III.Регуляторы пролиферации. Клеточный цикл и его регуляция Факторы, регулирующие регенерацию

  • Дата: 04.07.2020

Клеточная пролиферация - увеличение числа клеток путем митоза,

приводящее к росту ткани, в отличие от другого способа увеличения ее

массы (например, отек). У нервных клеток пролиферация отсутствует.

Во взрослом организме продолжаются процессы развития, связанные

с делением и специализацией клеток. Эти процессы могут быть как нор-

мальными физиологическими, так и направленными на восстановление ор-

ганизма вследствие нарушения его целостности.

Значение пролиферации в медицине определяется способностью кле-

ток разных тканей к делению. С делением клеток связан процесс заживле-

ния ран и восстановление тканей после хирургических операций.

Пролиферация клеток лежит в основе регенерации (восстановления)

утраченных частей. Проблема регенерации представляет интерес для ме-

дицины, для восстановительной хирургии. Различают физиологическую,

репаративную и патологическую регенерацию.

Физиологическая - естественное восстановление клеток и тканей в

онтогенезе. Например, смена эритроцитов, клеток кожного эпителия.

Репаративная - восстановление после повреждения или гибели кле-

ток и тканей.

Патологическая - разрастание тканей не идентичных здоровым тка-

ням. Например, разрастание рубцовой ткани на месте ожога, хряща – на

месте перелома, размножение клеток соединительной ткани на месте мы-

шечной ткани сердца, раковая опухоль.

В последнее время принято разделять клетки тканей животных по спо-

собности к делению на 3 группы: лабильные, стабильные и статические.

К лабильным относятся клетки, которые быстро и легко обновляются

в процессе жизнедеятельности организма (клетки крови, эпителия, слизи-

стой ЖКТ, эпидермиса и др.).

К стабильным относятся клетки таких органов как печень, поджелу-

дочная железа, слюнные железы и др., которые обнаруживают ограничен-

ную способность к делению.

К статическим относятся клетки миокарда и нервной ткани, кото-

рые, как считает большинство исследователей, не делятся.

Изучение физиологии клетки имеет важное значение для понимания он-

тогенетического уровня организации живого и механизмов саморегуляции

клетки, обеспечивающих целостное функционирование всего организма.

Глава 6

ГЕНЕТИКА КАК НАУКА. ЗАКОНОМЕРНОСТИ

НАСЛЕДОВАНИЯ ПРИЗНАКОВ

6.1 Предмет, задачи и методы генетики

Наследственность и изменчивость являются фундаментальными свой-

ствами живого, т. к. характерны для живых существ любого уровня орга-

низации. Наука, изучающая закономерности наследственности и изменчи-

вости, называется генетикой.

Генетика как наука изучает наследственность и наследственную из-

менчивость, а именно, она имеет дело со следующими проблемами :

1) хранение генетической информации;

2) передача генетической информации;

3) реализация генетической информации (использование ее в конкрет-

ных признаках развивающегося организма под влиянием внешней среды);

4) изменение генетической информации (типы и причины изменений,

механизмы).

Первый этап развития генетики - 1900–1912 гг. С 1900 г. - переот-

крытие законов Г. Менделя учеными Х. Де Фризом, К. Корренсом, Э. Чер-

маком. Признание законов Г. Менделя.

Второй этап 1912–1925 гг. - создание хромосомной теории Т. Мор-

гана. Третий этап 1925–1940 гг. - открытие искусственного мутагенеза и

генетических процессов эволюции.

Четвертый этап 1940–1953 гг. - исследования по генному контролю

физиологических и биохимических процессов.

Пятый этап с 1953 г. и по настоящее время - развитие молекулярной

биологии.

Отдельные сведения по наследованию признаков были известны

очень давно, однако научные основы передачи признаков впервые были

изложены Г. Менделем в 1865 г. в работе: «Опыты над растительными

гибридами». Это были передовые мысли, но современники не придали

значение его открытию. Понятия «ген» в то время еще не было и Г. Мен-

дель говорил о «наследственных задатках», содержащихся в половых клет-

ках, но их природа была неизвестна.

В 1900 г. независимо друг от друга Х. Де Фриз, Э. Чермак и К. Кор-

ренс заново открыли законы Г. Менделя. Этот год и считается годом рож-

дения генетики как науки. В 1902 г. Т. Бовери, Э. Вильсон и Д. Сеттон сде-

лали предположение о связи наследственных факторов с хромосомами.

В 1906 г. У. Бетсон ввел термин «генетика», а в 1909 г. В. Иогансен -

«ген». В 1911 г. Т. Морган и сотрудники сформулировали основные поло-

жения хромосомной теории наследственности. Они доказали, что гены

расположены в определенных локусах хромосом в линейном порядке, по-

ние определенного признака.

