Сложения и вычитания рациональных дробей. Сложение и вычитание рациональных дробей

  • Дата: 20.09.2019

В данном уроке рассматривается сложение и вычитание рациональных чисел. Тема относится к категории сложных. Здесь необходимо использовать весь арсенал полученных ранее знаний.

Правила сложения и вычитания целых чисел справедливы и для рациональных чисел. Напомним, что рациональными называют числа, которые могут быть представлены в виде дроби , где a – это числитель дроби, b – знаменатель дроби. При этом, b не должно быть нулём.

В данном уроке дроби и смешанные числа мы всё чаще будем называть одним общим словосочетанием — рациональные числа .

Навигация по уроку:

Пример 1. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих дробей до их вычисления:

Модуль рационального числа больше, чем модуль рационального числа . Поэтому мы из вычли . Получили ответ . Затем сократив эту дробь на 2, получили окончательный ответ .

Некоторые примитивные действия, такие как: заключение чисел в скобки и проставление модулей, можно пропустить. Данный пример вполне можно записать покороче:

Пример 2. Найти значение выражения:

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус, стоящий между рациональными числами и является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:

Заменим вычитание сложением. Напомним, что для этого нужно к уменьшаемому прибавить число, противоположное вычитаемому:

Получили сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус:

Примечание. Заключать в скобки каждое рациональное число вовсе необязательно. Делается это для удобства, чтобы хорошо видеть какие знаки имеют рациональные числа.

Пример 3. Найти значение выражения:

В этом выражении у дробей разные знаменатели. Чтобы облегчить себе задачу, приведём эти дроби к общему знаменателю. Не будем подробно останавливаться на том, как это сделать. Если испытываете трудности, обязательно повторите урок .

После приведения дробей к общему знаменателю выражение примет следующий вид:

Это сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Запишем решение данного примера покороче:

Пример 4. Найти значение выражения

Вычислим данное выражение в следующем : слóжим рациональные числа и , затем из полученного результата вычтем рациональное число .

Первое действие:

Второе действие:

Пример 5 . Найти значение выражения:

Представим целое число −1 в виде дроби , а смешанное число переведём в неправильную дробь:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Получили сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:

Получили ответ .

Есть и второй способ решения. Он заключается в том, чтобы сложить отдельно целые части.

Итак, вернёмся к изначальному выражению:

Заключим каждое число в скобки. Для этого смешанное число временно :

Вычислим целые части:

(−1) + (+2) = 1

В главном выражении вместо (−1) + (+2) запишем полученную единицу:

Полученное выражение . Для этого запишем единицу и дробь вместе:

Запишем решение этим способом покороче:

Пример 6. Найти значение выражения

Переведём смешанное число в неправильную дробь. Остальную часть перепишем без изменения:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Запишем решение данного примера покороче:

Пример 7. Найти значение выражение

Представим целое число −5 в виде дроби , а смешанное число переведём в неправильную дробь:

Приведём данные дроби к общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно .

Решим данный пример вторым способом. Вернемся к изначальному выражению:

Запишем смешанное число в развёрнутом виде. Остальное перепишем без изменений:

Заключим каждое рациональное число в скобки вместе своими знаками:

Вычислим целые части:

В главном выражении вместо запишем полученное число −7

Выражение является развёрнутой формой записи смешанного числа . Запишем число −7 и дробь вместе, образуя окончательный ответ:

Запишем это решение покороче:

Пример 8. Найти значение выражения

Заключим каждое рациональное число в скобки вместе своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Данный пример можно решить и вторым способом. Он заключается в том, чтобы сложить целые и дробные части по отдельности. Вернёмся к изначальному выражению:

Заключим каждое рациональное число в скобки вместе со своими знаками:

Заменим вычитание сложением:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус. Но в этот раз слóжим по отдельности целые части (−1 и −2), и дробные и

Запишем это решение покороче:

Пример 9. Найти выражения выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе своим знаком. Рациональное число в скобки заключать не нужно, поскольку оно уже в скобках:

Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:

Таким образом, значение выражения равно

Теперь попробуем решить этот же пример вторым способом, а именно сложением целых и дробных частей по отдельности.

