, выдвинутой Ньютоном в конце 17 века, светящиеся тела испускают мельчайшие частицы (корпускулы), которые летят прямолинейно по всем направления и, попадая в глаз, вызывают световое ощущение.

Согласно волновой теории светящееся тело вызывает заполняющей все мировое пространство особой среде – мировом эфире – упругие колебания, которые распространяются в эфире подобно звуковым волнам в воздухе.

Во времена Ньютона и Гюйгенса большинство ученых придерживалось корпускулярной теории Ньютона, которая достаточно удовлетворительно объясняла все известные к тому времени световые явления. Отражение света объяснялось аналогично отражению упругих тел при ударе о плоскость. Преломление света объяснялось действием на корпускулы больших сил притяжения со стороны более плотной среды. Под действием этих сил, проявляющихся, согласно теории Ньютона, при приближении к более плотной среде, световые корпускулы получали ускорение, направленные перпендикулярно к границе этой среды, вследствие чего они изменяли направление движения и одновременно увеличивали свою скорость. Аналогично объяснялись другие световые явления.

В дальнейшем появившиеся новые наблюдения не укладывались в рамки этой теории. В частности, несостоятельность этой теории обнаружилось, когда была измерена скорость распространения света в воде. Она оказалась не больше, а меньше, чем в воздухе.

В начале 19 века волновая теория Гюйгенса, не признанная современниками, была развита и усовершенствована Юнгом и Френелем и получила всеобщее признание. В 60–х годах прошлого столетия, после того как Максвелл разработал теорию электромагнитного поля, выяснилось, что свет представляет собой электромагнитные волны. Таким образом, волновая механистическая теория света была заменена волновой электромагнитной теорией. Световые волны (видимый спектр) занимают в шкале электромагнитных волн диапазон 0,4–0,7мкм. Волновая теория света Максвелла, трактующая излучение как непрерывный процесс, оказалась не в состоянии объяснить некоторые из вновь открытых оптических явлений. Её дополнила квантовая теория света, согласно которой энергия световой волны излучается, распространяется и поглощается не непрерывно, а определенными порциями - квантами света, или фотонами, - которые зависят только от длины световой волны. Таким образом, по современным представлениям, свет обладает как волновыми так, и корпускулярными свойствами.

Интерференция света

Волны создающие в каждой точке пространства колебания с не изменяющейся со временем разностью фаз, называются когерентными. Разность фаз в этом случае имеет постоянное, но, вообще говоря, различное для разных точек пространства значение. Очевидно, что когерентными могут быть лишь волны одинаковой частоты.

При распространении в пространстве нескольких когерентных волн порождаемые этими волнами колебания в одних точках усиливают друг друга, в других – ослабляют. Это явление называется интерференцией волн. Интерферировать могут волны любой физической природы. Мы рассмотрим интерференцию световых волн.

Источники когерентных волн также называются когерентными. При освещении некоторой поверхности несколькими когерентными источниками света на этой поверхности возникают в общем случае чередующиеся светлые и темные полосы.

Два независимых источника света, например две электролампы, не когерентны. Излучаемые ими световые волны – это результат сложения большого количества волн, излучаемых отдельными атомами. Излучение волн атомами происходит беспорядочно, и поэтому нет каких - либо постоянных соотношений между фазами волн, излучаемых двумя источниками.

При освещении поверхности некогерентными источниками характерная для интерференции картина чередующихся светлых и темных полос не возникает. Освещенность в каждой точке оказывается равной сумме освещенностей, создаваемых каждым из источников в отдельности.

Когерентные волны получаются посредством разделения пучка света от одного источника на два или несколько отдельных пучков.

Интерференцию света можно наблюдать при освещении монохроматическими (одноцветными) лучами прозрачной пластинки переменной толщины, в частности клинообразной пластинки. В глаз наблюдателя будут попадать волны, отраженные как от передней, так и от задней поверхностей пластинки. Результат интерференции определяется разностью фаз тех и других волн, которая постепенно изменяется с изменением толщины

пластинки. Соответственно изменяется освещенность: если разность хода интерферирующих волн в некоторой точке поверхности пластинки равна четному числу полуволн, то в этой точке поверхность будет казаться светлой, при разности фаз в нечетное число полуволн – темной.

При освещении параллельным пучком плоскопараллельной пластинки разность фаз световых волн, отраженных от передней и задней её поверхностей, одна и та же во всех точках, - пластинка будет казаться освещенной равномерно.