Основные методы генетики: гибридологический, цитологический и

математический. Генетика активно использует и методы других смежных

наук: химии, биохимии, иммунологии, физики, микробиологии и др.

Пролиферативные процессы при остром воспалении начинаются вскоре после воздействия флогогенного фактора на ткань и более выражены по периферии зоны воспаления. Одним из условий оптимального течения пролифрации является затухание процессов альтерации и экссудации.

Пролиферация

Фагоциты также продуцируют и выделяют в межклеточную жидкость ряд БАВ, регулирующих развитие либо иммунитета, либо аллергии, либо состояния толерантности. Таким образом, воспаление непосредственно связано с формированием иммунитета или иммунопатологических реакций в организме.

Пролиферация - компонент воспалительного процесса и завершающая его стадия - характеризуется увеличением числа стромальных и, как правило, паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления, Эти процессы направлены на регенерацию альтерированных и/или замещение разрушенных тканевых элементов. Существенное значение на этой стадии воспаления имеют различные БАВ, в особенности стимулирующие пролиферацию клеток (митогены).

Формы и степень пролиферации органоспецифических клеток различны и определяются характером клеточных популяций (см. статью «Популяция клеток» в приложении «Справочник терминов»).

У части органов и тканей (например, печени, кожи, ЖКТ, дыхательных путей) клетки обладают высокой пролиферативной способностью, достаточной для ликвидации дефекта структур в очаге воспаления.

У других органов и тканей эта способность весьма ограничена (например, у тканей сухожилий, хрящей, связок, почек и др.).

У ряда органов и тканей паренхиматозные клетки практически не обладают пролиферативной активностью (например, миоциты сердечной мышц, нейроны). В связи с этим при завершении воспалительного процесса в тканях миокарда и нервной системы на месте очага воспаления пролиферируют клетки стромы, в основном фибробласты, которые образуют и неклеточные структуры. В результате этого формируется соединительнотканный рубец. Вместе с тем известно, что паренхиматозные клетки указанных тканей обладают высокой способностью к гипертрофии и гиперплазии субклеточных структур.

Активация пролиферативных процессов коррелирует с образованием БАВ, обладающих антивоспалительным эффектом (своеобразных противовоспалительных медиаторов). К числу наиболее действенных среди них относятся:

Ингибиторы гидролаз, в частности протеаз (например, антитрипсина),  ‑микроглобулина, плазмина или факторов комплемента;

Антиоксиданты (например, церулоплазмин, гаптоглобин, пероксидазы, СОД);

Полиамины (например, путресцин, спермин, кадаверин);

Глюкокортикоиды;

Гепарин (подавляющий адгезию и агрегацию лейкоцитов, активность кининов, биогенных аминов, факторов комплемента).



Замещение погибших и повреждённых при воспалении тканевых элементов отмечается после деструкции и элиминации их (этот процесс получил название раневого очищения).

Реакции пролиферации как стромальных, так и паренхиматозных клеток регулируется различными факторами. К числу наиболее значимых среди них относят:

Многие медиаторы воспаления (например, ФНО, подавляющий пролиферацию; лейкотриены, кинины, биогенные амины, стимулирующие деление клеток).

Специфические продукты метаболизма лейкоцитов (например, монокины, лимфокины, ИЛ, факторы роста), а также тромбоцитов, способные активировать пролиферацию клеток.

Низкомолекулярные пептиды, высвобождающиеся при деструкции тканей, полиамины (путресцин, спермидин, спермин), а также продукты распада нуклеиновых кислот, активирующие размножение клеток.

Гормоны (СТГ, инсулин, T 4 , кортикоиды, глюкагон), многие из них способные как активировать, так и подавлять пролиферацию в зависимости от их концентрации, активности, синергических и антагонистических взаимодействий; например, глюкокортикоиды в низких дозах тормозят, а минералокортикоиды - активируют реакции регенерации.

На процессы пролиферации оказывает влияние и ряд других факторов, например, ферменты (коллагеназа, гиалуронидаза), ионы, нейромедиаторы и другие.

Можно считать доказанным, что исходным элементом всей системы клеток крови является стволовая клетка, полипотентная, способная к многочисленным разнообразным дифференцировкам и в то же время обладающая способностью к самоподдержанию, т. е. к пролиферации без видимой дифференцировки.

Отсюда следует, что принципы управления системой кроветворения должны обеспечивать такую ее регуляцию, в результате которой при стабильном кроветворении выполняются следующие два основных условия: число продуцируемых клеток каждого типа постоянно и строго соответствует числу погибших зрелых клеток; число стволовых клеток постоянно, и образование новых стволовых клеток точно соответствует числу их, ушедших в дифференцировку.