В этот раз, в целях получения короткого решения, попробуем пропустить некоторые действия, такие как: запись смешанного числа в развёрнутом виде и замена вычитания сложением:

Обратите внимание, что дробные части были приведены к общему знаменателю.

Пример 10. Найти значение выражения

Заменим вычитание сложением:

В получившемся выражении нет отрицательных чисел, которые являются основной причиной допущения ошибок. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вычитаемым, а также убрать скобки:

Получилось простейшее выражение, которое вычисляется легко. Вычислим его любым удобным для нас способом:

Пример 11. Найти значение выражения

Это сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Пример 12. Найти значение выражения

Выражение состоит из нескольких рациональных чисел. Согласно , в первую очередь необходимо выполнить действия в скобках.

Сначала вычислим выражение , затем выражение Полученные результаты слóжим.

Первое действие:

Второе действие:

Третье действие:

Ответ: значение выражения равно

Пример 13. Найти значение выражения

Переведём смешанные числа в неправильные дроби:

Заключим рациональное число в скобки вместе со своим знаком. Рациональное число заключать в скобки не нужно, поскольку оно уже в скобках:

Приведём данные дроби в общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:

Заменим вычитание сложением:

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:

Таким образом, значение выражения равно

Рассмотрим сложение и вычитание десятичных дробей, которые тоже относятся к рациональным числам и которые могут быть как положительными, так и отрицательными.

Пример 14. Найти значение выражения −3,2 + 4,3

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к десятичной дроби 4,3. У этой десятичной дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы его запишем для наглядности:

(−3,2) + (+4,3)

Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих десятичных дробей до их вычисления:

(−3,2) + (+4,3) = |+4,3| − |−3,2| = 1,1

Модуль числа 4,3 больше, чем модуль числа −3,2 поэтому мы из 4,3 вычли 3,2. Получили ответ 1,1. Ответ положителен, поскольку перед ответом должен стоять знак того рационального числа, модуль которого больше. А модуль числа 4,3 больше, чем модуль числа −3,2

Таким образом, значение выражения −3,2 + (+4,3) равно 1,1

−3,2 + (+4,3) = 1,1

Пример 15. Найти значение выражения 3,5 + (−8,3)

Это сложение рациональных чисел с разными знаками. Как и в прошлом примере из большего модуля вычитаем меньший и перед ответом ставим знак того рационального числа, модуль которого больше:

3,5 + (−8,3) = −(|−8,3| − |3,5|) = −(8,3 − 3,5) = −(4,8) = −4,8

Таким образом, значение выражения 3,5 + (−8,3) равно −4,8

Этот пример можно записать покороче:

3,5 + (−8,3) = −4,8

Пример 16. Найти значение выражения −7,2 + (−3,11)

Это сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус.

Запись с модулями можно пропустить, чтобы не загромождать выражение:

−7,2 + (−3,11) = −7,20 + (−3,11) = −(7,20 + 3,11) = −(10,31) = −10,31

Таким образом, значение выражения −7,2 + (−3,11) равно −10,31

Этот пример можно записать покороче:

−7,2 + (−3,11) = −10,31

Пример 17. Найти значение выражения −0,48 + (−2,7)

Это сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:

−0,48 + (−2,7) = (−0,48) + (−2,70) = −(0,48 + 2,70) = −(3,18) = −3,18

Пример 18. Найти значение выражения −4,9 − 5,9

Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который располагается между рациональными числами −4,9 и 5,9 является знаком операции и не относится к числу 5,9. У этого рационального числа свой знак плюса, который невидим по причине того, что он не записывается. Но мы запишем его для наглядности:

(−4,9) − (+5,9)

Заменим вычитание сложением:

(−4,9) + (−5,9)

Получили сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус:

(−4,9) + (−5,9) = −(4,9 + 5,9) = −(10,8) = −10,8

Таким образом, значение выражения −4,9 − 5,9 равно −10,8

−4,9 − 5,9 = −10,8

Пример 19. Найти значение выражения 7 − 9,3

Заключим в скобки каждое число вместе со своими знаками

(+7) − (+9,3)

