ПЦР (полимеразная цепная реакция). Как производится ПЦР диагностика, показания, как подготовиться к исследованию, результат ПЦР. Этапы полимеразной цепной реакции (ПЦР). Проведение ПЦР в лаборатории Температура плавления праймеров

  • Дата: 04.07.2020

Полимеразная цепная реакция (ПЦР) - экспериментальный метод молекулярной биологии, который представляет собой специфическую амплификацию нуклеиновых кислот, индуцируемую синтетическими олигонуклеотидными праймерами in vitro.

Идея разработки метода ПЦР принадлежит американскому исследователю Kary Mullis, который в 1983 г. создал метод, позволивший амплифицировать ДНК в ходе циклических удвоений с помощью фермента ДНК-полимеразы в искусственных условиях. Через несколько лет после опубликования этой идеи, в 1993 г., К. Mullis получил за нее Нобелевскую премию.

В начале использования метода после каждого цикла нагревания- охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она быстро инактивировалась при высокой температуре. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. ее существенно модифицировали за счет использования ДНК-полимеразы из термофильных бактерий. Эти ферменты способны выдерживать множество циклов реакции, что позволяет автоматизировать проведение ПЦР. Одна из наиболее часто использовавшихся термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -ДНК-полимеразой.

Суть метода. Метод основан на многократном избирательном копировании определенного участка ДНК при помощи фермента Taq- ДНК-полимеразы. Полимеразная цепная реакция позволяет получить амплификаты длиной до нескольких тысяч пар нуклеотидов. Для увеличения длины ПЦР-продукта до 20-40 тыс. пар нуклеотидов применяют смесь различных полимераз, но все равно это значительно меньше длины хромосомной ДНК эукаротической клетки.

Реакция проводится в программируемом термостате (амплификаторе) - приборе, который может проводить достаточно быстро

охлаждение и нагревание пробирок (обычно с точностью не менее 0,1 °С). Амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта» и последующего хранения. Для ПЦР в режиме реального времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Обычно при проведении ПЦР выполняется 20-45 циклов, каждый из которых состоит из трех стадий: денатурации, отжига праймеров, элонгации (рис. 6.1 и 6.2). На рис. 6.1 представлена динамика изменения температуры в пробирке при проведении цикла ПЦР.

Рис. 6.1. График изменения температуры в пробирке в течение одного цикла полимеразной цепной реакции

Денатурация ДНК-матрицы проводится с помощью нагревания реакционной смеси до 94-96 °С на 5-90 с, чтобы цепи ДНК разошлись. Следует отметить, что перед первым циклом осуществляют предварительный прогрев реакционной смеси в течение 2-5 мин для полной денатурации исходной матрицы, что позволяет снизить количество неспецифичных продуктов реакции.


Рис. 6.2. Схема первого цикла полимеразной цепной реакции

Стадия отжига праймеров. При плавном снижении температуры праймеры комплементарно связываются с матрицей. Температура отжига зависит от состава праймеров и обычно она на 4-5° ниже расчетной температуры плавления. Длительность стадии - 5-60 с.

Во время следующей стадии - элонгации - происходит синтез дочерней цепи ДНК на матрице материнской. Температура элонгации зависит от полимеразы. Часто используемые ДНК-полимеразы Taq и Pfu наиболее активны при 72 °С. Время элонгации, в основном зависящее от длины ПЦР-продукта, обычно составляет 1 мин на каждую тысячу пар оснований.


Для адекватного и эффективного лечения многих инфекционных заболеваний необходимо своевременное установление точного диагноза. В решении этой задачи в наши дни привлекаются высокотехнологичные методы диагностики основанные на методах молекулярной биологии. В настоящий момент полимеразная цепная реакция (ПЦР) уже достаточно широко применяется в практической медицине как наиболее надежный инструмент лабораторной диагностики .

Чем объясняется популярность ПЦР в настоящее время?

Во-первых, данный метод используется для выявления возбудителей различных инфекционных заболеваний с высокой точностью.

Во-вторых, для контроля эффективности проведенного лечения.

В различных руководствах, проспектах, статьях, а также объяснениях врачей-специалистов, мы часто сталкиваемся с употреблением непонятных терминов и слов. Действительно трудно рассказать о высокотехнологичных продуктах науки обыденными словами.

В чем суть и механика ПЦР диагностики?

Каждый живой организм имеет свои уникальные гены. Гены располагаются в молекуле ДНК, которая собственно и является «визитной карточкой» каждого конкретного организма. ДНК (генетический материал) – это очень длинная молекула, которая состоит из «кирпичиков», называемых нуклеотидами. У каждого возбудителя инфекционных заболеваний они расположены строго специфично, то есть в определенной последовательности и комбинации. Когда необходимо понять имеется ли у человека тот или иной возбудитель, забирается биологический материал (кровь, моча, слюна, мазок), который содержит ДНК или фрагменты ДНК микроба. Но количество генетического материала возбудителя очень мало, и невозможно сказать какому именно микроорганизму он принадлежат. Для решения этой задачи и служит ПЦР. Суть полимеразной цепной реакции заключается в том, что берется малое количество материала для исследования, содержащего ДНК, а в процессе ПЦР происходит увеличение количества генетического материала, принадлежащего конкретному возбудителю и, таким образом, его можно идентифицировать.