Вокруг точки соприкосновения слегка выпуклого стекла с плоским при освещении монохроматическим светом наблюдаются темные и светлые кольца – так называемые кольца Ньютона. Здесь тончайшая прослойка воздуха между обоими стеклами играет роль отражающей пленки, имеющей постоянную толщину по концентрическим окружностям.

Дифракция света.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация света

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

1) Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

2) Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

3) В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Коллега, по представлениям классической физики, движение частиц и распространение волн различаются принципиально. Многие наблюдали это различие между полётом камня по определённой траектории и распространением волн по поверхности воды, при падении этого камня в воду.

Это, мой друг, в макромире. Но в микромире эти различия, как-бы, «размываются».

К примеру, ещё Гюйгенс (1629-1695), затем Юнг (1773-1829) и Френель (1788-1827) доказали, что свет имеет волновую природу. Это проявляется в явлениях, поляризации, преломления, интерференции и дифракции света.

Однако, исследуя в 1900 году законы теплового излучения, Планк (1858-1947) обнаружил «световые порции» – кванты электромагнитного поля. Эти кванты – фотоны – во многом похожи на частицы (корпускулы): они обладают определённой энергией и импульсом, взаимодействуют с веществом как целое. Более поздние опыты по вырыванию светом электронов с поверхности металлов (фотоэффект) и рассеянию света на электронах (Комптона эффект) показали, что свет ведёт себя подобно потоку частиц.

С другой стороны, оказалось, что падающие на кристалл электроны, которые изначально воспринимались, как частицы, дают дифракционную картину, которую нельзя понять иначе, как на основе волновых представлений. Позже было установлено, что это явление свойственно вообще всем микрочастицам.

В 1924 Бройль (1892-1968) выступил с поразительной по смелости гипотезой о том, что корпускулярно-волновой дуализм присущ всем без исключения видам материи – электронам, протонам, атомам и т.д., причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и установленные ранее для фотонов. А именно, если частица имеет энергию W и импульс p , то с ней связана волна, частота которой ν = W/h и длина волны λ = h/p , где h – постоянная Планка. Эти волны получили название «волны де Бройля».

Таким образом, характерной особенностью микромира является своеобразная двойственность, дуализм корпускулярных и волновых свойств, который не может быть понят в рамках классической физики.

Квантовая механика устранила абсолютную грань между волной и частицей. Ведь каждая волна состоит из полуволн, которые мы называем пучностями (расположены между двумя узлами, см. рис.):

Пучности во многом похожи на частицы (корпускулы). Ведь они, так же как и фотоны, обладают определённой энергией и импульсом, чётко ограничены в пространстве (длина волны) и во времени (период волны).

При этом (очень важно!), если мы по горизонтальной оси будем откладывать длину волны (в метрах), а по вертикальной – её импульс (кг*м/с), то величина площади пучности будет равна постоянной Планка (Дж*с). Такое же значение будет иметь площадь пучности, если мы по вертикали будем откладывать энергию волны (Дж), а по горизонтали – её период (в секундах). Именно поэтому мы называем эти пучности квантами (порциями) энергии и импульса (следовательно, и массы).

Вывод : фотон, электрон, протон, нейтрон… являются лишь полуволнами колебаний той среды, в которой распространяется волна. В свою очередь полуволну можно рассматривать, как корпускулу, имеющую конкретный размер (длина полуволны), энергию, импульс и массу (для электрона и протона – ещё и электрический заряд) .

Дополнение :

Однако электромагнитные волны распространяются не в плоскости, а в трёхмерном объёме. При этом поперечность этих волн выражается в том, что колеблющиеся в них векторы напряжённости электрического и магнитного полей перпендикулярны направлению распространения волны. Кроме того, эти векторы почти всегда взаимно перпендикулярны, поэтому для описания электромагнитной волны требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

На рисунке показаны колебания проекций электрического вектора Е на взаимно перпендикулярные оси X и Y (Z - направление распространения волны) и огибающая концов полного вектора Е в разных точках волны для случая, когда вертикальные (по оси X) колебания на четверть периода (90°) опережают горизонтальные (по оси Y). Конец вектора Е в этом случае описывает окружность в направлении «правого винта».