Еще более сложные задачи решаются при стабилизации системы после возмущающего воздействия. В этом случае число образующихся стволовых клеток должно превышать число ушедших в дифференцировку до тех пор, пока величина отдела не достигает исходного уровня, после чего вновь должны быть установлены сбалансированные отношения между числом новообразующихся и дифференцирующихся стволовых клеток.

С другой стороны, дифференцировка стволовых клеток должна регулироваться так, чтобы восстановить число зрелых клеток только того ряда, который оказался уменьшенным (например, эритроидные клетки после кровопотери) при стабильной продукции других клеток. И здесь после усиленного новообразования данной категории клеток ее продукция должна быть снижена до сбалансированного уровня.

Количественная регуляция кроветворения , т. е. обеспечение образования необходимого числа клеток нужного типа в определенное время, осуществляется в последующих отделах, прежде всего в отделе коммитированных предшественников.

Стволовая клетка обладает двумя основными свойствами: способностью к самоподдержанию, достаточно длительному, сравнимому со временем существования всего многоклеточного организма, и способностью к дифференцировке. Так как последняя, видимо, необратима, «принявшая решение» о дифферсицировке стволовая клетка необратимо покидает отдел.

Итак, важнейшая проблема регуляции в этом отделе состоит в том, чтобы при повышении запроса дифференцировке нe подвергались бы все стволовые клетки, после чего регенерация кроветворения оказалась бы невозможной в связи с истощением способных к самоподдержанию элементов, так как клетки всех последующих отделов к длительному самоподдержанию не способны. Такая регуляция в организме действительно существует. После облучения в высоких дозах практически вся кроветворная система погибает. Между тем, например, у мыши, регенерация возможна после того, как облучением уничтожено 99,9% всех стволовых клеток (Bond е. а., 1965). Несмотря на огромный запрос на дифференцировку, сохранившиеся 0,1% стволовых клеток восстанавливают свое число и обеспечивают резкое повышение дифференцировки клеток последующих отделов.

РЕГУЛЯЦИЯ КЛЕТОЧНОГО ЦИКЛА

    Введение

    Активация пролиферации

    Клеточный цикл

    Регуляция клеточного цикла

    Экзогенные регуляторы пролиферации

    Эндогенные регуляторы клеточного цикла

    Пути регуляции CDK

    Регуляция G1 фазы

    Регуляция S фазы

    Регуляция G2 фазы

    Регуляция митоза

    Повреждения ДНК

    Пути восстановления двуцепочечных разрывов ДНК

    Клеточный ответ на повреждение ДНК и его регуляция

    Регенерация тканей

    Регуляция регенерации тканей

    Заключение

    Список литературы

Введение

Клетка является элементарной единицей всего живого. Вне клетки жизни нет. Размножение клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала. Активация деления клетки происходит вследствие воздействия на нее внешних или внутренних факторов. Процесс деления клетки с момента ее активации называется пролиферацией. Иными словами, пролиферация - это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Время существования клетки как таковой, от деления до деления, обычно называют клеточным циклом

Во взрослом организме человека, клетки различных тканей и органов имеют неодинаковую способность к делению. Кроме того, при старении интенсивность пролиферации клеток снижается (т.е. увеличивается интервал между митозами). Встречаются популяции клеток, полностью потерявшие свойство делиться. Это, как правило, клетки, находящиеся на терминальной стадии дифференцировки, например, зрелые нейроны, зернистые лейкоциты крови, кардиомиоциты. В этом отношении исключение составляют иммунные В- и Т- клетки памяти, которые, находясь в конечной стадии дифференцировки, при появлении в организме определенного стимула в виде ранее встречавшегося антигена способны начать пролиферировать. В организме есть постоянно обновляющиеся ткани - различные типы эпителия, кроветворные ткани. В таких тканях существуют клетки, которые постоянно делятся, заменяя отработавшие или погибающие типы клеток (например, клетки крипт кишечника, клетки базального слоя покровного эпителия, кроветворные клетки костного мозга). Также в организме существуют клетки, которые не размножаются в обычных условиях, но вновь приобретают это свойство при определенных условиях, в частности при необходимости регенерации тканей и органов. Процесс пролиферации клеток жестко регулируется как самой клеткой (регуляция клеточного цикла, прекращение или замедление синтеза аутокринных ростовых факторов и их рецепторов), так и ее микроокружением (отсутствие стимулирующих контактов с соседними клетками и матриксом, прекращение секреции и/или синтеза паракринных ростовых факторов). Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что в свою очередь инициирует развитие онкологического процесса в организме.