ПЦР диагностика – генетическое исследование биоматериала.

Идея метода ПЦР принадлежит американскому ученому K.Mullins, которую он предложил в 1983 году. Однако широкое клиническое применение получила лишь в средине 90-х годов XXвека.

Разберемся с терминологией, что же это такое – ДНК и т.д. Каждая клетка любого живого существа (животного, растения, человека, бактерии, вируса) имеет хромосомы. Хромосомы – это хранители генетической информации, которые содержат всю последовательность генов каждого конкретного живого существа.

Каждая хромосома состоит из двух нитей ДНК, закрученных в спираль друг относительно друга. ДНК – химически это дезоксирибонуклеиновая кислота, которая состоит из структурных компонентов – нуклеотидов. Нуклеотидов бывает 5 видов – тимин (Т), аденозин (А), гуанин (Г), цитозин (Ц) и урацил (У). Нуклеотиды располагаются друг за другом в строгой индивидуальной последовательности, образуя гены. Один ген может состоять из 20-200 таких нуклеотидов. Например, ген, кодирующий выработку инсулина, состоит из 60 пар нуклеотидов.

Нуклеотиды имеют свойство комплементарности. Это означает что напротив аденина (А) в одной цепочке ДНК обязательно стоит тимин (Т) в другой цепочке, а напротив гуанина (Г) – цитозин (Ц). Схематически выглядит следующим образом:
Г - Ц
Т - А
А - Т

Данное свойство комплементарности ключевое для проведения ПЦР.

Помимо ДНК такую же структуру имеет РНК – рибонуклеиновая кислота, отличающаяся от ДНК тем, что вместо тимина в ней используется урацил. РНК – является хранителем генетической информации у некоторых вирусов, которые называются ретровирусами (например, ВИЧ).

Молекулы ДНК и РНК могут «размножаться» (данное свойство используется для проведения ПЦР). Происходит это следующим образом: две нити ДНК или РНК, отходят друг от друга в стороны, на каждую нить садится специальный фермент, который синтезирует новую цепочку. Синтез идет по принципу комплементарности, то есть, если в исходной цепочке ДНК стоит нуклеотид А, то во вновь синтезированной будет стоять Т, если Г – то Ц и т.д. Этот специальный фермент -«строитель» для начала синтеза нуждается в «затравке» - последовательности из 5-15 нуклеотидов. Данная «затравка» определена для каждого гена (гена хламидии , микоплазмы , вирусов) экспериментально.

Итак, каждый цикл ПЦР состоит из трех стадий. В первую стадию происходит так называемое раскручивание ДНК – то есть разделение связанных между собой двух цепей ДНК. Во вторую - происходит присоединение «затравки» к участку нити ДНК. И, наконец, удлинение данных нитей ДНК, которое производится ферментом-«строителем». В настоящее время весь этот сложный процесс протекает в одной пробирке и состоит из повторяющихся циклов размножения определяемой ДНК с целью получения большого количества копий, которые могут быть, затем выявлены обычными методами. То есть из одной нити ДНК мы получаем сотни или тысячи.

Этапы проведения ПЦР исследования

Забор биологического материала для исследования

В качестве пробы служит различный биологический материал: кровь и ее компоненты, моча, слюна, отделяемое слизистых оболочек, спинномозговая жидкость, отделяемое раневых поверхностей, содержимое полостей тела. Все биопробы собираются одноразовыми инструментами, а набранный материал заключают в пластиковые стерильные пробирки или помещают на культуральные среды, с последующей транспортировкой в лабораторию.

В забранные пробы добавляют необходимые реагенты и ставят в программируемый термостат – термоциклер (амплификатор). В амплификаторе 30-50 раз повторяется цикл ПЦР, состоящий из трех этапов (денатурация, отжиг и удлинение). Что это означает? Рассмотрим подробнее.

Этапы непостредственно ПЦР реакции, копирование генетического материала


I
этап ПЦР - Подготовка генетического материала для копирования.
Происходит при температуре 95° С, при этом нити ДНК разъединяются, и на них могут садиться «затравки».

«Затравки» изготавливают промышленным способом различные научно-производственные объединения, а лаборатории покупают уже готовые. При этом «затравка» для выявления, например, хламидии, работает только для хламидии и т.д. Таким образом, если тестируется биоматериал на наличие хламидийной инфекции, то в реакционную смесь помещается «затравка» для хламидий; если тестирование биоматериала на вирус Эпштейн-Барра, то и «затравка» для вируса Эпштейн-Барра.

II этап – Объединение генетического материала возбудителя инфекции и «затравки».
Если имеется ДНК определяемого вируса или бактерии , «затравка» садится на эту ДНК. Этот процесс присоединения «затравки» и есть второй этап ПЦР. Данная стадия проходит при температуре 75°С.

III этап - Копирование генетического материала возбудителя инфекции.
Это процесс собственно удлинения или размножения генетического материала, который происходит при 72°С. К «затравкам» подходит фермент- «строитель» и синтезирует новую цепочку ДНК. С окончанием синтеза новой цепочки ДНК, заканчивается и цикл ПЦР. То есть за один цикл ПЦР происходит увеличение количества генетического материала в два раза. Например, в исходной пробе имелось 100 молекул ДНК какого-либо вируса, после первого цикла ПЦР в пробе будет уже 200 молекул ДНК тестируемого вируса. Один цикл длится 2-3 минуты.