Заменим вычитание сложением

(+7) + (−9,3)

(+7) + (−9,3) = −(9,3 − 7) = −(2,3) = −2,3

Таким образом, значение выражения 7 − 9,3 равно −2,3

Запишем решение этого примера покороче:

7 − 9,3 = −2,3

Пример 20. Найти значение выражения −0,25 − (−1,2)

Заменим вычитание сложением:

−0,25 + (+1,2)

Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед ответом поставим знак того числа, модуль которого больше:

−0,25 + (+1,2) = 1,2 − 0,25 = 0,95

Запишем решение этого примера покороче:

−0,25 − (−1,2) = 0,95

Пример 21. Найти значение выражения −3,5 + (4,1 − 7,1)

Выполним действия в скобках, затем слóжим полученный ответ с числом −3,5

Первое действие:

4,1 − 7,1 = (+4,1) − (+7,1) = (+4,1) + (−7,1) = −(7,1 − 4,1) = −(3,0) = −3,0

Второе действие:

−3,5 + (−3,0) = −(3,5 + 3,0) = −(6,5) = −6,5

Ответ: значение выражения −3,5 + (4,1 − 7,1) равно −6,5.

Пример 22. Найти значение выражения (3,5 − 2,9) − (3,7 − 9,1)

Выполним действия в скобках. Затем из числа, которое получилось в результате выполнения первых скобок, вычтем число, которое получилось в результате выполнения вторых скобок:

Первое действие:

3,5 − 2,9 = (+3,5) − (+2,9) = (+3,5) + (−2,9) = 3,5 − 2,9 = 0,6

Второе действие:

3,7 − 9,1 = (+3,7) − (+9,1) = (+3,7) + (−9,1) = −(9,1 − 3,7) = −(5,4) = −5,4

Третье действие

0,6 − (−5,4) = (+0,6) + (+5,4) = 0,6 + 5,4 = 6,0 = 6

Ответ: значение выражения (3,5 − 2,9) − (3,7 − 9,1) равно 6.

Пример 23. Найти значение выражения −3,8 + 17,15 − 6,2 − 6,15

Заключим в скобки каждое рациональное число вместе со своими знаками

(−3,8) + (+17,15) − (+6,2) − (+6,15)

Заменим вычитание сложением там, где это можно:

(−3,8) + (+17,15) + (−6,2) + (−6,15)

Выражение состоит из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение состоит из нескольких слагаемых, то сумма не будет зависеть от порядка действий. Это значит, что слагаемые можно складывать в любом порядке.

Не будем изобретать велосипед, а слóжим все слагаемые слева направо в порядке их следования:

Первое действие:

(−3,8) + (+17,15) = 17,15 − 3,80 = 13,35

Второе действие:

13,35 + (−6,2) = 13,35 − −6,20 = 7,15

Третье действие:

7,15 + (−6,15) = 7,15 − 6,15 = 1,00 = 1

Ответ: значение выражения −3,8 + 17,15 − 6,2 − 6,15 равно 1.

Пример 24. Найти значение выражения

Переведём десятичную дробь −1,8 в смешанное число. Остальное перепишем без изменения:

Обыкновенных дробей.

Сложение алгебраических дробей

Запомните!

Складывать можно только дроби с одинаковыми знаменателями!

Нельзя складывать дроби без преобразований

Можно складывать дроби

При сложении алгебраических дробей с одинаковыми знаменателями :

  1. числитель первой дроби складывается с числителем второй дроби;
  2. знаменатель остаётся прежним.

Рассмотрим пример сложения алгебраических дробей.

Так как знаменатель у обеих дробей «2а », значит, дроби можно сложить.

Сложим числитель первой дроби с числителем второй дроби, а знаменатель оставим прежним. При сложении дробей в полученном числителе приведем подобные .

Вычитание алгебраических дробей

При вычитании алгебраических дробей с одинаковыми знаменателями :

  1. из числителя первой дроби вычитается числитель второй дроби.
  2. знаменатель остаётся прежним.

Важно!

Обязательно заключите в скобки весь числитель вычитаемой дроби.

Иначе вы сделаете ошибку в знаках при раскрытии скобок вычитаемой дроби.

