Что значит "гравитационная постоянная". Гравитационная постоянная

  • Дата: 13.10.2019

коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r 2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами. Другие обозначения Г. п.: γ или f (реже k 2 ). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц (См. СГС система единиц)

G = (6,673 ± 0,003)․10 -8 дн см 2 г -2

или см 3 г --1 сек -2 , в Международной системе единиц (См. Международная система единиц)

G = (6,673 ± 0,003)․10 -11 ․н м 2 кг --2

или м 3 кг -1 сек -2 . Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов (См. Крутильные весы).

При вычислении орбит небесных тел (например, спутников) относительно Земли используется геоцентрическая Г. п. - произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ± 0,00003)․10 14 ․м 3 сек -2 .

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п. - произведение Г. п. на массу Солнца:

GS s = 1,32718․10 20 ․ м 3 сек -2 .

Эти значения GE и GS s соответствуют системе фундаментальных астрономических постоянных (См. Фундаментальные астрономические постоянные), принятой в 1964 на съезде Международного астрономического союза.

Ю. А. Рябов.

  • - , физ. величина, характеризующая св-ва тела как источника тяготения; равна инертной массе. ...

    Физическая энциклопедия

  • - нарастание со временем отклонений от ср. значения плотности и скорости движения в-ва в косм. пр-ве под действием сил тяготения...

    Физическая энциклопедия

  • - нарастание возмущений плотности и скорости вещества в первоначально почти однородной среде под действием гравитационных сил. В результате гравитационной неустойчивости образуются сгустки вещества...

    Астрономический словарь

  • - тело большой массы, влияние которого на движение света похоже на действие обычной линзы, преломляющей лучи за счет изменения оптических свойств среды...

    Мир Лема - словарь и путеводитель

  • - подземная вода, способная передвигаться по порам, трещинам и другим пустотам горных пород под влиянием силы тяжести...

    Словарь геологических терминов

  • - вода свободная. Она передвигается под влиянием силы тяжести, в ней действует гидродинамическое давление...

    Словарь по гидрогеологии и инженерной геологии

  • - Влага свободная, передвигающаяся или способная к передвижению в п. или грунте под влиянием силы тяжести...

    Толковый словарь по почвоведению

  • - тяготения постоянная, - универс. физ. постоянная G, входящая в ф-лу, выражающую ньютоновский закон тяготения: G = *10-11Н*м2/кг2...

    Большой энциклопедический политехнический словарь

  • - местная ликвация по высоте слитка, связанная с различием в плотности твердой и жидкой фаз, а также не смешивающихся при кристаллизации жидких фаз...
  • - шахтная печь, в которой нагреваемый материал движется сверху вниз под действием силы тяжести, а газообразный теплоноситель - встречно...

    Энциклопедический словарь по металлургии

  • - син. термина аномалия силы тяжести...

    Геологическая энциклопедия

  • - см. в ст. Свободная вода....

    Геологическая энциклопедия

  • - масса, тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...
  • - то же, что Отвесная линия...

    Большая Советская энциклопедия

  • - тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса...

    Большая Советская энциклопедия

  • - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F - сила притяжения, М и m - массы притягивающихся тел, r - расстояние между телами...

    Большая Советская энциклопедия

"Гравитационная постоянная" в книгах

автора Еськов Кирилл Юрьевич

автора

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы Рассказ о происхождении Земли и Солнечной системы нам придется начать издалека. В 1687 году И. Ньютон вывел закон всемирного

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Постоянная забота

Из книги Листы дневника. Том 1 автора Рерих Николай Константинович

Постоянная забота Наши комитеты уже спрашивают, каково будет их положение после ратификации Пакта. Некоторым друзьям, может быть, кажется, что официальная ратификация Пакта уже исключает всякую общественную инициативу и сотрудничество. Между тем на деле должно быть как

6.10. Гравитационная редукция вектора состояния

Из книги Тени разума [В поисках науки о сознании] автора Пенроуз Роджер

6.10. Гравитационная редукция вектора состояния Есть веские причины подозревать, что модификация квантовой теории - необходимая, если мы намерены выдать ту или иную форму R за реальный физический процесс, - должна самым серьезным образом задействовать эффекты

Аналогия с вулканом: гравитационная и центробежная энергии

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Аналогия с вулканом: гравитационная и центробежная энергии Чтобы объяснить, как этот вулкан связан с законами физики, придется слегка углубиться в технические детали.Для простоты будем считать, что «Эндюранс» движется в экваториальной плоскости Гаргантюа.