Для образования достаточного количества генетического материала для идентификации, обычно производится 30-50 циклов ПЦР, что занимает 2-3 часа.


Этап идентификации размноженного генетического материала

Собственно ПЦР на этом заканчивается и далее идет не менее значимый этап идентификации. Для идентификации используют метод электрофореза или меченые «затравки». При использовании электрофореза полученные нити ДНК разделяются по размерам, и наличие фрагментов ДНК разной длины свидетельствует о положительном результате анализа (то есть о наличии того или иного вируса, бактерии и т.д.). При использовании меченых «затравок», к конечному продукту реакции добавляют хромоген (краситель), вследствие чего ферментативная реакция сопровождается образованием окраски. Развитие окраски прямо свидетельствует, что вирус или другой выявляемый агент присутствуют в исходной пробе.

На сегодняшний день, используя меченые «затравки», а также соответствующее программное обеспечение, можно производить сразу и «чтение» результатов ПЦР. Это так называемаяreal-time ПЦР.

Почему ПЦР диагностика обладает такой ценностью?


Одним из существенных преимуществ метода ПЦР является высокая чувствительность – от 95 до 100%. Однако, эти преимущества должны базироваться на непременном соблюдении следующих условий:

  1. корректный забор, транспортировка биологического материала;
  2. наличие стерильного, одноразового инструментария, специальных лабораторий и обученного персонала;
  3. строгое соблюдение методики и стерильности во время проведения анализа
Чувствительность различается для различных выявляемых микробов. Так, например, чувствительность метода ПЦР для выявления вируса гепатита С составляет 97-98%, чувствительность для выявления уреаплазмы – 99-100%.

Возможности, заложенные в ПЦР-анализе, позволяют достичь непревзойденной аналитической специфичности. Это означает выявление именно того микроорганизма, который искали, а не похожего или близкородственного.
Диагностическая чувствительность и специфичность метода ПЦР, зачастую превосходят таковые и для культурального метода, называемого «золотым стандартом» для выявления инфекционных заболеваний. Учитывая продолжительность выращивания культуры (от нескольких дней до нескольких недель), преимущество метода ПЦР становится очевидным.

ПЦР в диагностике инфекций
Преимущества метода ПЦР (чувствительность и специфичность) определяют широкий спектр применения в современной медицине.
Основные области применения ПЦР-диагностики:

  1. диагностика острых и хронических инфекционных заболеваний различной локализации
  2. контроль эффективности проведенной терапии
  3. уточнение вида возбудителя
ПЦР используется в акушерстве, гинекологии, неонатологии, педиатрии, урологии, венерологии, нефрологии, клинике инфекционных болезней, офтальмологии, неврологии, фтизиопульмонологии и др.

Использование ПЦР-диагностики производится в совокупности с другими методами исследования (ИФА, ПИФ, РИФ и др.). Их сочетание и целесообразность определяет лечащий врач.

Возбудители инфекций, обнаруживаемые методом ПЦР

Вирусы:

  1. ретровирусы HIV-1 и HIV-2
  2. герпетиформные вирусы
  3. вирус простого герпеса 1 и 2 типов

1. Полимеразная цепная реакция (ПЦР)

2. Принцип метода полимеразной цепной реакции

2.1 Наличие в реакционной смеси ряда компонентов

2.2 Циклический температурный режим

2.3 Основные принципы подбора праймеров

2.4 Эффект "плато"

3. Cтадии постановки ПЦР

3.2 Амплификация

3.4.1 Положительные контроли

3.4.2 Внутренние контроли

4.1 Качественный анализ

4.1.2 Детекция молекул РНК

3.1 Подготовка пробы биологического материала

Для выделения ДНК используют различные методики в зависимости от поставленных задач. Их суть заключается в экстракции (извлечении) ДНК из биопрепарата и удалении или нейтрализации посторонних примесей для получения препарата ДНК с чистотой, пригодной для постановки ПЦР.

Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, описанная Мармуром. Она включает в себя ферментативный протеолиз с последующей депротеинизацией и переосаждением ДНК спиртом. Этот метод позволяет получить чистый препарат ДНК. Однако он довольно трудоемок и предполагает работу с такими агрессивными и имеющими резкий запах веществами, как фенол и хлороформ.

Одним из популярных в настоящее время является метод выделения ДНК, предложенный Boom с соавторами. Этот метод основан на использовании для лизиса клеток сильного хаотропного агента - гуанидина тиоционата (GuSCN), и последующей сорбции ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное "молоко" и. т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен, технологичен и пригоден для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок. Особенно большое значение это имеет при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР. Поэтому при использовании этого метода очень важен правильный выбор сорбента и тщательное соблюдение технологических нюансов.

Другая группа методов пробоподготовки основана на использовании ионообменников типа Chilex, которые, в отличие от стекла, сорбируют не ДНК, а наоборот, примеси, мешающие реакции. Как правило, эта технология включает две стадии: кипячение образца и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом. К сожалению, иногда встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, некоторые микроорганизмы не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.

Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов.

