Какие структуры ядра содержат днк. Как связаны между собой хромосомы, ДНК, гены? Клеточное ядро. Хромосомы

  • Дата: 26.06.2020
Биология. Общая биология. 10 класс. Базовый уровень Сивоглазов Владислав Иванович

11. Клеточное ядро. Хромосомы

11. Клеточное ядро. Хромосомы

Вспомните!

Какие клетки не имеют ядер?

В каких частях и органоидах клетки содержится ДНК?

Каковы функции ДНК?

Обязательным компонентом всех эукариотических клеток является ядро (лат. nucleus , греч. karyon ). Клеточное ядро хранит наследственную информацию и управляет процессами внутриклеточного метаболизма, обеспечивая нормальную жизнедеятельность клетки и выполнение ею своих функций. Как правило, ядро имеет сферическую форму, но существуют также веретеновидные, подковообразные, сегментированные ядра. У большинства клеток ядро одно, но, например, у инфузории туфельки два ядра – макронуклеус и микронуклеус, а в поперечно – полосатых мышечных волокнах находятся сотни ядер. Ядро и цитоплазма – это взаимосвязанные компоненты клетки, которые не могут существовать друг без друга. Их постоянное взаимодействие обеспечивает единство клетки и в структурном, и в функциональном смысле. В эукариотических организмах существуют клетки, не имеющие ядер, но срок их жизни недолог.

В процессе созревания теряют ядро эритроциты, которые функционируют не более 120 дней, а затем разрушаются в селезёнке. Безъядерные тромбоциты (кровяные пластинки) циркулируют в крови около 7 дней.

Каждое клеточное ядро окружено ядерной оболочкой, содержит ядерный сок, хроматин и одно или несколько ядрышек.

Ядерная оболочка. Эта оболочка отделяет содержимое ядра от цитоплазмы клетки и состоит из двух мембран, имеющих типичное для всех мембран строение. Наружная мембрана переходит непосредственно в эндоплазматическую сеть, образуя единую мембранную структуру клетки. Поверхность ядра пронизана порами, через которые осуществляется обмен различными материалами между ядром и цитоплазмой. Например, из ядра в цитоплазму выходят РНК и субъединицы рибосом, а в ядро поступают нуклеотиды, необходимые для сборки РНК, ферменты и другие вещества, обеспечивающие деятельность ядерных структур.

Ядерный сок. Раствор белков, нуклеиновых кислот, углеводов, в котором происходят все внутриядерные процессы.

Ядрышко. Место синтеза рибосомальной РНК (рРНК) и сборки отдельных субъединиц рибосом – важнейших органоидов клетки, обеспечивающих биосинтез белка.

Хроматин. В ядре клетки находятся молекулы ДНК, которые содержат информацию о всех признаках организма. ДНК – это двухцепочечная спираль, состоящая из сотен тысяч мономеров – нуклеотидов. Молекулы ДНК огромны, например длина отдельных молекул ДНК, выделенных из клеток человека, достигает нескольких сантиметров, а общая длина ДНК в ядре соматической клетки составляет около 1 м. Ясно, что такие гигантские структуры должны быть как-то упакованы, чтобы не перепутаться в общем ядерном пространстве. Молекулы ДНК в ядрах эукариотических клеток всегда находятся в комплексе со специальными белками – гистонами, образуя так называемый хроматин . Именно гистоны обеспечивают структурированность и упаковку ДНК. В активно функционирующей клетке, в период между клеточными делениями, молекулы ДНК находятся в расплетённом деспирализованном состоянии, и увидеть их в световой микроскоп практически невозможно. В ядре клетки, готовящейся к делению, молекулы ДНК удваиваются, сильно спирализуются, укорачиваются и приобретают компактную форму, что делает их заметными (рис. 36). В таком компактном состоянии комплекс ДНК и белков называют хромосомами , т. е., по сути, в химическом отношении хроматин и хромосомы – это одно и то же. В современной цитологии под хроматином понимают дисперсное (рассеянное) состояние хромосом во время выполнения клеткой своих функций и в период подготовки к митозу.