Практически мы получили цилиндрическую пружину, которую можно рассматривать как устройство, накапливающее потенциальную энергию. Однако, в потенциальном поле атома электромагнитная волна распространяется не линейно (вдоль оси Z), а по замкнутой кривой. Значит, нашу пружину необходимо свернуть в кольцо так, чтобы её основания совместились друг с другом. Получим тор (проще бублик), центр которого совпадает с центром потенциального поля.

Электромагнитная волна в замкнутом пространстве атома представляет собой стоячую волну, которая распространяется вдоль оси тора (свёрнутая нами в кольцо ось Z) с орбитальной скоростью, равной корню квадратному из модуля гравитационного потенциала (v 2 , Дж/кг) на данной траектории, а конец вектора Е описывает винтовую окружность вдоль витков пружины.

Для справки :

Поляризация света , одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии векторов напряжённости в плоскости, перпендикулярной световому лучу (направлению распространения световой волны).

Преломление света , изменение направления распространения оптического излучения (света) при его прохождении через границу раздела двух сред.

Интерференция волн , сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны.

Дифракция (от лат. diffractus – разломанный) волн , явление, связанное с отклонением волн при их прохождении мимо края препятствия. В соответствии с принципом Гюйгенса – Френеля это препятствие является источником вторичных волн, от которого распространяется сферическая волна, попадая в область геометрической тени.

Квант света (нем. quant, от лат. quantum – сколько), количество (порция) электромагнитного излучения, которое в единичном акте способен излучить или поглотить атом или другая квантовая система; элементарная частица, то же, что фотон.

Планка постоянная , квант действия, фундаментальная физическая постоянная, определяющая широкий круг физических явлений, для которых существенна дискретность действия.

Квантовая механика – волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

Содержание.

  1. Введение.
  2. Волновые свойства света.

а) Дисперсия.

б) Дифракция.

в) Поляризация

  1. Квантовые свойства света.

а) Фотоэффект.

б) Эффект Комптона.

5. Заключение.

6. Список использованной литературы.

Введение.

Уже в древности наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории - корпускулярную и волновую теории света.

Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела большое число последователей, среди которых был Эвклид. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Эвклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

К середине XVII века накопились факты, которые толкали научную мысль за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим научную мысль к теории волновой природы света, был чешский ученый Марци. Его работы известны не только в области оптики, но также и в области механики и даже медицины. В 1648 им открыто явление дисперсии света.

В XVII в. в связи с развитием оптики вопрос о природе света стал вызывать все больший и больший интерес. При этом постепенно происходит образование двух противоположных теорий света: корпускулярной и волновой. Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света, а также законы отражения и преломления хорошо объяснялись с точки зрения этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В то время в основе взглядов на строение вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света. В это же время начинает развиваться и представление о волновой природе света. Родоначальником волновой теории света можно считать Декарта.

Единство корпускулярных и волновых свойств электромагнитного излучения.

Рассмотренные в данном разделе явления- излучение чёрного тела, фотоэффекта, эффект Комптона- служат доказательством квантовых(корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств- непрерывных(волны) и дискретных(фотоны), которые взаимно дополняют друг друга.

Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещённость экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещённость пропорциональна квадрату амплитуды световой волнытой же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

Волновые свойства света.

1.1 Дисперсия.

Ньютон обратился к исследованию цветов, наблюдаемых при преломлении света, в связи с попытками усовершенствования телескопов. Стремясь получить линзы возможно лучшего качества, Ньютон убедился, что главным недостатком изображений является наличие окрашенных краёв. Исследуя окрашивание при преломлении, Ньютон сделал свои величайшие оптические открытия.

Сущность открытий Ньютона поясняется следующими опытами (рис.1) свет от фонаря освещает узкое отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде короткого белого прямоугольника S `. Поместив на пути призму P , ребро которой параллельно щели, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.

Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения S `. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране MN , на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

Описанные опыты показывают, что для узкого цветного пучка, выделенного из спектра, показатель преломления имеет вполне определенное значение, тогда как преломление белого света можно только приблизительно охарактеризовать одним каким то значением этого показателя. Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют простые цвета, не разлагающиеся при прохождении через призму, и сложные, представляющие совокупность простых, имеющих разные показатели преломления. В частности, солнечный свет есть такая совокупность цветов, которая при помощи призмы разлагается, давая спектральное изображение щели.