3.2 Амплификация

Для проведения реакции амплификации необходимо приготовить реакционную смесь и внести в нее анализируемый образец ДНК. При этом важно учитывать некоторые особенности отжига праймеров. Дело в том, что, как правило, в анализируемом биологическом образце присутствуют разнообразные молекулы ДНК, к которым используемые в реакции праймеры имеют частичную, а в некоторых случаях значительную, гомологию. Кроме того, праймеры могут отжигаться друг с другом, образуя праймер-димеры. И то, и другое приводит к значительному расходу праймеров на синтез побочных (неспецифических) продуктов реакции и, как следствие, значительно уменьшает чувствительность системы. Это затрудняет или делает невозможным чтение результатов реакции при проведении электрофореза.

3.3 Оценка результатов реакции

Для правильной оценки результатов ПЦР важно понимать, что данный метод не является количественным. Теоретически продукты амплификации единичных молекул ДНК-мишени могут быть обнаружены с помощью электрофореза уже после 30-35 циклов. Однако на практике это выполняется лишь в случаях, когда реакция проходит в условиях, близких к идеальным, что в жизни встречается не часто. Особенно большое влияние на эффективность амплификации оказывает степень чистоты препарата ДНК, т.е. наличие в реакционной смеси тех или иных ингибиторов, от которых избавиться в некоторых случаях бывает крайне сложно. Иногда, из-за их присутствия не удается амплифицировать даже десятки тысяч молекул ДНК-мишени. Таким образом, прямая связь между исходным количеством ДНК-мишени и конечным количеством продуктов амплификации часто отсутствует.

3.3.1 Метод горизонтального электрофореза

Для визуализации результатов амплификации используют различные методы. Наиболее распространенным на сегодняшний день является метод электрофореза, основанный на разделении молекул ДНК по размеру. Для этого готовят пластину агарозного геля, представляющего собой застывшую после расплавления в электрофорезном буфере агарозу в концентрации 1,5-2,5% с добавлением специального красителя ДНК, например, бромистого этидия. Застывшая агароза образует пространственную решетку. При заливке с помощью гребенок в геле формируют специальные лунки, в которые в дальнейшем вносят продукты амплификации. Пластину геля помещают в аппарат для горизонтального гель-электрофореза и подключают источник постоянного напряжения. Отрицательно заряженная ДНК начинает двигаться в геле от минуса к плюсу. При этом более короткие молекулы ДНК движутся быстрее, чем длинные. На скорость движения ДНК в геле влияет концентрация агарозы, напряженность электрического поля, температура, состав электрофорезного буфера и, в меньшей степени, ГЦ-состав ДНК. Все молекулы одного размера движутся с одинаковой скоростью. Краситель встраивается (интеркалирует) плоскостными группами в молекулы ДНК. После окончания электрофореза, продолжающегося от 10 мин до 1 часа, гель помещают на фильтр трансиллюминатора, излучающего свет в ультрафиолетовом диапазоне (254 - 310 нм). Энергия ультрафиолета, поглощаемая ДНК в области 260 нм, передается на краситель, заставляя его флуоресцировать в оранжево-красной области видимого спектра (590 нм).

Яркость полос продуктов амплификации может быть различной. Однако это нельзя связывать с начальным количеством ДНК-мишени в образце.

3.3.2 Метод вертикального электрофореза

Метод вертикального электрофореза принципиально схож с горизонтальным электрофорезом. Их отличие заключается в том, что в данном случае вместо агарозы используют полиакриламидные гели. Его проводят в специальной камере для вертикального электрофореза. Электрофорез в полиакриламидном геле имеет большую разрешающую способность по сравнению с агарозным электрофорезом и позволяет различать молекулы ДНК разных размеров с точностью до одного нуклеотида. Приготовление полиакриламидного геля несколько сложнее агарозного. Кроме того акриламид является токсичным веществом. Поскольку необходимость определить размер продукта амплификации с точностью до 1 нуклеотида возникает редко, то в обычной работе используют метод горизонтального электрофореза.

3.4 Контроль за прохождением реакции амплификации

3.4.1 Положительные контроли

В качестве "положительного контроля" используют препарат ДНК искомого микроорганизма. Неспецифические ампликоны отличаются по размеру от ампликонов, образуемых в результате амплификации с контрольным препаратом ДНК. Размер неспецифических продуктов может быть как большего, так и меньшего размера по сравнению с положительным контролем. В худшем случае эти размеры могут совпадать и читаются в электрофорезе как положительные.

Для контроля специфичности образуемого продукта амплификации можно использовать гибридизационные зонды (участки ДНК, расположенные внутри амплифицируемой последовательности), меченные ферментными метками или радиоактивными изотопами и взаимодействующими с ДНК в соответствии с теми же принципами, что и праймеры. Это значительно усложняет и удлиняет анализ, а его стоимость существенно увеличивается.