Рис. 36. Спирализация молекулы ДНК (А) и электронная фотография метафазной хромосомы (Б)

Рис. 37. Строение хромосомы: А – одиночная хромосома; Б – удвоенная хромосома, состоящая из двух сестринских хроматид; В – электронная фотография удвоенной хромосомы

Форма хромосомы зависит от положения так называемой первичной перетяжки, или центромеры , – области, к которой во время деления клетки прикрепляются нити веретена деления. Центромера делит хромосому на два плеча одинаковой или разной длины (рис. 37).

Количество, размеры и форма хромосом уникальны для каждого вида. Совокупность всех признаков хромосомного набора, характерного для того или иного вида, называют кариотипом . На рис. 38 представлен кариотип человека. Нашим генетическим банком данных являются 46 хромосом определённого размера и формы, несущие более 30 тыс. генов. Эти гены определяют строение десятков тысяч типов белков, различных видов РНК и белков-ферментов, образующих жиры, углеводы и другие молекулы. Любые изменения структуры или количества хромосом приводят к изменению или потере части информации и, как следствие, к нарушению нормального функционирования той клетки, в ядре которой они находятся.

Рис. 38. Кариотип человека. Набор хромосом женщины (флуоресцентная окраска)

В соматических клетках (клетках тела) число хромосом обычно в два раза больше, чем в зрелых половых клетках. Это объясняется тем, что при оплодотворении половина хромосом приходит от материнского организма (в яйцеклетке) и половина от отцовского (в сперматозоиде), т. е. в ядре соматической клетки все хромосомы парные. Причём хромосомы каждой пары отличаются от других хромосом. Такие парные, одинаковые по форме и размеру хромосомы, несущие одинаковые гены, называют гомологичными . Одна из гомологичных хромосом является копией материнской хромосомы, а другая – копией отцовской. Хромосомный набор, представленный парными хромосомами, называют двойным или диплоидным и обозначают 2n . Наличие диплоидного хромосомного набора у большинства высших организмов повышает надёжность функционирования генетического аппарата. Каждый ген, определяющий структуру того или иного белка, а в итоге влияющий на формирование того или иного признака, у таких организмов представлен в ядре каждой клетки в виде двух копий – отцовской и материнской.

При образовании половых клеток от каждой пары гомологичных хромосом в яйцеклетку или сперматозоид попадает только одна хромосома, поэтому половые клетки содержат одинарный , или гаплоидный , набор хромосом (1n ).

Не существует зависимости между числом хромосом и уровнем организации данного вида: примитивные формы могут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, у таких далёких видов, как прыткая ящерица и лисица, число хромосом одинаково и равно 38, у человека и ясеня – по 46 хромосом, у курицы 78, а у речного рака более 110!

Постоянство числа и структуры хромосом в клетках является необходимым условием существования вида и отдельного организма. При изучении хромосомных наборов разных особей были обнаружены виды-двойники, которые морфологически абсолютно не отличались друг от друга, но, имея разное число хромосом или отличия в их строении, не скрещивались и развивались независимо. Таковы, например, обитающие на одной территории два вида австралийских кузнечиков Moraba scurra и Moraba viatica, чьи хромосомы отличаются по своей структуре. Виды-двойники известны и в царстве растений. Внешне практически неразличимы кларкия двулопастная и кларкия языковидная из семейства кипрейных, растущие в Калифорнии, однако в кариотипе второго вида на одну пару хромосом больше.

Вопросы для повторения и задания

1. Опишите строение ядра эукариотической клетки.

2. Как вы считаете, может ли клетка существовать без ядра? Ответ обоснуйте.

3. Что такое ядрышко? Каковы его функции?

4. Дайте характеристику хроматина. Если хроматин и хромосомы в химическом отношении представляют собой одно и то же, зачем были введены и используются два разных термина?

5. Как соотносится число хромосом в соматических и половых клетках?

6. Что такое кариотип? Дайте определение.

7. Какие хромосомы называют гомологичными?

8. Какой хромосомный набор называют гаплоидным; диплоидным?

Подумайте! Выполните!

1. Какие особенности строения ядра клетки обеспечивают транспорт веществ из ядра и обратно?