Рассмотрим пример вычитания алгебраических дробей.

Так как у обеих алгебраических дробей знаменатель «2с », значит, эти дроби можно вычитать.

Вычтем из числителя первой дроби «(a + d) » числитель второй дроби «(a − b) ». Не забудем заключить числитель вычитаемой дроби в скобки. При раскрытии скобок используем правило раскрытия скобок .

Приведение алгебраических дробей к общему знаменателю

Рассмотрим другой пример. Требуется сложить алгебраические дроби.

В таком виде сложить дроби нельзя, так как у них разные знаменатели.

Прежде чем складывать алгебраические дроби их необходимо привести к общему знаменателю .

Правила приведения алгебраических дробей к общему знаменателю очень похожи на правила приведения к общему знаменателю обыкновенных дробей. .

В итоге мы должны получить многочлен, который без остатка разделится на каждый прежний знаменатель дробей.

Чтобы привести алгебраические дроби к общему знаменателю необходимо сделать следующее.

  1. Работаем с числовыми коэффициентами. Определяем НОК (наименьшее общее кратное) для всех числовых коэффициентов.
  2. Работаем с многочленами. Определяем все различные многочлены в наибольших степенях.
  3. Произведение числового коэффициента и всех различных многочленов в наибольших степенях и будет общим знаменателем.
  4. Определяем, на что нужно умножить каждую алгебраическую дробь, чтобы получить общий знаменатель.

Вернемся к нашему примеру.

Рассмотрим знаменатели «15a » и «3 » обеих дробей и найдем для них общий знаменатель.

  1. Работаем с числовыми коэффициентами. Находим НОК (наименьшее общее кратное — это число, которое без остатка делится на каждый числовый коэффициент). Для «15 » и «3 » — это «15 ».
  2. Работаем с многочленами. Необходимо перечислить все многочлены в наибольших степенях. В знаменателях «15a » и «5 » есть только
    один одночлен — «а ».
  3. Перемножим НОК из п.1 «15 » и одночлен «а » из п.2. У нас получится «15a ». Это и будет общим знаменателем.
  4. Для каждой дроби зададим себе вопрос: «На что нужно умножить знаменатель этой дроби, чтобы получить «15a »?».

Рассмотрим первую дробь. В этой дроби и так знаменатель «15a », значит, ее не требуется ни на что умножать.

Рассмотрим вторую дробь. Зададим вопрос: «На что нужно умножить «3 », чтобы получить «15a »?» Ответ — на «5a ».

При приведении к общему знаменателю дроби умножаем на «5a » и числитель, и знаменатель .

Сокращенную запись приведения алгебраической дроби к общему знаменателю можно записать через «домики» .

Для этого держим в уме общий знаменатель. Над каждой дробью сверху «в домике» пишем, на что умножаем каждую из дробей.


Теперь, когда у дробей одинаковые знаменатели, дроби можно сложить.

Рассмотрим пример вычитания дробей с разными знаменателями.

Рассмотрим знаменатели «(x − y) » и «(x + y) » обеих дробей и найдем для них общий знаменатель.

У нас есть два различных многочлена в знаменателях «(x − y) » и «(x + y) ». Их произведение будет общим знаменателем, т.е. «(x − y)(x + y) » — общий знаменатель.


Сложение и вычитание алгебраических дробей с помощью формул сокращенного умножения

В некоторых примерах, чтобы привести алгебраические дроби к общему знаменателю, нужно использовать формулы сокращенного умножения .

Рассмотрим пример сложения алгебраических дробей, где нам потребуется использовать формулу разности квадратов.

В первой алгебраической дроби знаменатель «(p 2 − 36) ». Очевидно, что к нему можно применить формулу разности квадратов .

После разложения многочлена «(p 2 − 36) » на произведение многочленов
«(p + 6)(p − 6) » видно, что в дробях повторяется многочлен «(p + 6) ». Значит, общим знаменателем дробей будет произведение многочленов «(p + 6)(p − 6) ».