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова)

Из книги 100 великих тайн Второй мировой автора Непомнящий Николай Николаевич

ГРАВИТАЦИОННАЯ ПУШКА ТРЕТЬЕГО РЕЙХА (По материалам В. Псаломщикова) В начале 1920-х годов в Германии была опубликована статья доцента Кёнигсбергского университета Т. Калуцы о «теории великого объединения», в которой он сумел опередить Эйнштейна, работавшего в то время

Что представляет собой гравитационная линза?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что представляет собой гравитационная линза? Одно из важных следствий общей теории относительности заключается в том, что гравитационное поле воздействует даже на свет. Проходя вблизи очень больших масс, световые лучи отклоняются. Чтобы объяснить идею гравитационных

Гравитационная

БСЭ

Гравитационная вертикаль

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная плотина

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационная постоянная

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Способности кристаллов. Гравитационная подпитка

Из книги Энергия камня исцеляет. Кристаллотерапия. С чего начать? автора Бриль Мария

Способности кристаллов. Гравитационная подпитка Природные элементы, на протяжении миллионов лет выкристаллизовывавшиеся в глубинах земных недр, обладают особыми свойствами, позволяющими им максимально реализовать свои способности. А способности эти не так уж и малы.

Правило «Гравитационная горка»

Из книги Оздоровительно-боевая система «Белый Медведь» автора Мешалкин Владислав Эдуардович

Правило «Гравитационная горка» Мы уже договорились: все есть мысль; мысль есть Сила; движение Силы – волна. Поэтому боевое взаимодействие по сути не отличается от стирки белья. В обоих случаях имеет место волновой процесс.Вам надо усвоить, что волновой процесс жизни

Ученые из России и Китая уточнили гравитационную постоянную, используя два независимых метода. Результаты исследования опубликованы в журнале Nature.

Гравитационная постоянная G - одна из фундаментальных констант в физике, которую применяют при расчетах гравитационного взаимодействия материальных тел. Согласно закону всемирного тяготения Ньютона, гравитационное взаимодействие двух материальных точек пропорционально произведению их масс и обратно пропорционально квадрату расстояния между ними. Также в эту формулу входит постоянный коэффициент - гравитационная постоянная G. Массы и расстояния астрономы сейчас могут измерять значительно точнее, чем гравитационную постоянную, из-за чего у всех расчетов тяготения между телами накапливалась систематическая погрешность. Предположительно, связанная с гравитационной постоянной погрешность влияет и на исследования взаимодействий атомов или элементарных частиц.

Физики неоднократно измеряли эту величину. В новой работе международный коллектив ученых, в состав которого вошли сотрудники Государственного астрономического института имени П.К. Штернберга (ГАИШ) МГУ, решил уточнить гравитационную постоянную, используя два метода и крутильный маятник.

«В эксперименте по измерению гравитационной постоянной требуется произвести абсолютные измерения трех физических величин: массы, длины и времени, - комментирует один из авторов исследования, Вадим Милюков из ГАИШ. - Абсолютные измерения всегда могут быть отягощены систематическими ошибками, поэтому было важным получить два независимых результата. Если они совпадают между собой, то появляется уверенность, что они свободны от систематики. Наши результаты совпадают между собой на уровне трех стандартных отклонений».

Первый использованный авторами исследования подход - так называемый динамический метод (time-of-swing method, ToS). Исследователи вычисляли, как изменяется частота крутильных колебаний в зависимости от положения двух пробных тел, которые служили источниками масс. Если расстояние между пробными телами уменьшается, сила их взаимодействия увеличивается, что вытекает из формулы для гравитационного взаимодействия. В результате возрастает частота колебаний маятника.

Схема экспериментальной установки с крутильным маятником

Q. Li, C.Xie, J.-P. Liu et al.

Используя этот метод, исследователи учли вклад упругих свойств нити подвеса маятника в погрешности измерения и постарались сгладить их. Эксперименты проводились на двух независимых аппаратах, находящихся на расстоянии 150 м друг от друга. На первом ученые протестировали три различных вида волокна нити подвеса, чтобы проверить возможные ошибки, наведенные материалом. У второго значительно изменили конструкцию: исследователи использовали новое силикатное волокно, другой набор маятников и грузов для того, чтобы оценить ошибки, которые зависят от установки.

Второй метод, которым измеряли G, - метод компенсации угловых ускорений (Angular acceleration feedback, AAF). В нем измеряется не частота колебаний, а угловое ускорение маятника, вызванное пробными телами. Этот метод измерения G не нов, однако для того, чтобы увеличить точность вычисления, ученые кардинально изменили конструкцию экспериментальной установки: заменили алюминиевую подставку на стеклянную, чтобы материал не расширялся при нагревании. В качестве пробных масс использовали тщательно отшлифованные сферы из нержавеющей стали, близкие по форме и однородности к идеальным.