2. Достаточно ли знать число хромосом в соматической клетке, чтобы определить, о каком виде организмов идёт речь?

3. Если вам известно, что в некой клетке в норме находится нечётное число хромосом, сможете ли вы однозначно определить, соматическая эта клетка или половая? А если чётное число хромосом? Докажите свою точку зрения.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Данный текст является ознакомительным фрагментом. Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

12.3. Отсутствие Х-хромосомы у девушек как причина характерологических аномалий Данная конституционная аномалия, болезнь Шерешевского-Тернера, связана с умственной и физиологической инфантильностью, относительно редка (0,03 %) среди девушек, но очень поучительна. Девушки с

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора

Из книги Геном человека [Энциклопедия, написанная четырьмя буквами] автора Тарантул Вячеслав Залманович

Из книги Тесты по биологии. 6 класс автора Бенуж Елена

Хромосомы дают первые сведения о структуре генома Выше уже говорилось, что в ядре клетки молекулы ДНК расположены в особых структурах, получивших название хромосомы. Их исследование началось еще свыше 100 лет назад с помощью обычного светового микроскопа. Уже к концу XIX

Из книги Род человеческий автора Барнетт Энтони

ХРОМОСОМЫ - ОТДЕЛЬНЫЕ ЧАСТИ ЦЕЛОГО (краткие аннотации) Природа - единственная книга, на всех своих страницах заключающая глубокое содержание. И. Гёте Итак, мы уже знаем, что Энциклопедия человека состоит из 24 отдельных томов - хромосом, которые исторически были

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

КЛЕТОЧНОЕ СТРОЕНИЕ ОРГАНИЗМОВ СТРОЕНИЕ КЛЕТКИ. ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СТРОЕНИЯ КЛЕТКИ 1. Выберите один наиболее правильный ответ.Клетка – это:A. Мельчайшая частица всего живогоБ. Мельчайшая частица живого растенияB. Часть растенияГ. Искусственно созданная единица для

Из книги Геном [Автобиография вида в 23 главах] автора Ридли Мэтт

Хромосомы и наследственность Одинаковая роль яйца и сперматозоида в передаче наследственных признаков объясняется тем, что оба имеют полный набор структур, называемых хромосомами, а именно хромосомы и несут наследственные факторы, или гены.Чтобы оценить роль хромосом

Из книги Власть генов [прекрасна как Монро, умен как Эйнштейн] автора Хенгстшлегер Маркус

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Половые хромосомы Конфликт Если после прочтения предыдущих глав о генетических основах лингвистики и поведения у вас в душе осталось неприятное ощущение того, что ваша воля и свобода выбора в действительности подчинены не вам, а наследуемым инстинктам, то эта глава еще

Из книги Секреты наследственности человека автора Афонькин Сергей Юрьевич

Половые хромосомы Когда мы говорили о том, почему мужчины так любят футбол, а женщины нет, мы лишь слегка коснулись неоспоримо увлекательного поля деятельности генетиков. Что есть мужское и почему, что есть женское и почему? Есть ли вообще такие понятия, как «типично

Из книги Антропология и концепции биологии автора

4. Зародышевый пузырек - особенное ядро Перед ооцитом лягушки «стоит» непростая задача - за несколько месяцев (у наших лягушек это летние месяцы в течение двух-трех лет, у тропических - два-три месяца) превратиться в яйцо, которое по объему в 100 ООО раз больше исходной

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Хромосомы Чтобы что-то узнать, нужно уже что-то знать. Станислав Лем - Утрата части хромосомы может иметь фатальные последствия - Хромосомы - компактная форма хранения ДНК - Лишняя хромосома способна исковеркать жизнь человека - Хромосомы определяют пол

Из книги автора

Хромосомы и пол В индустрии развлечений самой удачной идеей было разделение людей на два пола. Янина

Из книги автора

Добавочные X хромосомы Когда рассказываешь в школе о хромосомных нарушениях пола у человека, ученики порой выдвигают любопытную гипотезу о том, что добавочная X хромосома должна вызывать появление на свет «суперженщин», этаких описанных в скандинавской мифологии

Чтобы дальнейшее повествование было более ясным для читателя, рассмотрим сначала подробнее, как же устроена эта странная и загадочная молекула ДНК.