3.4.2 Внутренние контроли

Необходимо контролировать ход амплификации в каждой пробирке с реакционной смесью. Для этой цели используют дополнительный, так называемый "внутренний контроль". Он представляет собой любой препарат ДНК, несхожий с ДНК искомого микроорганизма. Если внутренний контроль внести в реакционную смесь, то он станет такой же мишенью для отжига праймеров, как и хромосомальная ДНК искомого возбудителя инфекции. Размер продукта амплификации внутреннего контроля подбирают таким образом, чтобы он был в 2 и более раз больше, чем ампликоны, образуемые от амплификации искомой ДНК микроорганизма. В результате, если внести ДНК внутреннего контроля в реакционную смесь вместе с испытуемым образцом, то независимо от наличия микроорганизма в биологическом образце, внутренний контроль станет причиной образования специфических ампликонов, но значительно более длинных (тяжелых), чем ампликон микроорганизма. Наличие тяжелых ампликонов в реакционной смеси будет свидетельством нормального прохождения реакции амплификации и отсутствия ингибиторов. Если ампликоны нужного размера не образовались, но не образовались также и ампликоны внутреннего контроля, можно сделать вывод о наличии в анализируемом образце нежелательных примесей, от которых следует избавиться, но не об отсутствии искомой ДНК.

К сожалению, несмотря на всю привлекательность такого подхода, у него есть существенный изъян. Если в реакционной смеси находится нужная ДНК, то эффективность ее амплификации резко снижается из-за конкуренции с внутренним контролем за праймеры. Это особенно принципиально важно при низких концентрациях ДНК в испытуемом образце, что может приводить к ложноотрицательным результатам.

Тем не менее, при условии решения проблемы конкуренции за праймеры, этот способ контроля эффективности амплификации безусловно будет весьма полезен.

4. Методы, основанные на полимеразной цепной реакции

4.1 Качественный анализ

Классический способ постановки ПЦР, принципы которого были изложены выше, нашел свое развитие в некоторых модификациях, направленных на преодоление ограничений ПЦР и повышение эффективности прохождения реакции.

4.1.1 Способ постановки ПЦР с использованием “горячего старта"

Чтобы уменьшить риск образования неспецифических продуктов реакции амплификации, используют подход, получивший название “горячий старт" (“Hot-start”). Суть его состоит в предотвращении возможности начала реакции до момента достижения в пробирке условий, обеспечивающих специфический отжиг праймеров.

Дело в том, что в зависимости от ГЦ-состава и размера, праймеры имеют определенную температуру плавления (Tm). Если температура системы превышает Тm, праймер не в состоянии удерживаться на цепи ДНК и денатурирует. При соблюдении оптимальных условий, т.е. температуры отжига, близкой к температуре плавления, праймер образует двухцепочечную молекулу только при условии его полной комплементарности и, таким образом, обеспечивает специфичность реакции.

Существуют различные варианты реализации "горячего старта":

Внесение в реакционную смесь Taq-полимеразы во время первого цикла после прогрева пробирки до температуры денатурации.

Разделение ингредиентов реакционной смеси парафиновой прослойкой на слои (в нижней части - праймеры, в верхней - Taq-полимераза и ДНК-мишени), которые смешиваются при расплавлении парафина (~65-75 0 С).

Использование моноклональных антител к Taq-полимеразе. Фермент, связанный моноклональными антителами, становится активным лишь после стадии первой денатурации, когда моноклональные антитела необратимо денатурируют и освобождают активные центры Taq-полимеразы.

Во всех перечисленных случаях, даже если неспецифический отжиг произошел до начала температурного циклирования, элонгации не происходит, а при нагревании комплексы праймер-ДНК денатурируют, поэтому неспецифические продукты не образуются. В дальнейшем температура в пробирке не опускается ниже температуры плавления, что обеспечивает образование специфического продукта амплификации.

4.1.2 Детекция молекул РНК

Возможность использования РНК в качестве мишени для ПЦР существенно расширяет спектр применения этого метода. Например, геномы многих вирусов (гепатит С, вирус инфлюэнцы, пикорнавирусы и т.д.) представлены именно РНК. При этом в их жизненных циклах отсутствует промежуточная фаза превращения в ДНК. Для детекции РНК необходимо в первую очередь перевести ее в форму ДНК. Для этого используют обратную транскриптазу, которую выделяют из двух различных вирусов: avian myeloblastosis virus и Moloney murine leukemia virus. Использование этих ферментов связано с некоторыми трудностями. Прежде всего, они термолабильны и поэтому могут быть использованы при температуре не выше 42° С. Так как при такой температуре молекулы РНК легко образуют вторичные структуры, то эффективность реакции заметно снижается и по разным оценкам приблизительно равна 5%. Предпринимаются попытки обойти этот недостаток используя в качестве обратной транскриптазы термостабильную полимеразу, полученную из термофильного микроорганизма Thermus Thermophilus, проявляющего транскриптазную активность в присутствии Mn 2+ . Это единственный известный фермент, способный проявлять как полимеразную так и транскриптазную активность.

Для проведения реакции обратной транскрипции в реакционной смеси также как и в ПЦР должны присутствовать праймеры в качестве затравки и смесь 4-х дНТФ, как строительный материал.

После проведения реакции обратной транскрипции полученные молекулы кДНК могут служить мишенью для проведения ПЦР

5. Организация технологического процесса постановки ПЦР

Потенциально высокая чувствительность полимеразной цепной реакции делает совершенно необходимым особенно тщательное устройство ПЦР-лаборатории. Это связано с наиболее острой проблемой метода - контаминацией.

Контаминация - попадание из внешней среды в реакционную смесь специфических молекул ДНК, способных служить мишенями в реакции амплификации и давать ложноположительные результаты.