Чтобы снизить роль человеческого фактора, практически все параметры ученые измерили повторно. Также они подробно исследовали влияние температуры и вибраций при вращении на расстояние между пробными телами.

Полученные в результате экспериментов значения гравитационной постоянной (AAF - 6,674484(78)×10 -11 м 3 кг -1 с -2 ; ToS - 6,674184(78)×10 -11 м 3 кг -1 с -2) совпадают между собой на уровне трех стандартных отклонений. Кроме того, оба имеют наименьшую неопределенность из всех ранее установленных значений и согласуются со значением, которое рекомендовано Комитетом данных для науки и техники (CODATA) в 2014 году. Эти исследования, во-первых, дали большой вклад в определение гравитационной постоянной, а во-вторых, показали, какие усилия потребуются в будущем для того, чтобы достичь еще большей точности.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@сайт.

Qing Li et al. / Nature

Физики из Китая и России уменьшили погрешность гравитационной постоянной в четыре раза - до 11,6 частей на миллион, поставив две серии принципиально разных опытов и уменьшив до минимума систематические погрешности, искажающие результаты. Статья опубликована в Nature .

Впервые гравитационную постоянную G , входящую в закон всемирного тяготения Ньютона, измерил в 1798 году британский физик-экспериментатор Генри Кавендиш . Для этого ученый использовал крутильные весы, построенные священником Джоном Мичеллом . Простейшие крутильные весы, конструкция которых была придумана в 1777 году Шарлем Кулоном , состоят из вертикальной нити, на которой подвешено легкое коромысло с двумя грузами на концах. Если поднести к грузам два массивных тела, под действием силы притяжения коромысло начнет поворачиваться; измеряя угол поворота и связывая его с массой тел, упругими свойствами нити и размерами установки, можно вычислить значение гравитационной постоянной. Более подробно с механикой крутильных весов можно разобраться, решая соответствующую задачу .

Полученное Кавендишем значение для постоянной составило G = 6,754×10 −11 ньютонов на метр квадратный на килограмм, а относительная погрешность опыта не превышала одного процента.


Модель крутильных весов, с помощью которых Генри Кавендиш впервые измерил гравитационное притяжение между лабораторными телами

Science Museum / Science & Society Picture Library

С тех пор ученые поставили более двухсот экспериментов по измерению гравитационной постоянной, однако так и не смогли существенно улучшить их точность. В настоящее время значение постоянной, принятое Комитетом данных для науки и техники (CODATA) и рассчитанное по результатам 14 наиболее точных экспериментов последних 40 лет, составляет G = 6,67408(31)×10 −11 ньютонов на метр квадратный на килограмм (в скобках указана погрешность последних цифр мантиссы). Другими словами, ее относительная погрешность примерно равна 47 частей на миллион, что всего в сто раз меньше, чем погрешность опыта Кавендиша и на много порядков больше, чем погрешность остальных фундаментальных констант. Например, ошибка измерения постоянной Планка не превышает 13 частей на миллиард, постоянной Больцмана и элементарного заряда - 6 частей на миллиард, скорости света - 4 частей на миллиард. В то же время, физикам очень важно знать точное значение постоянной G , поскольку оно играет ключевую роль в космологии, астрофизике, геофизике и даже в физике частиц. Кроме того, высокая погрешность постоянной мешает переопределить значения других физических величин.

Скорее всего, низкая точность постоянной G связана со слабостью сил гравитационного притяжения, которые возникают в наземных экспериментах, - это мешает точно измерить силы и приводит к большим систематическим погрешностям , обусловленным конструкцией установок. В частности, заявленная погрешность некоторых экспериментов, использованных при расчете значения CODATA, не превышала 14 частей на миллион, однако различие между их результатами достигало 550 частей на миллион. В настоящее время не существует теории, которая могла бы объяснить такой большой разброс результатов. Скорее всего, дело в том, что в некоторых экспериментах ученые упускали из виду какие-то факторы, которые искажали значения постоянной. Поэтому все, что остается физикам-экспериментаторам - уменьшать систематические погрешности, минимизируя внешние воздействия, и повторять измерения на установках с принципиально разной конструкцией.

Именно такую работу провела группа ученых под руководством Цзюнь Ло (Jun luo) из Университета науки и технологий Центрального Китая при участии Вадима Милюкова из ГАИШ МГУ .