Итак, ДНК состоит из 4-х азотистых оснований, а также сахара (дезоксирибозы) и фосфорной кислоты. Два азотистых основания (сокращенно называемых Ц и Т) относятся к классу так называемых пиримидиновых основания, а два других (А и Г) — к пуриновым основаниям. Такое разделение связано с особенностями их структур, которые показаны на рис. 1.

Рис. 1 . Структура азотистых оснований (элементарных «букв»), из которых построена молекула ДНК

Отдельные основания связаны в цепочке ДНК сахаро-фосфатными связями. Эти связи изображены на следующем рисунке (рис. 2).

Рис. 2 . Химическая структура цепи ДНК

Все это известно уже довольно давно. Но детальное устройство молекулы ДНК стало понятно лишь спустя почти 90 лет после знаменитых работ Менделя и открытия Мишера. 25 апреля 1953 г. в английском журнале «Nature» было опубликовано небольшое письмо молодых и тогда еще мало известных ученых Джеймса Уотсона и Френсиса Крика редактору журнала. Оно начиналось словами: «Мы хотели бы предложить свои соображения по поводу структуры соли ДНК. Эта структура имеет новые свойства, которые представляют большой биологический интерес». Статья содержала всего около 900 слов, но — и это не преувеличение — каждое из них оказалось на вес золота.

А началось все так. В 1951 году на симпозиуме в Неаполе американец Джеймс Уотсон встретился с англичанином Морисом Уилкинсом. Конечно же, они тогда не могли себе даже представить, что в результате этой встречи они станут нобелевскими лауреатами. В то время Уилкинс со своей коллегой Розалиндой Франклин проводили в Кембриджском университете рентгеноструктурный анализ ДНК и определили, что молекула ДНК представляет собой, скорее всего, спираль. После разговора с Уилкинсом Уотсон «загорелся» и решил заняться исследованием структуры нуклеиновых кислот. Он перебрался в Кембридж, где познакомился с Френсисом Криком. Ученые решили совместными усилиями попытаться понять, как устроена ДНК. Работа началась не на пустом месте. Исследователи уже знали о существовании двух типов нуклеиновых кислот (ДНК и РНК), знали и то, из чего они состоят. В их распоряжении были фотографии рентгеноструктурного анализа, полученные Р. Франклин. Кроме того, Эрвин Чаргафф сформулировал к тому времени очень важное правило, согласно которому в ДНК число А всегда равно числу Т, а число Г равно числу Ц. А далее сработала «игра ума». Результатом этой «игры» и стала статья в журнале «Nature», в которой Дж. Уотсон и Ф. Крик описали созданную ими теоретически модель строения молекулы ДНК. (Уотсону к этому времени еще не исполнилось и 25 лет, а Крику было 37). Согласно их «научной фантазии», основанной тем не менее на определенных твердо установленных фактах, молекула ДНК должна состоять из двух гигантских полимерных цепочек. Звенья каждого полимера состоят из нуклеотидов : углевода дезоксирибозы, остатка фосфорной кислоты и одного из 4 азотистых оснований (А, Г, Т или Ц). Последовательность звеньев в цепочке может быть любой, но эта последовательность строго связана с последовательностью звеньев в другой (парной) полимерной цепочке: напротив А должно быть Т, напротив Т должно быть А, напротив Ц должно быть Г, а напротив Г должно быть Ц (правило комплементарности ) (рис. 3).

Рис. 3 . Схема взаимодействия двух комплементарных цепей в молекуле ДНК

Две полимерные цепи закручены в правильную двойную спираль. Они удерживаются вместе посредством водородных связей между парами оснований (А — Т и Г — Ц) подобно ступенькам лестницы. По этой причине говорят, что две цепи ДНК комплементарны. Для природы это не удивительно. Известно множество примеров комплементарности. Комплементарны, например, древнекитайские символы «инь» и «янь», гнезда розетки и штырьки вилки.