Урок разноуровневого обобщающего повторения на тему:
«Сложение и вычитание рациональных дробей »

Цели урока:

1. Образовательная - повторить, обобщить и систематизировать материал темы. Создать условия контроля(самоконтроля) усвоения знаний и умений.

2. Развивающая - способствовать формированию умений применять приёмы: обобщения, выделения главного, переноса знаний в жизненную ситуацию; развитию математического кругозора в решении задач, мышления и речи, внимания, памяти.

3 . Воспитательная - содействовать воспитанию интереса к математике, активности, общей культуры.

Тип урока – обобщение.

Форма урока дидактическая игра «Математическое ралли»

Методы -Репродуктивный, частично-поисковый

Средства обучения:

    Практические – Компьютер, экран, учебник, карточки

    интеллектуальные средства- анализ, синтез

    эмоциональные средства – интерес, радость, огорчение.

Виды деятельности:

    По способу выполнения – слушали, рассказывали, писали, анализировали, обобщали, систематизировали.

    По распределению задач – фронтальная, индивидуальная, групповая.

Ход урока:

Этапы

Время

Целепологание, организационный момент

( Самостоятельная работа)

Задание на дом. Карточки

1 этап урока – организационный (1 минута).

Добрый день, ребята! Появляется на экране изображение гонщиков на автомобилях и название «Математическое ралли». Тема урока «Сложение и вычитание рациональных дробей».

Как Вы думаете, чем мы сегодня будем заниматься? Сегодня у нас будет не простой урок по теме, а обобщающий урок- игра «Математическое ралли». На уроке мы повторим сложение, вычитание рациональных дробей.

В игре участвуют 6 экипажей. Сначала нам нужно подготовиться к гонкам.

Для этого с каждой гоночной трассы я приглашаю к доске по одному представителю экипажа для выбора автомобиля, на котором вы продолжите свой путь.(Трое учащихся решают у доски разноуровневые задания на скорость. Кто быстрее решит,тот получает самый высокоскоростной автомобиль.)

На «3» (Калмыков Михаил)

На «4» (Шевченко Александра)

На «5» (Шмальц Алина)


Каждому экипажу выдается путевой лист

ЭТАП

Результат

Подготовка экипажей к старту (устная работа)

Проверка местности (Заполни пропуски)

Гонки в городе (Математический диктант)

Авария,ремонт (ПИТ СТОП) (Найди ошибку)

Отдых на привале. Физкультминутка

Гонки по пересеченной местности ( Самостоятельная работа)

Итоги урока. Рефлексия. Выставление оценок

2 этап урока ПОДГОТОВКА ЭКИПАЖЕЙ К СТАРТУ «Устная работа» (5 минут) Повторение теоретического материала по теме «Разложение многочлена на множители». Учитель: «Вспомним способы разложения многочленов на множители, так как это необходимо нам для усвоения основной темы нашего урока». Учащиеся в произвольной последовательности называют способы разложения многочленов на множители. Затем учащимся предлагается устно разложить на множители:

Разложи на множители

Ответ

Девиз

1) 4х + 8

2ав(2в+3а) ПИ

то

2) 3ав – 4ас

(5-у)(5+у) МЕ

ро

3) 4ав² + 6а²в

2(х-1)(х+1) ЛЕ

пи

4) х² - 9

(у+5) 2 НО

сь

5) 25 - у²

(х-3) 2 Д

ме

6) х² - 6х + 9

4(х+2) ТО

7) 2х² - 2

4(а-2)(а+2) Н

ле

8) 4а² - 16

а(3в-4с) РО

9) у² + 10у + 25.

(х-3)(х+3) СЬ

но

ОТВЕТ: «Торопись медленно!»
Учащиеся разлагают многочлен на множители и сразу указывают способ разложения . 3 этап урока- ПРОВЕРКА МЕСТНОСТИ (3 минут).
Задание: Заполни пропуски

Повторение теоретического материала по теме «Сложение и вычитание рациональных дробей».

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их …………………., а …………………..оставить тем же.

Дробь называется рациональной, если …………………содержит……………………..

Величина дроби не изменится, если числитель и знаменатель дроби……………….или ………………….на одно и то же выражение………………

Чтобы выполнить сложение или вычитание дробей с разными знаменателями, нужно …………………. эти дроби к общему ………………………

Чтобы сократить рациональную дробь надо ее ………………….и………………..