Для уменьшения погрешности исследователи повторяли опыты на нескольких установках с принципиально разной конструкцией и различными значениями параметров. На установках первого типа постоянная измерялась с помощью метода TOS (time-of-swing), в котором величина G определяется по частоте колебаний крутильных весов. Чтобы повысить точность, частота измеряется для двух различных конфигураций: в «ближней» конфигурации внешние массы находятся поблизости от равновесного положения весов (эта конфигурация представлена на рисунке), а в «дальней» - перпендикулярно равновесному положению. В результате частоты колебаний в «дальней» конфигурации оказывается немного меньше, чем в «ближней» конфигурации, и это позволяет уточнить значение G .

С другой стороны, установки второго типа полагались на метод AAF (angular-acceleration-feedback) - в этом методе коромысло крутильных весов и внешние массы вращаются независимо, а их угловое ускорение измеряется с помощью системы управления с обратной связью, которая поддерживает нить незакрученной. Это позволяет избавиться от систематических ошибок, связанных с неоднородностью нити и неопределенностью ее упругих свойств.


Схема экспериментальных установок по измерению гравитационной постоянной: метод TOS (a) и AAF (b)

Qing Li et al. / Nature


Фотографии экспериментальных установок по измерению гравитационной постоянной: метод TOS (a–c) и AAF (d–f)

Qing Li et al. / Nature

Кроме того, физики постарались до минимума сократить возможные систематические ошибки. Во-первых, они проверили, что гравитирующие тела, участвующие в опытах, действительно однородны и близки к сферической форме - построили пространственное распределение плотности тел с помощью сканирующего электронного микроскопа , а также измерили расстояние между геометрическим центром и центром масс двумя независимыми методами. В результате ученые убедились, что колебания плотности не превышают 0,5 части на миллион, а эксцентриситет - одной части на миллион. Кроме того, исследователи поворачивали сферы на случайный угол перед каждым из опытов, чтобы скомпенсировать их неидеальности.

Во-вторых, физики учли, что магнитный демпфер , который используется для подавлений нулевых мод колебаний нити, может вносить вклад в измерение постоянной G , а затем изменили его конструкцию таким образом, чтобы этот вклад не превышал нескольких частей на миллион.

В-третьих, ученые покрыли поверхность масс тонким слоем золотой фольги, чтобы избавиться от электростатических эффектов, и пересчитали момент инерции крутильных весов с учетом фольги. Отслеживая электростатические потенциалы частей установки в ходе опыта, физики подтвердили, что электрические заряды не влияют на результаты измерений.

В-четвертых, исследователи учли, что в методе AAF кручение происходит в воздухе, и скорректировали движение коромысла с учетом сопротивления воздуха. В методе TOS все части установки находились в вакуумной камере, поэтому подобные эффекты можно было не учитывать.

В-пятых, экспериментаторы поддерживали температуру установки постоянной в течение опыта (колебания не превышали 0,1 градуса Цельсия), а также непрерывно измеряли температуру нити и корректировали данные с учетом едва заметных изменений ее упругих свойств.

Наконец, ученые учли, что металлическое покрытие сфер позволяет им взаимодействовать с магнитным полем Земли, и оценили величину этого эффекта. В ходе эксперимента ученые каждую секунду считывали все данные, включая угол поворота нити, температуру, колебания плотности воздуха и сейсмические возмущения, а затем строили полную картину и рассчитывали на ее основании значение постоянной G .

Каждый из опытов ученые повторяли много раз и усредняли результаты, а затем изменяли параметры установки и начинали цикл сначала. В частности, опыты с использованием метода TOS исследователи провели для четырех кварцевых нитей различного диаметра, а в трех экспериментах со схемой AAF ученые изменяли частоту модулирующего сигнала. На проверку каждого из значений физикам понадобилось около года, а суммарно эксперимент продлился более трех лет.

(a) Зависимость от времени периода колебаний крутильных весов в методе TOS; сиреневые точки отвечают «ближней» конфигурации, синие - «дальней». (b) Усредненные значения гравитационной постоянной для различных установок TOS

Гравитационная постоянная, постоянная Ньютона - фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века.

Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно, впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809). По крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено.

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Митчеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

В 2000 г. было получено значение гравитационной постоянной

см 3 г -1 c -2 , с погрешностью 0,0014%.

Последнее значение гравитационной постоянной было получено группой ученых в 2013, работавших под эгидой Международного Бюро Мер и Весов, и оно составляет

см 3 г -1 c -2 .

В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено.

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по его уточнению продолжают различаться. В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени, но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов.