Существует несколько способов борьбы с этим неприятным явлением. Одним из них является использование фермента N-урацил-гликозилазы (УГ). В основе этого метода лежит способность УГ расщеплять молекулы ДНК со встроенным урацилом. Реакцию амплификации проводят с использованием смеси дНТФ, в которой дТТФ заменен на урацил, и после термоциклирования все образующиеся в пробирке ампликоны будут содержать урацил. Если до амплификации в реакционную смесь добавить УГ, то попавшие в реакционную смесь ампликоны будут разрушены, тогда как нативная ДНК останется целой и будет в дальнейшем служить мишенью для амплификации.

Таким образом, этот метод лишь в некоторой степени позволяет устранить источник контаминации и не гарантирует от ложноположительных результатов.

Другой способ борьбы с результатами контаминации, значительное уменьшение количества циклов реакции (до 25-30 циклов). Но даже при таком подходе риск получения ложноположительных результатов велик, т.к и в этом случае при отсутствии ингибиторов легко получить продукт амплификации из-за контаминации.

Таким образом, несмотря на пользу преамплификационных мероприятий, направленных на инактивацию молекул ДНК, служащих причиной возникновения ложноположительных результатов, наиболее радикальным средством является заранее продуманная организация лаборатории.

Заключение

Самое широкое распространение метод ПЦР в настоящее время получил как метод диагностики различных инфекционных заболеваний. ПЦР позволяет выявить этиологию инфекции даже если в пробе, взятой на анализ, содержится всего несколько молекул ДНК возбудителя. ПЦР широко используется в ранней диагностики ВИЧ-инфекций, вирусных гепатитов и т.д. На сегодняшний день почти нет инфекционного агента, которого нельзя было бы выявить с помощью ПЦР.


ПРИНЦИП МЕТОДА (молекулярно-биологическая основа)

Среди большого многообразия гибридизационных методов анализа ДНК, метод ПЦР наиболее широко используется в клинической лабораторной диагностике.

Принцип метода полимеразной цепной реакции (ПЦР) (Polymerase chain reaction (PCR)) был разработан Кэри Мюллисом (фирма “Cetus”, США) в 1983г. и в настоящее время широко используется как для научных исследований, так и для диагностики в практическом здравоохранении и службе Госсанэпиднадзора (генотипирование, диагностика инфекционных заболеваний).

В основе метода ПЦР лежит природный процесс - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы. Эта реакция носит название репликации ДНК.

Естественная репликация ДНК включает в себя несколько стадий:

1) Денатурация ДНК (расплетение двойной спирали, расхождение нитей ДНК);

2) Образование коротких двухцепочечных участков ДНК (затравок, необходимых для инициации синтеза ДНК);

3) Синтез новой цепи ДНК (комплементарное достраивание обеих нитей)

Данный процесс можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей инфекционных заболеваний.

Открытие термостабильной ДНК-полимеразы (Taq-полимеразы) из термофильных бактерий Thermis aquaticus , оптимум работы которой находится в области 70-72°С, позволило сделать процесс репликации ДНК циклическим и использовать его для работы in vitro. Создание программируемых термостатов (амплификаторов), которые по заданной программе осуществляют циклическую смену температур , создало предпосылки для широкого внедрения метода ПЦР в практику лабораторной клинической диагностики. При многократном повторении циклов синтеза происходит экспоненциальное увеличение числа копий специфического фрагмента ДНК, что позволяет из небольшого количества анализируемого материала, который может содержать единичные клетки микроорганизмов получить достаточное количество ДНК копий для идентификации их методом электрофореза.

Комплементарное достраивание цепи начинается не в любой точке последовательности ДНК, а только в определеннных стартовых блоках- коротких двунитевых участках. При присоединении таких блоков к специфическим участкам ДНК можно направить процесс синтеза новой цепи только в этом участке, а не по всей длине ДНК цепи. Для создания стартовых блоков в заданных участках ДНК используют две олигонуклеотидные затравки (20 нуклеотидных пар), называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними.

Таким образом, ПЦР представляет собой многократное увеличение числа копий (амплификация) специфического участка ДНК катализируемое ферментом ДНК- полимеразой.

Для проведения амплификации необходимы следующие компоненты:

Смесь дезоксинуклеотидтрифосфатов (дНТФ) (смесь четырех дНТФ, являющихся материалом для синтеза новых комплементарных цепей ДНК)

Фермент Taq-полимераза (термостабильная ДНК-полимераза, катализирующая удлиннение цепей праймеров путем последовательного присоединения нуклеотидных оснований к растущей цепи синтезируемой ДНК).

Буферный раствор
(реакционная среда, содержащая ионы Mg2+, необходимые для поддержания активности фермента)
Для определения специфических участков генома РНК-содержащих вирусов, сначала получают ДНК-копию с РНК-матрицы, используя реакцию обратной транскрипции (RT), катализируемую ферментом ревертазой (обратной транскриптазой).

Для получения достаточного количества копий искомого характеристического фрагмента ДНК амплификация включает несколько (20-40) циклов.



Каждый цикл амплификации включает 3 этапа, протекающих в различных температурных режимах

1 этап: Денатурация ДНК (расплетение двойной спирали). Протекает при 93-95°C в течение 30-40 сек.