Активация пролиферации

Основную функцию, связанную с инициацией пролиферации, берет на себя плазматическая мембрана клетки. Именно на ее поверхности происходят события, которые связаны с переходом покоящихся клеток в активированное состояние, предшествующее делению. Плазматическая мембрана клеток за счет располагающихся в ней молекул-рецепторов воспринимает различные внеклеточные митогенные сигналы и обеспечивает транспорт в клетку необходимых веществ, принимающих участие в инициации пролиферативного ответа. Митогенными сигналами могут служить контакты между клетками, между клеткой и матриксом, а также взаимодействие клеток с различными соединениями, стимулирующими их вступление в клеточный цикл, которые получили название факторов роста. Клетка, получившая митогенный сигнал на пролиферацию, запускает процесс деления.

КЛЕТОЧНЫЙ ЦИКЛ

Весь клеточный цикл состоит из 4 этапов: пресинтетического (G1), синтетического (S), постсинтетического (G2) и собственно митоза (М). Кроме того, существует так называемый G0-период, характеризующий состояние покоя клетки. В G1-периоде клетки имеют диплоидное содержание ДНК на одно ядро. В этот период начинается рост клеток, главным образом, за счет накопления клеточных белков, что обусловлено увеличением количества РНК на клетку. Кроме того, начинается подготовка к синтезу ДНК. В следующем S-периоде происходит удвоение количества ДНК и соответственно удваивается число хромосом. Постсинтетическая G2 фаза называется также премитотической. В этой фазе происходит активный синтез мРНК (матричная РНК). Вслед за этой стадией следует собственно деление клетки надвое или митоз.

Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных) хромосом. В результате деления эти хромосомы переносятся в дочерние клетки. Такой тип деления эукариотических клеток - митоз (от греч. mitos - нити) - является единственным полноценным способом увеличения числа клеток. Процесс митотического деления подразделяют на несколько этапов: профаза, прометафаза, метафаза, анафаза, телофаза.

РЕГУЛЯЦИЯ КЛЕТОЧНОГО ЦИКЛА

Назначение регуляторных механизмов клеточного цикла состоит не в регуляции прохождения клеточного цикла как такового, а в том, чтобы обеспечить, в конечном счете, безошибочность распределения наследственного материала в процессе репродукции клеток. В основе регуляции размножения клеток лежит смена состояний активной пролиферации и пролиферативного органа. Регуляторные факторы, контролирующие размножение клеток можно условно разделить на две группы: внеклеточные (или экзогенные) или внутриклеточные (или эндогенные). Экзогенные факторы находятся в микроокружении клетки и взаимодействуют с поверхностью клетки. Факторы, которые синтезируются самой клеткой и действуют внутри нее, относятся к эндогенным факторам. Такое подразделение весьма условно, поскольку некоторые факторы, будучи эндогенными по отношению к продуцирующей их клетке, могут выходить из нее и действовать как экзогенные регуляторы на другие клетки. Если регуляторные факторы взаимодействуют с теми же клетками, которые их продуцируют, то такой тип контроля называется аутокринным. При паракринном контроле синтез регуляторов осуществляется другими клетками.

ЭКЗОГЕННЫЕ РЕГУЛЯТОРЫ ПРОЛИФЕРАЦИИ

У многоклеточных организмов регуляция пролиферации различных типов клеток происходит вследствие действия не одного какого-либо ростового фактора, а их совокупности. Кроме того, некоторые ростовые факторы, будучи стимуляторами для одних типов клеток, ведут себя как ингибиторы по отношению к другим. Классические ростовые факторы представляют собой полипептиды с молекулярной массой 7-70 кДа. К настоящему моменту известно более сотни таких ростовых факторов. Однако здесь будут рассмотрены только некоторые из них.

Пожалуй, самое большое количество литературы посвящено фактору роста из тромбоцитов (PDGF). Освобождаясь при разрушении сосудистой стенки, PDGF участвует в процессах тромбообразования и заживления ран. PDGF является мощным ростовым фактором для покоящихся фибробластов. Наряду с PDGF, не менее обстоятельно изучен эпидермальный фактор роста (EGF), который также способен стимулировать пролиферацию фибробластов. Но, кроме этого также стимулирующе влияет и на другие типы клеток, в частности на хондроциты.