По астрономическим данным постоянная G практически не изменялась за последние сотни миллионов лет, ее относительное изменение не превышает 10 ?11 - 10 ?12 в год.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами m 1 и m 2 , находящимися на расстоянии r , равна:

Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2008 год значение было

G = 6,67428 (67)·10 ?11 м 3 ·с?2 ·кг?1

в 2010 году значение было исправлено на:

G = 6,67384 (80)·10 ?11 м 3 ·с?2 ·кг?1 , или Н·мІ·кг?2 .

В октябре 2010 в журнале Physical Review Letters появилась статья, предлагающая уточнённое значение 6,67234 (14), что на три стандартных отклонения меньше величины G , рекомендованной в 2008 г. комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г.

Пересмотр величины G , произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

Когда Ньютон открыл закон всемирного тяготения, он не знал ни одного числового значения масс небесных тел, в том числе и Земли. Неизвестно ему было и значение постоянной G.

Между тем гравитационная постоянная G имеет для всех тел Вселенной одно и то же значение и является одной из фундаментальных физических констант. Каким же образом можно найти ее значение?

Из закона всемирного тяготения следует, что G = Fr 2 /(m 1 m 2). Значит, для того чтобы найти G, нужно измерить силу притяжения F между телами известных масс m 1 и m 2 и расстояние r между ними.

Первые измерения гравитационной постоянной были осуществлены в середине XVIII в. Оценить, правда весьма грубо, значение G в то время удалось в результате рассмотрения притяжения маятника к горе, масса которой была определена геологическими методами.

Точные измерения гравитационной постоянной впервые были проведены в 1798 г. замечательным ученым Генри Кавендишем - богатым английским лордом, прослывшим чудаковатым и нелюдимым человеком. С помощью так называемых крутильных весов (рис. 101) Кавендиш по углу закручивания нити А сумел измерить ничтожно малую силу притяжения между маленькими и большими металлическими шарами. Для этого ему пришлось использовать столь чувствительную аппаратуру, что даже слабые воздушные потоки могли исказить измерения. Поэтому, чтобы исключить посторонние влияния, Кавендиш разместил свою аппаратуру в ящике, который оставил в комнате, а сам проводил наблюдения за аппаратурой с помощью телескопа из другого помещения.

Опыты показали, что

G ≈ 6,67 · 10 –11 Н · м 2 /кг 2 .

Физический смысл гравитационной постоянной заключается в том, что она численно равна силе, с которой притягиваются две частицы с массой по 1 кг каждая, находящиеся на расстоянии 1 м друг от друга. Эта сила, таким образом, оказывается чрезвычайно малой - всего лишь 6,67 · 10 –11 Н. Хорошо это или плохо? Расчеты показывают, что если бы гравитационная постоянная в нашей Вселенной имела значение, скажем, в 100 раз большее, чем приведенное выше, то это привело бы к тому, что время существования звезд, в том числе Солнца, резко уменьшилось бы и разумная жизнь на Земле появиться бы не успела. Другими словами, нас бы с вами сейчас не было!

Малое значение G приводит к тому, что гравитационное взаимодействие между обычными телами, не говоря уже об атомах и молекулах, является очень слабым. Два человека массой по 60 кг на расстоянии 1 м друг от друга притягиваются с силой, равной всего лишь 0,24 мкН.

Однако по мере увеличения масс тел роль гравитационного взаимодействия возрастает. Так, например, сила взаимного притяжения Земли и Луны достигает 10 20 Н, а притяжение Земли Солнцем еще в 150 раз сильнее. Поэтому движение планет и звезд уже полностью определяется гравитационными силами.

В ходе своих опытов Кавендиш также впервые доказал, что не только планеты, но и обычные, окружающие нас в повседневной жизни тела притягиваются по тому же закону тяготения, который был открыт Ньютоном в результате анализа астрономических данных. Этот закон действительно является законом всемирного тяготения.

«Закон тяготения универсален. Он простирается на огромные расстояния. И Ньютон, которого интересовала Солнечная система, вполне мог бы предсказать, что получится из опыта Кавендиша, ибо весы Кавендиша, два притягивающихся шара, - это маленькая модель Солнечной системы. Если увеличить ее в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький, образчик его может открыть нам глаза на строение целого» (Р. Фейнман).

1. В чем заключается физический смысл гравитационной постоянной? 2. Кем впервые были проделаны точные измерения этой постоянной? 3. К чему приводит малость значения гравитационной постоянной? 4. Почему, сидя рядом с товарищем за партой, вы не ощущаете притяжение к нему?