Двойная спираль ДНК схематически изображена на рис. 4. Внешне она напоминает веревочную лестницу, завитую в правую спираль. Ступенями в этой лестнице являются пары нуклеотидов, а связывающие их «боковинки» состоят из сахаро-фосфатного остова.

Рис. 4 . Знаменитая двойная спираль ДНК а — Рентгенограмма ДНК, полученная Р. Франклин, которая помогла Уотсону и Крику найти ключ к двухспиральной структуре ДНК; б — Схематическое изображение двухспиральной молекулы ДНК

Так была открыта знаменитая «двойная спираль». Если последовательность звеньев (нуклеотидов) в ДНК рассматривать как ее первичную структуру, то двойная спираль — это уже вторичная структура ДНК. Предложенная Уотсоном и Криком модель «двойной спирали» изящно решала не только проблему кодирования информации, но и удвоения (репликации) гена.

В 1962 году Дж. Уотсон, Ф. Крик и Морис Уилкинс получили по достоинству за это достижение Нобелевскую премию. А ДНК была названа самой главной молекулой живой природы. Во всем этом, конечно же, сыграли свою роль точные сведения о строении ДНК, но не в меньшей мере и «провидческие» построения сложной пространственной структуры, что потребовало от исследователей не только логики, но и творческого воображения — качества, присущего художникам, писателям и поэтам. «Здесь, в Кембридже, произошло, быть может, самое выдающееся после книги Дарвина событие в биологии — Уотсон и Крик раскрыли структуру гена!» — писал в то время в Копенгаген Нильсу Бору его бывший ученик М. Дельбрюк. Известный испанский художник Сальвадор Дали после открытия двойной спирали сказал, что это для него явилось доказательством существования Бога, и изобразил ДНК на одной из своих картин.

Итак, интенсивный мозговой штурм, предпринятый учеными, завершился полным успехом! В историческом масштабе открытие структуры ДНК сопоставимо с открытием структуры атома. Если выяснение строения атома привело к появлению квантовой физики, то открытие структуры ДНК дало начало молекулярной биологии.

Каковыми же оказались главные физические параметры ДНК человека — этой главной его молекулы? Диаметр двойной спирали равен 2 нанометрам (1 нм = 10-9 м); расстояние между соседними парами оснований («ступеньками») составляет 0,34 нм; один поворот спирали состоит из 10 пар оснований. Последовательность пар нуклеотидов в ДНК нерегулярна, но сами пары уложены в молекуле как в кристалле. Это дало основание характеризовать молекулу ДНК как линейный апериодический кристалл. Число отдельных молекул ДНК в клетке равно числу хромосом. Длина такой молекулы в наибольшей по размеру хромосоме 1 человека составляет около 8 см. Подобных гигантских полимеров пока не выявлено ни в природе, ни среди искусственно синтезированных химических соединений. У человека длина всех молекул ДНК, содержащихся во всех хромосомах одной клетке, составляет примерно 2 метра. Следовательно, длина молекул ДНК в миллиард раз больше их толщины. Так как организм взрослого человека состоит примерно из 5х1013 — 1014 клеток, то общая длина всех молекул ДНК в организме равна 1011 км (это почти в тысячу раз больше расстояния от Земли до Солнца). Вот такая она, суммарная ДНК всего лишь одного человека!

Когда говорят о размере генома, то подразумевают общее содержание ДНК в единичном наборе хромосом ядра. Такой набор хромосом называют гаплоидным. Дело в том, что большинство клеток нашего организма содержит двойной (диплоидный) набор совершенно одинаковых хромосом (только у мужчин 2 половые хромосомы отличаются). Измерения размера генома приводятся в дальтонах, парах нуклеотидов (п. н.) или пикограммах (пг). Соотношение между этими единицами измерения следующие: 1 пг = 10-9 мг = 0,6х1012 дальтон = 0,9х109 п. н. (далее мы будем использовать в основном п. н.). В гаплоидном геноме человека содержится около 3,2 млрд. п. н., что равно 3,5 пг ДНК. Таким образом, в ядре одной клетки человека содержится около 7 пг ДНК. Если учесть, что средний вес клетки человека равен примерно 1000 пг, то легко рассчитать, что ДНК составляет менее 1 % от веса клетки. И тем не менее, чтобы воспроизвести самым мелким шрифтом (как в телефонных справочниках) ту огромную информацию, которая содержится в молекулах ДНК одной нашей клетки, понадобилось бы тысяча книг по 1000 страниц в каждой! Вот таков полный размер генома человека — Энциклопедии, написанной четырьмя буквами.