разложить на……………………….

Чтобы выполнить вычитание дробей с одинаковыми знаменателями, нужно из ……………. первой дроби вычесть …………………второй дроби, а ……………………оставить тем же

Деление числителя и знаменателя на их ….………………………………… называют………………..дроби

Учитель предлагает повторить эти правила несколько раз, включая в работу слабоуспевающих учащихся. 4 этап урока ГОНКИ В ГОРОДЕ (Математический диктант)-7минут

1экипаж-словестный (да, нет)

2экипаж-цифровой (да-1,нет-0)

3экипаж-графический (да_, нет ^)

МАТЕМАТИЧЕСКИЙ ДИКТАНТ:

1. ОДЗ дроби 5х/(х-3) все числа, кроме 3

2. Выражение 2х-5/12 является рациональной дробью

3. Данная дробь --16/х имеет смысл при любом значении х

4. Наименьший общий знаменатель данных дробей 7/(х-3) и 15х/(х+3) равен х 2 -9
5.
Дробь 5а-10/20а является сократимой
6. Числитель и знаменатель данной дроби 7а-14а 2 /(а 2 2 ) можно разложить, используя только ФСУ
7. Знаменатель дроби не может быть равным нулю
ОТВЕТЫ:

АЛГЕБРА
Все уроки для 8 классов

Урок № 7

Тема. Сложение и вычитание дробей с разными знаменателями

Цель: добиться усвоения учащимися содержания понятия «(наименьший) общий знаменатель» для данных рациональных дробей, содержания алгоритма нахождения наименьшего общего знаменателя для рациональных дробей, а также алгоритма сложения и вычитания рациональных дробей с разными знаменателями; сформировать умение воспроизводить изученные алгоритмы и выполнять действия с этими алгоритмами для записи суммы или разности рациональных дробей с разными знаменателями в виде (несократимый) рационального дроби.

Тип урока: усвоение знаний, умений и навыков.

Наглядность и оборудование: опорный конспект «Сложение и вычитание рациональных дробей».

Ход урока

I. Организационный этан

II . Проверка домашнего задания

В начале урока учитель собирает на проверку тетради с выполненным домашним заданием (чтобы проверить усвоение учащимися знаний и умений по теме «Сложение и вычитание дробей с одинаковыми знаменателями» и, при условии успешного выполнения, оценить работу учеников) или, организовав работу учащихся по проверке домашнего задания по образцу и скорректировав возможные ошибки, предлагает учащимся выполнить задания аналогичного содержания (тестовая работа № 3).

Тестовая работа № 3

Вариант 1

1. Чему равна сумма ?

3. Найдите сумму дробей и .

Вариант 2

1. Чему равна сумма дробей ?

2. Найдите разность дробей и .

3. Найдите сумму дробей и .

4. Найдите сумму дробей .

III . Формулировка мсти и задач урока

Сознательному восприятию цели урока может способствовать беседа, в ходе которой ученики будут отвечать на такие вопросы учителя:

1. Как добавить (отнять) обыкновенные дроби с одинаковыми знаменателями?

2. Как выполняется сложение (вычитание) дробей с разными знаменателями?

3. Как добавить (отнять) рациональные дроби с одинаковыми знаменателями? Похоже ли это правило на соответствующее правило для дробей?

4. Можно ли рациональный дробь представить в виде равного ему рационального дроби с другим знаменателем? Как это сделать (как называется такое действие и каков механизм ее выполнения)?

После окончания беседы ученики должны осознать, что важное значение приобретает изучение сложения и вычитания рациональных дробей с разными знаменателями. Изучение вопроса о возможности выполнения и алгоритм сложения (вычитания) рациональных дробей с разными знаменателями с основной дидактической целью урока.

IV . Актуализация опорных знаний и умений

@ Соответствии с обсужденным на предыдущем этапе моментов перед изучением нового материала следует активизировать знания и умения учащихся по выполнению сложение и вычитание дробей с разными знаменателями, разложение многочленов на множители, возведение рациональной дроби к новому знаменателю, а также преобразования суммы или разности рациональных дробей на рациональный дробь.