2 этап: Присоединение праймеров (отжиг). Присоединение праймеров происходит комплементарно к соответствующим последовательностям на противоположных цепях ДНК на границах специфического участка. Для каждой пары праймеров существет своя температура отжига, значения которой располагаются в интервале 50-65°С. Время отжига -20-60 сек.

3 этап: Достраивание цепей ДНК. Комплементарное достраивание цепей ДНК происходит от 5’-конца к 3’-концу цепи в противоположных направлениях, начиная с участков присоединения праймеров. Материалом для синтеза новых цепей ДНК служат добавляемые в раствор дезоксирибонуклеотидтрифосфаты (дНТФ). Процесс синтеза катализируется ферментом термостабильной ДНК-полимеразой (Taq-полимеразой) и проходит при температуре 70-72°С. Время протекания синтеза - 20-40 сек.






Образовавшиеся в первом цикле амплификации новые цепи ДНК служат матрицами для второго цикла амплификации, в котором происходит образование искомого специфического фрагмента ДНК (ампликона). (см.рис.2). В последующих циклах амплификации ампликоны служат матрицей для синтеза новых цепей. Таким образом происходит накопление ампликонов в растворе по формуле 2n, где n-число циклов амлификации. Поэтому, даже если в исходном растворе первоначально находилась только одна двухцепочечная молекула ДНК, то за 30-40 циклов в растворе накапливается около 108 молекул ампликона. Этого количества достаточно для достоверной визуальной детекции этого фрагмента методом электрофореза в агарозном геле. Процесс амплификации проводится в специальном программируемом термостате (амплификаторе), который по заданной программе автоматчески осуществляет смену температур согласно числу циклов амплификации.

СТАДИИ ПРОВЕДЕНИЯ ПЦР - АНАЛИЗА


В основе метода ПЦР, как инструмента лабораторной диагностики инфекционных заболеваний лежит обнаружение небольшого фрагмента ДНК возбудителя (несколько сот пар оснований), специфичного только для данного микроорганизма, с использованием полимеразной цепной реакции для накопления искомого фрагмента.
Методика проведения анализа с использованием метода ПЦР включает три этапа:

1. Выделение ДНК (РНК) из клинического образца


2. Амплификация специфических фрагментов ДНК
3. Детекция продуктов амплификации

Выделение ДНК (РНК)
На данной стадии проведения анализа клиническая проба подвергается специальной обработке, в результате которой происходит лизис клеточного материала, удаление белковых и полисахаридных фракций , и получение раствора ДНК или РНК, свободной от
ингибиторов и готовой для дальнейшей амплификации.
Выбор методики выделения ДНК(РНК) в основном определяется характером обрабатываемого клинического материала.

Амплификация специфических фрагментов ДНК
На данной стадии происходит накопление коротких специфических фрагментов ДНК в количестве, необходимом для их дальнейшей детекции. В большинстве методик определения специфических фрагментов генома используется т.н. “классический вариант направленной ПЦР. Для повышения специфичности и чувствительности анализа в некоторых методиках используется метод “гнездной” (nested) ПЦР, в котором используются 2 пары праймеров (“внешние” - для 1 стадии, и “внутренние” - для 2-ой стадии).

Детекция продуктов амплификации
В большинстве методик на данном этапе проводится разделение смеси продуктов амплификации, полученной на 2-ой стадии, методом горизонтального электрофореза в агарозном геле. До проведения электрофоретического разделения, к амплификационной смеси добавляется раствор бромистого этидия, образущий с двухцепочечными фрагментами ДНК прочные соединения внедрения. Эти соединения под действием УФ-облучения способны флуоресцировать, что регистрируется в виде оранжево-красных светящихся полос после электрофоретического разделения амплификационной смеси в агарозном геле.

В качестве альтернативы электрофоретическому методу детекции, имеющему некоторые недостатки: субъективность чтения результатов, ограничения по определению ДНК различных микроорганизмов в одной реакции, могут быть предложены гибридизационные схемы детекции. В этих схемах образующийся в результате амплификации фрагмент ДНК гибридизуется (образует 2-х цепочечные комплексы - "гибриды") со специфическим олигонуклеотидным зондом. Регистрация таких комплексов может быть проведена колориметрически или флуориметрически. В НПФ "Литех" созданы наборы для детекции на основе гибридизации с флуориметрической регистрацией результатов

ПРЕИМУЩЕСТВА МЕТОДА ПЦР как метода диагностики инфекционных заболеваний:

- Прямое определение наличия возбудителей

Многие традиционные методы диагностики, например иммуноферментный анализ, выявляют белки-маркеры, являющиеся прдуктами жизнедеятельности инфекционных агентов, что дает лишь опосредованное свидетельство наличия инфекции. Выявление специфического участка ДНК возбудителя методом ПЦР дает прямое указание на присутствие возбудителя инфекции.



- Высокая специфичность

Высокая специфичность метода ПЦР обусловлена тем, что в исследуемом материале выявляется уникальный, характерный только для данного возбудителя фрагмент ДНК. Специфичность задается нуклеотидной последовательностью праймеров, что исключает
возможность получения ложных результатов, в отличие от метода иммуноферментного анализа, где нередки ошибки в связи с перекрестно-реагирующими антигенами.