Большую группу ростовых факторов составляют цитокины (интерлейкины, факторы некроза опухоли, колоние-стимулирующие факторы и т.д.). Все цитокины полифункциональны. Они могут, как усиливать, так и угнетать пролиферативные ответы. Так, например, разные субпопуляции CD4+ Т-лимфоцитов, Th1 и Th2, продуцирующие разный спектр цитокинов, по отношению друг к другу являются антагонистами. То есть, Th1 цтокины стимулируют пролиферацию клеток, которые их продуцируют, но в то же время подавляют деление Th2 клеток, и наоборот. Таким образом, в норме в организме сохраняется постоянный баланс этих двух типов Т-лимфоцитов. Взаимодействие факторов роста с их рецепторами на поверхности клетки приводит к запуску целого каскада событий внутри клетки. В результате чего происходит активация факторов транскрипции и экспрессия генов пролиферативного ответа, что в конечном итоге инициирует репликацию ДНК и вступление клетки в митоз.

ЭНДОГЕННЫЕ РЕГУЛЯТОРЫ КЛЕТОЧНОГО ЦИКЛА

В нормальных эукариотических клетках прохождение клеточного цикла жестко регулируется. Причиной онкологических заболеваний является трансформация клеток, как правило, связанная с нарушениями регуляторных механизмов клеточного цикла. Одним из основных результатов дефективности клеточного цикла является генетическая нестабильность, поскольку клетки с ущербным контролем клеточного цикла теряют способность корректно удваивать и распределять между дочерними клетками свой геном. Генетическая нестабильность приводит к приобретению новых особенностей, которые отвечают за прогрессирование опухоли. Циклин-зависимые киназы (CDK)и их регуляторные субъединицы (циклины) являются основными регуляторами клеточного цикла. Прохождение клеточного цикла достигается путем последовательной активации и дезактивации разных комплексов циклин-CDK. Действие комплексов циклин-CDK заключается в фосфорилировании ряда белков-мишеней в соответствии с фазой клеточного цикла, в которой активен тот или иной комплекс циклин-CDK . Так, например, циклин Е-CDK2 активен в поздней G1 фазе и фосфорилирует белки, необходимые для прохождения через позднюю G1 фазу и вход в S фазу. Циклин А-CDK2 активен в S и G2 фазах, он обеспечивает прохождение S фазы и вход в митоз. Циклин А и циклин Е являются центральными регуляторами репликации ДНК. Поэтому неправильная регуляция экспрессии какого-либо из этих циклинов приводит к генетической нестабильности. Было показано, что накопление ядерного циклина А происходит исключительно в тот момент, когда клетка входит в S фазу, т.е. в момент G1/S перехода. С другой стороны, было показано, что уровень циклина Е повышался после прохождения так называемой точки ограничения (R-точки) в поздней G1 фазе, а затем существенно понижался, когда клетка входила в S фазу.

ПУТИ РЕГУЛЯЦИИ CDK

Активность циклин-зависимых киназ (CDK) жестко регулируется, по крайней мере, по четырем механизмам:

1) Основной способ регуляции CDK - это связывание с циклином, т.е. в свободном виде киназа не активна, и только комплекс с соответствующим циклином обладает необходимыми активностями.

2) Активность комплекса циклин-CDK также регулируется за счет обратимого фосфорилирования. Для того чтобы приобрести активность, необходимо фосфорилирование CDK, которое осуществляется при участии CDK активирующего комплекса (САК), состоящего из циклина Н, CDK7 и Mat1.

3) С другой стороны, в молекуле CDK, в регионе, ответственном за связывание субстрата, имеются сайты, фосфорилирование которых приводит к ингибированию активности комплекса циклин-CDK. Эти сайты фосфорилируются группой киназ, включая Wee1 киназу, и дефосфорилируются фосфатазами Cdc25. Активность этих ферментов (Wee1 и Cdc25) существенно варьирует в ответ на разные внутриклеточные события, такие как повреждения ДНК.

4) В конце концов, некоторые комплексы циклин-CDK могут быть заингибированы вследствие связывания с ингибиторами CDK (CKI). Ингибиторы CDK состоят из двух групп белков INK4 и CIP/KIP. Ингибиторы INK4 (p15, p16, p18, p19) связываются с CDK4 и CDK6 и инактивируют их, предотвращая взаимодействие с циклином D. CIP/KIP ингибиторы (p21, p27, p57) могут связываться с комплексами циклин-CDK, содержащими CDK1, CDK2, CDK4 и CDK6. Примечательно, что при определенных условиях CIP/KIP ингибиторы могут усиливать киназную активность комплексов циклин D-CDК4/6

РЕГУЛЯЦИЯ G 1 ФАЗЫ

В G1 фазе, в так называемой точке рестрикции (ограничения, R-точка), клетка принимает решение, делится ей или нет. Точка рестрикции - это та точка клеточного цикла, после которой клетка становится невосприимчивой к внешним сигналам вплоть до завершения всего клеточного цикла. Точка рестрикции делит G1 фазу на два функционально различных этапа: G1pm (постмитотический этап) и G1ps (пресинтетический этап). В течение G1pm клетка оценивает присутствующие в ее окружении ростовые факторы. Если необходимые ростовые факторы присутствуют в достаточном количестве, то клетка переходит в G1ps. Клетки, перешедшие в G1ps период, продолжают нормальное прохождение всего клеточного цикла даже при отсутствии ростовых факторов. Если отсутствуют необходимые ростовые факторы в G1pm периоде, то клетка переходит в состояние пролиферативного покоя (G0 фаза).