Таким образом, в основных опытах Ньютона заключались два важных открытия:

1)Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

2)Белый цвет есть совокупность простых цветов.

Мы знаем внастоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом:

Показатель преломления вещества зависит от длины световой волны.

Обычно он увеличивается по мере уменьшения длины волны.

1.2 Дифракция.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдаетсяискажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, гдесогласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонениеот прямолинейного распространения, если оно не может быть объясненокак результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракциейФренеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах - дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие - либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

1.3 Поляризация

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро - зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно - зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

Квантовые свойства света.

2.1 Фотоэффект.

Гипотеза Планка о квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом Герцем.

Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождатьсяотрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы - электроны.

Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект, вентильный фотоэффект и ряд других эффектов.

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

Внутренним фотоэффектом называют появление свободных электронов и дырок в полупроводнике в результате разрыва связей между атомами за счет энергии света, падающего на полупроводник.

Вентильным фотоэффектом называют возникновение под действием света электродвижущей силы в системе, содержащей контакт двух различных полупроводников или полупроводника и металла.

2.2 Эффект Комптона.

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. Рассеяние монохроматического рентгеновского излучения веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

Эффектом Комптона называется упругое рассеяние коротковолновогоэлектромагнитного излучения (рентгеновского и гамма-излучений) на свободных(или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором- поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект - со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, .т.е. эффект Комптона.

Заключение.

Итак, свет корпускулярен в том смысле, что его энергия, импульс, масса и спин локализованы в фотонах, а не размыты в пространстве, но не в том, что фотон может находиться в данном точно определенном месте пространства. Свет ведет себя как волна в том смысле, что распространение и распределение фотонов в пространстве носят вероятный характер: вероятность того, что фотон находится в данной точке определяется квадратом амплитуды в этой точке. Но вероятностный (волновой) характер распределения фотонов в пространстве не означает, что фотон в каждый момент времени находится в какой-то одной точке.

Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

Список использованной литературы.

1) А.А. Детлаф Б.М. Яворский «Курс физики» изд. «Высшая школа» 2000 г.

2) Т.И. Трофимова «Курс физики» изд. «Высшая школа» 2001 г.

3) Х. Кухлинг «Справочник по физике» изд. «Мир» 1982 г.

4) Гурский И.П. «Элементарная физика» под ред. И.В. Савельева 1984 г.

5) Тарасов Л.В., Тарасова А.Н. «Беседы о преломлении света» /под ред. В.А.

Фабриканта, изд. «Наука», 1982.

За последние сто лет наука шагнула далеко вперед в изучении устройства нашего мира как на микроскопическом, так и на макроскопическом уровне. Потрясающие открытия, принесенные нам специальной и общей теориями относительности, квантовой механикой, до сих пор будоражат умы общественности. Однако любому образованному человеку необходимо разобраться хотя бы в основах современных достижений науки. Одним из наиболее впечатляющих и важных моментов является корпускулярно-волновой дуализм. Это парадоксальное открытие, понимание которого неподвластно интуитивному бытовому восприятию.

Корпускулы и волны

Впервые дуализм обнаружили при исследовании света, который вел себя в зависимости от условий совершенно по-разному. С одной стороны, получалось, что свет - это оптическая электромагнитная волна. С другой стороны - дискретная частица (химическое действие света). Первоначально ученые считали, что эти два представления взаимно исключают друг друга. Однако многочисленные опыты показали, что это не так. Постепенно реальность такого понятия, как корпускулярно-волновой дуализм, стала обыденной. Эта концепция представляет собой основу для изучения поведения сложных квантовых объектов, которые не являются ни волнами, ни частицами, а только приобретают свойства вторых или первых в зависимости от определенных условий.

Опыт с двумя щелями

Дифракция фотонов - наглядная демонстрация дуализма. Детектором заряженных частиц является фотопластинка или люминесцирующий экран. Каждый отдельный фотон отмечался засветкой или точечной вспышкой. Совокупность таких отметок давала интерференционную картину - чередование слабо и сильно засвеченных полосок, что является характеристикой дифракции волны. Это и объясняется таким понятием, как корпускулярно-волновой дуализм. Знаменитый физик и Нобелевский лауреат Ричард Фейнман говорил, что вещество ведет себя в малых масштабах так, что ощутить «естественность» поведения квантов невозможно.