- Высокая чувствительность

Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими,
микроскопическими) это сделать невозможно. Чувствительность ПЦР-анализа составляет 10-1000 клеток в пробе (чувствительность иммунологических и микроскопических тестов - 103-105 клеток).

-Универсальность процедуры выявления различных возбудителей

Материалом для исследования методом ПЦР служит ДНК возбудителя. Метод основан на выявлении фрагмента ДНК или РНК, являющегося специфичным для конкретного организма. Сходство химического состава всех нуклеиновых кислот позволяет применять унифицированные методы проведения лабораторных исследований. Это дает возможность диагносцировать несколько возбудителей из одной биопробы. В качестве исследуемого материала могут использоваться различные биологические выделения (слизь, моча, мокрота), соскобы эпителиальных клеток, кровь, сыворотка.

- Высокая скорость полученоя результата анализа
Для проведения ПЦР-анализа не требуется выделение и выращивание культуры возбудителя, что занимает большое количество времени. Унифицированный метод обработки биоматериала и детекции продуктов реакции, и автоматизация процесса амплификации дают возможность провести полный анализ за 4-4.5 часа.

Следует отметить, что методом ПЦР возможно выявление возбудителей не только в клиническом материале, полученном от больного, но и в материале, получаемом из объектов внешней среды (вода, почва и т.д.)

ПРИМЕНЕНИЕ МЕТОДА ПЦР В ПРАКТИЧЕСКОМ ЗДРАВООХРАНЕНИИ

Использование метода ПЦР для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы имеет колоссальное значение для решения многих проблем микробиологии и эпидемиологии. Применение этого метода также способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний.

Наиболее эффективно и экономически обоснованно использование метода в:

урогинекологической практике - для выявления хламидиоза, уреаплазмоза, гонореи, герпеса, гарднереллеза, микоплазменной инфекции;

в пульмонологии - для дифференциальной диагностики вирусных и бактериальных пневмоний, туберкулеза;

в гастроэнтерологии - для выявления геликобактериоза;

в клинике инфекционных заболеваний - в качестве экспресс-метода диагностики сальмонеллеза, дифтерии, вирусных гепатитов В,С и G;

в гематологии - для выявления цитомегаловирусной инфекции, онковирусов.

Который позволяет обнаружить в биологическом материале малые количества точнее, определенных ее фрагментов, и размножить их во много раз. Затем их идентифицируют визуально путем электрофореза в геле. Реакция была разработана в 1983 г. К. Муллисом и включена в список выдающихся открытий последних лет.

Каковы механизмы ПЦР

Вся методика базируется на способности нуклеиновых кислот к самостоятельной репликации, что в данном случае проводится искусственно в условиях лаборатории. Воспроизведение ДНК может начаться не в любой области молекулы, а только в участках с определенной последовательностью нуклеотидов — стартовых фрагментах. Для того чтобы полимеразная цепная реакция началась, нужны праймеры (или ДНК-зонды). Это короткие фрагменты цепочки ДНК с заданной нуклеотидной последовательностью. Они комплементарные (то есть соответствующие) стартовым участкам

Разумеется, чтобы создать праймеры, ученые должны изучить последовательность нуклеотидов той которая участвует в методике. Именно эти ДНК-зонды обеспечивают специфичность реакции и ее инициацию. не пойдет, если в образце не найдется хотя бы одна молекула искомой ДНК. В целом, для проведения реакции необходимы вышеуказанные праймеры, набор нуклеотидов, термоустойчивая ДНК-полимераза. Последняя является ферментом — катализатором реакции синтеза новых молекул нуклеиновой кислоты на основе образца. Все эти вещества, включая биологический материал, в котором необходимо выявить ДНК, объединяются в реакционную смесь (раствор). Она помещается в специальный термостат, выполняющий ее очень быстрое нагревание и охлаждение за заданное время — цикл. Обычно их 30-50.

Как проходит эта реакция

Сущность ее в том, что во время одного цикла праймеры присоединяются к нужным участкам ДНК, после чего идет ее удвоение под действием фермента. На основе получившихся нитей ДНК в последующих циклах синтезируются новые и новые идентичные фрагменты молекулы.

Полимеразно-цепная реакция идет последовательно, выделяют следующие ее стадии. Первая характеризуется удваиванием количества продукта в течение каждого цикла нагревания и охлаждения. На второй стадии происходит замедление реакции, поскольку фермент повреждается, а также теряет активность. Помимо этого, истощаются запасы нуклеотидов и праймеров. На последней стадии — плато — продукты более не накапливаются, поскольку реактивы закончились.

Где ее применяют

Несомненно, широчайшее применение полимеразная цепная реакция находит в медицине и науке. Ее используют в общей и частной биологии, ветеринарной медицине, фармации и даже экологии. Притом в последней это делают для отслеживания качества продуктов питания и объектов внешней среды. Активно применяется полимеразная цепная реакция в криминалистической практике для подтверждения отцовства и идентификации личности человека. В судебно-медицинской экспертизе, так же, как и в палеонтологии, часто эта методика является единственным выходом, так как обычно для исследования доступно крайне малое количество ДНК. Безусловно, очень широкое применение метод нашел в практической медицине. Он необходим в таких ее областях, как генетика, инфекционные и онкологические заболевания.