Основным результатом каскада сигнальных событий, происходящих вследствие связывания ростового фактора с рецептором на поверхности клетки, является активация комплекса циклин D-CDK4/6. Активность этого комплекса существенно возрастает уже в раннем G1 периоде. Этот комплекс фосфорилирует мишени, необходимые для прохождения в S фазу. Основным субстратом комплекса циклин D-CDK4/6 является продукт гена ретинобластомы (pRb). Нефосфорилированный pRb связывается и, тем самым, инактивирует транскрипционные факторы группы E2F. Фосфорилирование pRb комплексами циклин D-CDK4/6 приводит к высвобождению E2F, который проникает в ядро и инициирует трансляцию генов белков, необходимых для репликации ДНК, в частности генов циклина Е и циклина А. В конце G1 фазы происходит кратковременное увеличение количества циклина Е, которое предвещает накопление циклина А и переход в S фазу.

Остановку клеточного цикла в G1 фазе могут вызвать следующие факторы: повышение уровня ингибиторов CDK, депривация ростовых факторов, повреждения ДНК, внешние воздействия, онкогенная активация

РЕГУЛЯЦИЯ S ФАЗЫ

S фаза - это этап клеточного цикла, когда происходит синтез ДНК. Каждая из двух дочерних клеток, которые образуются в конце клеточного цикла, должна получить точную копию ДНК материнской клетки. Каждое основание молекул ДНК, составляющих 46 хромосом человеческой клетки, должно быть скопировано только один раз. Именно поэтому синтез ДНК регулируется крайне жестко.

Было показано, что только ДНК клеток, находящихся в G1 или S фазе, может реплицироваться. Это наводит на мысль, что ДНК должна быть <лицензирована> для репликации и что тот кусочек ДНК, который был удвоен, теряет эту <лицензию>. Репликация ДНК начинается в месте связывания белков, называемых ORC (Origin of replicating complex). Несколько компонентов, необходимых для синтеза ДНК, связываются с ORC в поздней М или ранней G1 фазе, формируя пререплекативный комплекс, что собственно и дает <лицензию> ДНК для репликации. На стадии перехода G1/S к пререплекативному комплексу добавляются еще белки, необходимые для репликации ДНК, таким образом, образуется комплекс инициации. Когда начинается процесс репликации и образуется репликативная вилка, многие компоненты отделяются от инициирующего комплекса, а в месте инициации репликации остаются только компоненты пострепликативного комплекса.

Во многих работах было показано, что для нормального функционирования инициирующего комплекса необходима активность циклин А-CDK2. Кроме того, для успешного окончания S фазы также необходима активность комплекса циклин А-CDK2, что, собственно, и является основным регуляторным механизмом, обеспечивающим успешное завершение синтеза ДНК. Остановку в S фазе может индуцировать повреждение ДНК.

РЕГУЛЯЦИЯ G 2 ФАЗЫ

G2 фаза - это этап клеточного цикла, который начинается после завершения синтеза ДНК, но до начала конденсации. Основным регулятором прохождения G2 фазы служит комплекс циклин В-CDK2. Арест клеточного цикла в G2 фазе происходит вследствие инактивации комплекса циклин В-CDK2. Регулятором перехода G2/М является комплекс циклин В-CDK1, его фосфорилирование/дефосфорилирование регулирует вход в М фазу. Повреждения ДНК или наличие нереплицированных участков предотвращает переход в М фазу.

Клетка является элементарной единицей всего живого. Вне клетки жизни нет. Размножение клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала. Активация деления клетки происходит вследствие воздействия на нее внешних или внутренних факторов. Процесс деления клетки с момента ее активации называется пролиферацией. Иными словами, пролиферация – это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Время существования клетки как таковой, от деления до деления, обычно называют клеточным циклом.