Универсальный дуализм

Однако данный опыт справедлив не только для фотонов. Оказалось, что дуализм - это свойство всего вещества, и он универсален. Гейзенберг утверждал, что материя существует в обоих вариантах попеременно. На сегодняшний день абсолютно доказано, что оба свойства проявляются совершенно одновременно.

Корпускулярная волна

А как объяснить такое поведение материи? Волну, которая присуща корпускулам (частицам), именуют волной де Бройля, по имени молодого аристократа-ученого, предложившего решение данной проблемы. Принято считать, что уравнения де Бройля описывают волновую функцию, которая в квадрате определяет только вероятность того, что частица находится в разное время в разных точках в пространстве. Проще говоря, дебройлевская волна - это вероятность. Таким образом установили равенство между математическим понятием (вероятностью) и реальным процессом.

Квантовое поле

Что такое корпускулы вещества? По большому счету, это кванты волновых полей. Фотон - квант электромагнитного поля, позитрон и электрон - электронно-позитронного, мезон - квант мезонного поля и так далее. Взаимодействие между волновыми полями объясняется обменом между ними некими промежуточными частицами, к примеру, при электромагнитном взаимодействии идет обмен фотонами. Из этого прямо следует еще одно подтверждение того, что волновые процессы, описанные де Бройлем, - это абсолютно реальные физические явления. А корпускулярно-волновой дуализм выступает не как «таинственное скрытое свойство», которое характеризует способность частиц к «перевоплощению». Он наглядно демонстрирует два взаимосвязанных действия - движение объекта и связанный с ним волновой процесс.

Туннельный эффект

Корпускулярно-волновой дуализм света связан со многими другими интересными явлениями. Направление действия волны де Бройля проявляется при так называемом туннельном эффекте, то есть при проникновении фотонов через энергетический барьер. Это явление обусловлено превышением среднего значения импульсом частицы в момент пучности волны. При помощи туннелирования оказалась возможной разработка множества электронных приборов.


Интерференция квантов света

Современная наука говорит про интерференцию фотонов так же загадочно, как и про интерференцию электронов. Получается, что фотон, который является неделимой частицей, одновременно может пройти по любому открытому для себя пути и интерферировать сам с собой. Если учесть, что корпускулярно-волновой дуализм свойств вещества и фотон являют собой волну, которая охватывает много структурных элементов, то его делимость не исключается. Это противоречит предыдущим воззрениям на частицу как на элементарное неделимое образование. Обладая определенной массой движения, фотон формирует связанную с этим движением продольную волну, которая предшествует самой частице, так как скорость продольной волны больше, чем поперечной электромагнитной. Поэтому существуют два объяснения интерференции фотона самого с собой: частица расщепляется на две составляющие, которые и интерферируют друг с другом; волна фотона проходит по двум путям и формирует интерференционную картину. Опытным путем было обнаружено, что интерференционная картина создается и при пропускании сквозь интерферометр поочередно единичных заряженных частиц-фотонов. Этим подтверждается тезис о том, что каждый отдельный фотон интерферирует сам с собой. Особенно четко это видно при учете того, что свет (не когерентный и не монохроматичный) - это собрание фотонов, которые излучаются атомами во взаимонесвязанных и случайных процессах.

Что такое свет?

Световая волна - это электромагнитное нелокализованное поле, которое распределяется по пространству. Электромагнитное поле волны обладает объемной плотностью энергии, которая пропорциональна квадрату амплитуды. Это значит, что плотность энергии может меняться на любую величину, то есть это непрерывно. С одной стороны, свет - это поток квантов и фотонов (корпускул), которые, благодаря универсальности такого явления, как корпускулярно-волновой дуализм, представляют собой свойства электромагнитной волны. Например, в явлениях интерференции и дифракции и в масштабах свет явно демонстрирует характеристики волны. Например, одиночный фотон, как было описано выше, проходя через двойную щель, создает интерференционную картинку. При помощи экспериментов было доказано, что отдельно взятый фотон - это не электромагнитный импульс. Его нельзя разделить на пучки с делителями лучей, что показали французские физики Аспэ, Роже и Гранжье.