Но не следует думать, что геном человека наибольший из всех существующих в природе. Например, у саламандры и лилии длина молекул ДНК, содержащихся в одной клетке, в тридцать раз больше, чем у человека.

Поскольку молекулы ДНК имеют гигантский размер, их можно выделить и увидеть даже в домашних условиях. Вот как описывается эта простая процедура в рекомендации для кружка «Юный генетик». Во-первых, надо взять любые ткани животных или растительных организмов (например, яблоко или кусок курицы). Затем надо нарезать ткань на кусочки и положить 100 г в обычный миксер. После добавления 1/8 чайной ложки соли и 200 мл холодной воды вся смесь взбивается на миксере в течение 15 секунд. Далее взбитая смесь процеживается через ситечко. В полученную мякоть надо добавить 1/6 от ее количества (это будет примерно 2 столовые ложки) моющего средства (для посуды, например) и хорошо размешать. Через 5-10 минут жидкость разливается по пробиркам или любым другим стеклянным емкостям, чтобы в каждой из них было заполнено не больше трети объема. Затем к ней добавляется по чуть-чуть либо сок, выжатый из ананаса, либо раствор, используемый для хранения контактных линз. Все содержимое встряхивается. Делать это надо весьма осторожно, так как если трясти слишком сильно, то гигантские молекулы ДНК поломаются и после этого ничего нельзя будет увидеть глазами. Далее в пробирку медленно вливается равный объем этилового спирта, чтобы он образовал слой поверх смеси. Если после этого покрутить в пробирке стеклянной палочкой, на нее «намотается» вязкая и почти бесцветная масса, которая и представляет собой препарат ДНК.

| |
Днк — молекулярная основа генома Генетическая грамматика

Большинство клеток имеют одно ядро, изредка встречаются двухъадерные (клетки печени) и многоядерные (многие водоросли, грибы, млечные сосуды растений, поперечнополосатые мышцы). Некоторые клетки в зрелом состоянии не имеют ядра (например, эритроциты млекопитающих и клетки ситовидных трубок у цветковых растений).

Форма и размеры ядра клетки очень изменчивы и зависят от вида организма, а также от типа, возраста и функционального состояния клетки. Ядро может быть шаровидным (5-20 мкм в диаметре), линзовидным, веретеновидным и даже многолопастным (в клетках паутинных желез некоторых насекомых и пауков).

Общий план строения ядра одинаков у всех клеток эукариот (рис. 1.16). Клеточное ядро состоит из ядерной оболочки, ядерного матрикса (нуклеоплазмы), хроматина и ядрышка (одного или нескольких).

Рис. 1.16. Схема строения ядра: 1 - ядрышко; 2 - хроматин; 3 - внутренняя ядерная мембрана; 4 - внешняя ядерная мембрана; 5 - поры в ядерной оболочке; 6-рибосомы; 7-шероховатый эндоплаз-матический ретикулум.

От цитоплазмы содержимое ядра отделено двойной мембраной, или так называемой ядерной оболочкой. Наружная мембрана в некоторых местах переходит в каналы эндоплазм этического ретикулума; к ней прикреплены рибосомы. Внутренняя мембрана рибосом не содержит. Ядерная оболочка пронизана множеством пор диаметром около 90 нм.

Содержимое ядра представляет собой гелеобразны матрикс, называемый ядерным матриксом (нуклеоплазмой), в котором располагаются хроматин и одно или несколько ядрышек. Ядерный метрике содержит примембранные и межхроматиновые белки, белки-ферменты, РНК, участки ДНК, атакже различные ионы и нуклеотиды.