ВВЕДЕНИЕ 3
ГЛАВА I. Пролиферация 4
Клеточный цикл 5
Регуляция клеточного цикла 6
Экзогенные регуляторы пролиферации 7
Эндогенные регуляторы пролиферации 7
Пути регуляции CDK 8
Регуляция G1 фазы 10
Регуляция S фазы 11
Регуляция G2 фазы 12
Регуляция митоза 12
Повреждение ДНК 13
1.10.1 Пути восстановления двуцепочечных разрывов ДНК 13
1.10.2 Клеточный ответ на повреждение ДНК и его регуляция 14
1.11. Регенерация тканей 15
1.11.1Формы регенерации 16
1.11.2. Регуляция регенерации тканей 17
ГЛАВА II. АПОПТОЗ 18
2.1. Характерные признаки апоптоза 19
2.2. Механизм апоптоза 19
2.3. Роль апоптоза в защите от онкологических заболеваний 20
2.4. Регуляция апоптоза 21
СПИСОК ЛИТЕРАТУРЫ 24

Работа содержит 1 файл

Российский государственный педагогический университет имени А. И. Герцена

Факультет биология

КУРСОВАЯ РАБОТА

Пролиферация клетки

СПб 2010
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ 3

ГЛАВА I. Пролиферация 4

    1. Клеточный цикл 5
    2. Регуляция клеточного цикла 6
    3. Экзогенные регуляторы пролиферации 7
    4. Эндогенные регуляторы пролиферации 7
    5. Пути регуляции CDK 8
    6. Регуляция G1 фазы 10
    7. Регуляция S фазы 11
    8. Регуляция G2 фазы 12
    9. Регуляция митоза 12
    10. Повреждение ДНК 13

1.10.1 Пути восстановления двуцепочечных разрывов ДНК 13

1.10.2 Клеточный ответ на повреждение ДНК и его регуляция 14

1.11. Регенерация тканей 15

1.11.1Формы регенерации 16

1.11.2. Регуляция регенерации тканей 17

      ГЛАВА II. АПОПТОЗ 18

2.1. Характерные признаки апоптоза 19

2.2. Механизм апоптоза 19

2.3. Роль апоптоза в защите от онкологических заболеваний 20

2.4. Регуляция апоптоза 21

СПИСОК ЛИТЕРАТУРЫ 24

Введение

Клетка является элементарной единицей всего живого. Вне клетки жизни нет. Размножение клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала. Активация деления клетки происходит вследствие воздействия на нее внешних или внутренних факторов. Процесс деления клетки с момента ее активации называется пролиферацией . Иными словами, пролиферация – это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Время существования клетки как таковой, от деления до деления, обычно называют клеточным циклом .

Во взрослом организме человека клетки различных тканей и органов имеют неодинаковую способность к делению. Кроме того при старении интенсивность пролиферации клеток снижается (т.е. увеличивается интервал между митозами ). Встречаются популяции клеток, полностью потерявшие свойство делиться. Это, как правило, клетки, находящиеся на терминальной стадии дифференцировки , например, зрелые нейроны , зернистые лейкоциты крови , кардиомиоциты . В этом отношении исключение составляют иммунные В- и Т-клетки памяти , которые, находясь в конечной стадии дифференцировки, при появлении в организме определенного стимула в виде ранее встречавшегося антигена , способны начать пролиферировать. В организме есть постоянно обновляющиеся ткани – различные типы эпителия, кроветворные ткани. В таких тканях существует пул клеток, которые постоянно делятся, заменяя отработавшие или погибающие типы клеток (например, клетки крипт кишечника , клетки базального слоя покровного эпителия, кроветворные клетки костного мозга ). Также в организме существуют клетки, которые не размножаются в обычных условиях, но вновь приобретают это свойство при определенных условиях, в частности при необходимости регенерации тканей и органов.

Процесс пролиферации клеток жестко регулируется как самой клеткой (регуляция клеточного цикла, прекращение или замедление синтеза аутокринных ростовых факторов и их рецепторов), так и ее микроокружением (отсутствие стимулирующих контактов с соседними клетками и матриксом, прекращение секреции и/или синтеза паракринных ростовых факторов). Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что в свою очередь инициирует развитие онкологического процесса в организме.

Пролиферация

Основную функцию, связанную с инициацией пролиферации, берет на себя плазматическая мембрана клетки. Именно на ее поверхности происходят события, которые связаны с переходом покоящихся клеток в активированное состояние, предшествующее делению. Плазматическая мембрана клеток за счет располагающихся в ней молекул-рецепторов воспринимает различные внеклеточные митогенные сигналы и обеспечивает транспорт в клетку необходимых веществ, принимающих участие в инициации пролиферативного ответа. Митогенными сигналами могут служить контакты между клетками, между клеткой и матриксом, а также взаимодействие клеток с различными соединениями, стимулирующими их вступление в клеточный цикл , которые получили название факторов роста. Клетка, получившая митогенный сигнал на пролиферацию, запускает процесс деления.