Свет обладает и корпускулярными свойствами, которые проявляются при эффекте Комптона и при фотоэффекте. Фотон может вести себя как частица, которая поглощается объектами целиком, размеры которых намного меньше длины его волны (например, атомным ядром). В некоторых случаях фотоны вообще можно считать точечными объектами. Нет разницы, с какой позиции рассматривать свойства света. В области цветного зрения поток света может выполнять функции и волны, и частицы-фотона как кванта энергии. Предметная точка, сфокусированная на фоторецепторе сетчатки, например, на мембране колбочки, может позволить глазу сформировать собственное отфильтрованное значение как основные спектральные лучи света и отсортировать их по длинам волн. Согласно значениям энергии квантов, в мозге предметная точка будет переведена на ощущение цвета (сфокусированное оптическое изображение).

Корпускулярно-волновой дуализм – свойство любой микрочастицы обнаруживать признаки частицы (корпускулы) и волны. Наиболее ярко корпускулярно-волновой дуализм проявляется у элементарных частиц. Электрон, нейтрон, фотон в одних условиях ведут себя как хорошо локализованные в пространстве материальные объекты (частицы), двигающиеся с определёнными энергиями и импульсами по классическим траекториям, а в других – как волны, что проявляется в их способности к интерференции и дифракции. Так электромагнитная волна, рассеиваясь на свободных электронах, ведёт себя как поток отдельных частиц – фотонов, являющихся квантами электромагнитного поля (Комптона эффект), причём импульс фотона даётся формулой р = h/λ, где λ – длина электромагнитной волны, а h – постоянная Планка. Эта формула сама по себе – свидетельство дуализма. В ней слева – импульс отдельной частицы (фотона), а справа – длина волны фотона. Дуализм электронов, которые мы привыкли считать частицами, проявляется в том, что при отражении от поверхности монокристалла наблюдается дифракционная картина, что является проявлением волновых свойств электронов. Количественная связь между корпускулярными и волновыми характеристиками электрона та же, что и для фотона: р = h/λ (р – импульс электрона, а λ – его длина волны де Бройля). Корпускулярно-волновой дуализм лежит в основе квантовой физики.

Волна(мех) – процесс, всегда связанный с к-либо материальной средой, занимающей определенный объем в пространстве.

64. Волны де Бройля. Дифракция электронов Волновые свойства микрочастиц.

Развитие представлений о корпускулярно-волновых свойствах материи получило в гипотезе о волновом характере движения микрочастиц. Луи де Бройль из идеи симметрии в природе для частиц вещества и света приписал любой микрочастице некий внутренний периодический процесс (1924). Объединив формулы E = hν и E = mc 2 , он получил соотношение, показывающее, что любой частице соответствует своя длина волны : λ Б = h/mv = h/p, где p- импульс волны-частицы. К примеру, для электрона, имеющего энергию 10 эВ, длина волны де Бройля составляет 0,388 нм. В дальнейшем было показано, что состояние микрочастицы в квантовой механике может быть описано определенной комплекснойволновой функцией координат Ψ(q), причем квадрат модуля этой функции |Ψ| 2 определяет распределение вероятностей значений координат. Эта функция была впервые введена в квантовую механику Шредингером в 1926 г. Таким образом, волна де Бройля не несет энергию, а только отображает “распределение фаз” некоего вероятностного периодического процесса в пространстве. Следовательно, описание состояния объектов микромира носит вероятностный характер , в отличие от объектов макромира, которые описываются законами классической механики.

Для доказательства идеи де Бройля о волновой природе микрочастиц немецкий физик Эльзассер предложил использовать кристаллы для наблюдения дифракции электронов (1925). В США К. Дэвиссон и Л. Джермер обнаружили явление дифракции при прохождении пучка электронов через пластинку из кристалла никеля (1927). Независимо от них дифракцию электронов при прохождении через металлическую фольгу открыли Дж. П. Томсон в Англии и П.С. Тартаковский в СССР. Так идея де Бройля о волновых свойствах вещества нашла экспериментальное подтверждение. Впоследствии дифракционные, а значит волновые, свойства были обнаружены у атомных и молекулярных пучков. Корпускулярно-волновыми свойствами обладают не только фотоны и электроны, но и все микрочастицы.

Октрытие волновых свойств у микрочастиц показало, что такие формы материи, как поле (непрерывное) и вещество (дискретное), которые с точки зрения классической физики, считались качественно отличающимися, в определенных условиях могут проявлять свойства, присущие и той и другой форме. Это говорит о единстве этих форм материи. Полное описание их свойств возможно только на основе противоположных, но дополняющих друг - друга представлений.