Хроматин на окрашенных препаратах клетки представляет собой сеть тонких тяжей (фибрилл), мелких гранул или глыбок. Основу хроматина составляют нуклеопротеины - длинные нитевидные молекулы ДНК (около 40%), соединенные со специфическими белками - гистонами (40%). В состав хроматина входят также РНК, кислые белки, липиды и минеральные вещества (ионы Са2- и Mg2+), а также фермент ДНК-пол и мераза, необходимый для репликации ДНК. В процессе деления ядра нуклеопротеины спирализуются, укорачиваются, в результате уплотняются и формируются в компактные палочковидные хромосомы, которые становятся заметны при наблюдении в световой микроскоп.

У каждой хромосомы имеется первичная перетяжка - центромера (утонченный неспирализованный участок), которая делит хромосому на два плеча (рис. 1.17). В области первичной перетяжки располагается фибриллярное тельце - кинетохор, который регулирует движение хромосом при клеточном делении: к нему прикрепляются нити веретена деления, разводящие хромосомы к полюсам.

Рис. 1.17. Основные виды хромосом: 1 - одноплечая; 2 - неравноплечая; 3 -- равноплечая.

В зависимости от расположения перетяжки выделяют три основных вида хромосом: 1) равноплечие - с плечами равной длины; 2) неравноплечие - с плечами неравной длины; 3) одноплечие (палочковидные) - с одним длинным и другим очень коротким, едва заметным плечом (см. рис. 1.17).

Каждой клетке того или иного вида живых организмов свойственны определенные число, размеры и форма хромосом. Совокупность хромосом соматической клетки, типичную для данной систематической группы грибов, животных или растений, называют хромосомным набором или кариотипом.

Число хромосом в зрелых половых клетках называют гаплоидным набором и обозначают буквой л. Соматические клетки содержат двойное число хромосом (диплоидный набор), обозначаемое как 2я. Клетки, имеющие более двух наборов хромосом, являются полиплоидными (4n, 8n и т. д.). Парные хромосомы, т. е. одинаковые по форме, структуре и размерам, но имеющие разное происхождение (одна материнская, другая отцовская), называются гомологичными.

Количество хромосом в кариотипе не связано с уровнем организации живых организмов; примитивные формы Moгут иметь большее число хромосом, чем высокоорганизованные, и наоборот. Например, клетки радиолярий (морских простейших) содержат 1 000-1 600 хромосом, а клетки шимпанзе - всего 48. Однако следует помнить, что все организмы одного вида имеют одинаковое количество хромосом, т. е. для них характерна видовая специфичность кариотипа. В клетках человека диплоидный набор составляет 46 хромосом, клетках пшеницы мягкой - 42, картофеля - 18, мухи домашней - 12, плодовой мушки дрозофилы - 8. Правда, клетки разных тканей даже одного организма в зависимости от выполняемой функции могут иногда содержать разное число хромосом. Так, в клетках печени животных бывает разное число наборов хромосом (4л, 8ч). По этой причине понятия мкариотип» и «хромосомный набор» не совсем идентичны.

Некоторые хромосомы имеют вторичную перетяжку, не связанную с прикреплением нитей веретена. Этот участок хромосомы контролирует синтез ядрышка (ядрышковый организатор).

Ядрышки - это округлые, сильно уплотненные, не ограниченные мембраной участки клеточного ядра диаметром 1-2 мкм и более. Форма, размеры и количество ядрышек зависят от функционального состояния ядра: чем крупнее ядрышко, тем выше его активность.

В состав ядрышек входит около 80% белка, 10-15% РНК, 2- 12% ДНК. Во время деления ядра ядрышки разрушаются. В конце деления клетки ядрышки вновь формируются вокруг определенных участков хромосом, называемых ядрышковьши организаторами. В ядрышковых организаторах локализованы гены рибо-сомной РНК. Здесь происходит синтез рибосомных РНК, объединение их с белками, что ведет к образованию субъединиц рибосом. Последние через поры в ядерной оболочке переходят в цитоплазму. Таким образом, ядрышко представляет собой место синтеза рРНК и самосборки рибосом.