Выполнение устных упражнений

1. Сведите дроби: ; ; ; ; к знаменателю 42.

2. Представьте выражения в виде произведения:

а) 10х + 15у; б) а2 - 25; в) 42у2 - 21у; г) 7х2 - 7у2; д) 6m - 2n ; в) 16 x - xy ; ж) а2 - 4а + 4; с) а8 - a 7.

3. Который знаменатель является наименьшим общим знаменателем для дробей: а) и ; б) и ; в) и ?

4. Какое число нужно подставить вместо *, чтобы образовалась тождество: а) ; б) ; в) ; г) ?

V . Усвоение знаний

План изучения нового материала

1. Понятие общего знаменателя для рациональных дробей.

2. Алгоритмы возведения дробей к общему знаменателю.

3.* Общее правило сложения и вычитания рациональных дробей с разными знаменателями.

@ Изучения вопроса о сложение и вычитание рациональных дробей с разными знаменателями следует начать как раз с формирования представления учащихся о содержании понятия наименьшего общего знаменателя поданных рациональных дробей и способа его нахождения. При этом можно для наглядности использовать знания учащихся по способам нахождения наименьшего общего знаменателя дробей и алгоритма рационального возведения дроби к новому знаменателю (см. выше). Рассмотрев типичные случаи нахождения общего знаменателя для рациональных дробей, можно обобщить наблюдения, составив алгоритм отыскания наименьшего общего знаменателя для предлагаемых рациональных дробей. Составлен алгоритм следует «испытать» на рассмотренных ранее примерах. После изучения вопроса о нахождении общего знаменателя повторяем алгоритм возведение рациональных дробей к новому знаменателю и объединяем их в общий образ действий под названием «возведение рациональных дробей к общему знаменателю».

Рассмотрев вопрос о возведение рациональных дробей к общему знаменателю, переходим к изучению вопроса о применении этих действий во время добавления или вычитания рациональных дробей с разными знаменателями: состоит алгоритм сложения и вычитания рациональных дробей с разными знаменателями. При этом следует сделать акцент на том, что этот алгоритм основывается на известном алгоритме сложения и вычитания рациональных дробей с одинаковыми знаменателями, к которому добавлен алгоритм возведение рациональных дробей к общему знаменателю.

Во время изучения темы могут возникнуть трудности, обусловленные, кроме всего прочего, еще и тем, что сложение и вычитание дробей с разными знаменателями предполагает более длинную последовательность действий, что требует достаточно развитого внимания учащихся и умение переключаться с одного алгоритма на другой. При этом следует заметить, что в некоторых учеников в начале изучения темы возникают трудности именно потому, что названные психологические механизмы еще недостаточно развиты. Поэтому учитель, уже исходя из знания уровня подготовки учащихся, может принять решение о том, следует ли на этом уроке изучать алгоритмы возведение дробей к общему знаменателю и сложение и вычитание дробей с разными знаменателями, сосредоточиться на этом уроке только на одном алгоритме возведения дробей к новому знаменателю и отработать устойчивые умения его применения, а уже на следующем уроке начать изучение алгоритма сложения и вычитания дробей с разными знаменателями (см. 3) плана).

VI . Усвоение умений

Выполнение устных упражнений

Найдите наименьший общий знаменатель дробей:

а) и ; б) и ; в) и ; г) и ; д) и ; е) и .

Из названных пар дробей выберите те, что имеют общим знаменателем:

а) произведение их знаменателей;

б) один из знаменателей представленных двух дробей;

в) выражение, составленное из всех различных множителей знаменателей данных дробей.

Выполнение письменных упражнений

@ *Для реализации дидактической цели на этом уроке следует решить задачи следующего содержания.

1. Сведение к (наименьшего) общего знаменателя рациональной дроби.

1) Сведите к общему знаменателю дроби:

а) и ; б) и ; в) и ; г) и ; д) и ; е) и ж) и ; с) и .

2) Сведите к общему знаменателю дроби:
а) и ; б) и ; в) и ; г) и .