Клеточный цикл

Весь клеточный цикл состоит из 4 этапов: пресинтетического (G1),
синтетического (S), постсинтетического (G2) и собственно митоза (М).
Кроме того, существует так называемый G0-период, характеризующий
состояние покоя клетки. В G1-периоде клетки имеют
диплоидное
содержание ДНК на одно ядро. В этот период начинается рост клеток,
главным образом, за счет накопления клеточных белков, что обусловлено
увеличением количества РНК на клетку. Кроме того, начинается подготовка к синтезу ДНК. В следующем S-периоде происходит удвоение количества
ДНК и соответственно удваивается число хромосом. Постсинтетическая G2 фаза называется также премитотической. В этой фазе происходит активный синтез мРНК (матричная РНК). Вслед за этой стадией следует собственно деление клетки надвое или митоз.

Деление всех эукариотических клеток связано с конденсацией удвоенных (реплицированных ) хромосом. В результате деления эти хромосомы переносятся в дочерние клетки. Такой тип деления эукариотических клеток – митоз (от греч. mitos – нити) – является единственным полноценным способом увеличения числа клеток. Процесс митотического деления подразделяют на несколько этапов: профаза, прометафаза, метафаза, анафаза, телофаза .

Регуляция клеточного цикла


Назначение регуляторных механизмов клеточного цикла состоит не в регуляции прохождения клеточного цикла как такового, а в том, чтобы обеспечить, в конечном счете, безошибочность распределения наследственного материала в процессе репродукции клеток. В основе регуляции размножения клеток лежит смена состояний активной пролиферации и пролиферативного покоя . Регуляторные факторы, контролирующие размножение клеток можно условно разделить на две группы: внеклеточные (или экзогенные) или внутриклеточные (или эндогенные). Экзогенные факторы находятся в микроокружении клетки и взаимодействуют с поверхностью клетки. Факторы, которые синтезируются самой клеткой и действуют внутри нее, относятся к
эндогенным факторам . Такое подразделение весьма условно, поскольку некоторые факторы, будучи эндогенными по отношению к продуцирующей их клетке, могут выходить из нее и действовать как экзогенные регуляторы на другие клетки. Если регуляторные факторы взаимодействуют с теми же клетками, которые их продуцируют, то такой тип контроля называется аутокринным. При паракринном контроле синтез регуляторов осуществляется другими клетками.

Экзогенные регуляторы пролиферации

У многоклеточных организмов регуляция пролиферации различных типов клеток происходит вследствие действия не одного какого-либо ростового фактора, а их совокупности. Кроме того, некоторые ростовые факторы , будучи стимуляторами для одних типов клеток, ведут себя как ингибиторы по отношению к другим. Классические ростовые факторы представляют собой полипептиды с молекулярной массой 7-70 кДа. К настоящему моменту известно более сотни таких ростовых факторов

PDGF тромбоциты. Освобождаясь при разрушении сосудистой стенки, PDGF участвует в процессах тромбообразования и заживления ран. PDGF является мощным ростовым фактором для покоящихся фибробластов . Наряду с PDGF, не менее обстоятельно изучен эпидермальный фактор роста ( EGF ), который также способен стимулировать пролиферацию фибробластов. Но, кроме этого также стимулирующе влияет и на другие типы клеток, в частности на хондроциты .

Большую группу ростовых факторов составляют цитокины (интерлейкины , факторы некроза опухоли , колоние-стимулирующие факторы и т.д.). Все цитокины полифункциональны. Они могут, как усиливать, так и угнетать пролиферативные ответы. Так, например, разные субпопуляции CD4+ Т-лимфоцитов, Th1 и Th2 , продуцирующие разный спектр цитокинов, по отношению друг к другу являются антагонистами. То есть, Th1 цитокины стимулируют пролиферацию клеток, которые их продуцируют, но в то же время подавляют деление Th2 клеток, и наоборот. Таким образом, в норме в организме сохраняется постоянный баланс этих двух типов Т-лимфоцитов. Взаимодействие факторов роста с их рецепторами на поверхности клетки приводит к запуску целого каскада событий внутри клетки. В результате чего происходит активация факторов транскрипции и экспрессия генов пролиферативного ответа, что в конечном итоге инициирует репликацию ДНК и вступление клетки в митоз.

Эндогенные регуляторы клеточного цикла

В нормальных эукариотических клетках прохождение клеточного цикла жестко регулируется. Причиной онкологических заболеваний является трансформация клеток, как правило, связанная с нарушениями регуляторных механизмов клеточного цикла. Одним из основных результатов дефективности клеточного цикла является генетическая нестабильность, поскольку клетки с ущербным контролем клеточного цикла теряют способность корректно удваивать и распределять между дочерними клетками свой геном . Генетическая нестабильность приводит к приобретению новых особенностей, которые отвечают за прогрессирование опухоли.