2. Сведение к (наименьшего) общему знаменателю и добавление или вычитание рациональных дробей с разными знаменателями.

1) Представьте в виде дроби:

а) ; б) ; в) ; г) ; д) ; е) .

2) Выполните сложение (вычитание) дробей:

а) ; б) ; в) ; г) ; д) ; е) .

Тема “Сложение и вычитание рациональных дробей ” – одна из ведущих в учебной программе по алгебре 8 класса. И навык, приобретенный в ходе ее изучения, крайне необходим для учащегося на все последующие годы обучения в школе.

Не секрет, что дети очень слабо овладевают техникой сложения рациональных дробей с разными знаменателями, из-за чего процент успешности в старших классах уменьшается.

В данной статье предлагается математическая сказка 8 класс на тему “Сложение рациональных дробей “, в которой делается акцент на запоминании алгоритма сложения и вычитания рациональных дробей с разными знаменателями.

Этот алгоритм носит название “Правило трех “С” (русский вариант).

“Сложение рациональных дробей”

Федя готовил домашнее задание. Задачу по алгебре стал делать последней.

Открыл раздел «Рациональные дроби» , закрыл глаза и начал думать.

« Опять эти иксы. А наша Анна Романовна ох, как любит их! Вот правил понапридумывали! Сложение, вычитание дробей… с одинаковыми знаменателями и с разными. Попробуй запомни, какой и где знаменатель писать, а какой числитель. А еще откуда-то взялся дополнительный множитель. А пример в книге решен как-то непонятно. Как разобраться с этими иксами? »

Рассуждая об иксах, Федя уснул. И снится ему, что он очень маленький, а над ним стоит огромный иксище и говорит: « За что ты, Федя, меня так не любишь? Я ничего тебе плохого не сделал » .

А Федя во сне: «Против тебя самого я ничего не имею. Но, когда ты в рациональных дробях стоишь, и их надо складывать и вычитать, у меня руки опускаются…».

«Я тебе помогу, – предложил X. – Запомни правило трех « С » , что означает: С низу, С боку и С верху.

Снизу означает, что сначала записывай общий знаменатель, он снизу.

Сбоку – это значит, что потом дополнительный множитель пиши, он сбоку.

Сверху – числитель, так как он сверху дроби.

Как их найти, прочитай внимательно в учебнике».

Проснулся от сна Федя, посмотрел на записанное правило сложения рациональных дробей с разными знаменателями и вдруг все понял.

Математична казка 8 клас “Додавання раціональних дробів”.


Федько готував домашнє завдання. Завдання з алгебри почав робити останнім.

Відкрив розділ «Раціональні дроби», заплющив очі і почав міркувати. «Знову ці ікси. А наша Ганна Романівна ох, як любить їх! От правил понавигадували! Додавання, віднімання дробів, з однаковими знаменниками та з різними. Спробуй запам’ятай, який і де знаменник писати, а який чисельник. А ще звідкись узявся додатковий множник. А приклад у книжці розв’язано якось незрозуміло. Як розібратися з цими іксами?»

Міркуючи про ікси, Федько заснув. І сниться йому, що він дуже маленький, а над ним стоїть велетенський іксище і промовляє: «За що ти, Федю, мене так не любиш? Я ж нічого тобі поганого не зробив».

А Федько уві сні: «Проти тебе самого я нічого не маю. Але, коли ти у раціональних дробах стоїш, і їх треба додавати і віднімати, у мене руки опускаються».

«Я тобі допоможу, - запропонував X. - Запам’ятай правило трьох «З» , що означає: З низу, З боку і З верху.

Знизу означає, що спочатку записуй спільний знаменник, він знизу.

Збоку - це значить, що потім додатковий множник пиши, він збоку.

Зверху - чисельник, тому що він зверху дробу.

Як їх знайти, прочитай уважно у підручнику».

Прокинувся від сну Федько, подивився на записане правило додавання та віднімання дробів з різнимии знаменниками і раптом усе зрозумів.

*************************************************************************************************

Внимание!

Алгоритм сложения и вычитания рациональных дробей с разными знаменателями , а также примеры с подробным разбором решения можно

Уважаемые читатели!