Микрофотография ядрышка

Ядрышко- хромосомные участки, определяющие синтез рРНК и образование клеточных рибосом. В растущих ооцитах неск сот ядрышек - амплификация ядрышек. Ядрышки отсутствуют в клетках дробящихся яиц и в дифф. кл - клетки крови

Число ядрышек зависит от числа ядрышковых организаторов - участки, на кот в телофазе происх образование ядрышек интерфазного ядра - образуют вторичные перетяжки х-м. У человека яо расп в коротких плечах 13, 14, 15, 21 и 22 хромосом (10 на диплоидный набор). 82). У кошки - 2; у свиньи - 2; у мыши - 4; у коровы - 8. У хладнокр. позвоночных и птиц обычно 1пара яо х-м

Локализация яо определяется на митотических х-мах окраской солями серебра, связ с яо белками, более точно определение яо методом FISH. Ядрышки могут сливаться др с другом.

Множественность рибосомных генов

при разрыве х-мы на месте вторичной перетяжки ядрышки могут

возникать на каждом из фрагментов х-м – множество копий рибосомных генов - полицистроны - умеренные повторы. У E. coli 6-7 рассеянных по геному идентичных оперонов рРНК- ~1% всей ДНК. Число генов рРНК постоянно в клетке

Амплифицированные ядрышки - гены рРНК мб избыточно реплицированы. При этом дополнительная репликация генов рРНК происходит в целях обеспечения продукции большого количества рибосом. В результате такого сверхсинтеза генов рРНК их копии могут становиться свободными, экстрахромосомными. Эти внехромосомные копии генов рРНК могут функционировать независимо, в результате чего возникает масса свободных дополнительных ядрышек, но уже не связанных структурно с ядрышкообразующими хромосомами. Это явление получило название амплификации генов рРНК. подробно изучено на растущих ооцитах амфибий.

У X. laevis амплификация рДНК, происходит в профазеI. В этом случае количество амплифицированной рДНК (или генов рРНК) становится в 3000 раз больше того, что приходится

на гаплоидное количество рДНК, и соответствует 1,5х106 генов рРНК. Эти сверхчисленные внехромосомные копии и образуют сотни дополнительных ядрышек в растущих ооцитах. В среднем же на одно дополнительное ядрышко приходится несколько сот или тысяч генов рРНК.

Амплифицированные ядрышки встречаются также в ооцитах насекомых. У окаймленного плавунца в ооцитах обнаружено 3х106 экстрахромосомных копий генов рРНК.

После периода созревания ооцита при его двух последовательных делениях дополнит ядрышки в состав митотических хромосом не входят, они отделяются от новых ядер и деградируют.

У Tetrachymena pyriformis в гаплоидном геноме микронуклеуса единственный ген рРНК. В макронуклеусе ~200 копий.

У дрожжей экстрахромосомные копии генов рРНК - циклические ДНК l~3 мкм, сод один ген рРНК.

СТРУКТУРА ЯДРЫШКА

В ядрышке различают гранулярный компанент (гк) и фибриллярный компанент (фк).

Гранулярный компанент представляет собой

гранулы 15-20 нм, обычно расположенные на периферии ядрышка, хотя гк и фк могут быть распределены равномерно.

Фк и гк способны образовывать нитчатые структуры - нуклеолонемы - ядрышковые нити ~100-200 нм, которые могут образовывать отдельные сгущения.

Фибриллярный компанент - представляет собой тонкие (3-5 нм) фибриллы - диффузная часть ядрышек, в центре ядрышка – 1 или 3-5 отдельных зон: фибриллярные центры - частки скопления фибрилл с низкой е лотностью, окруженные зоной фибрилл высокой е плотности - плотный фибриллярный компонент

хроматин – примыкает или окружает ядрышко. 30нм фибриллы хроматина по периферии ядрышка могут заходить в лакуны, м-у нуклеолонемными участками.

белковый сетчатый матрикс –

метод регрессивного окрашивания нк - ионы уранила, связанные с ДНК легко вымываются хелатоном ЭДТА, чем с РНК?окрашенные структуры сод РНК: гранулы (сильно), пфк (слабее), хроматин (не окрашен)

импульсное мечение (3H-уридин), первые следы мечения обнаруживались сначала (через 1-15 мин) в пфк, а затем (до 30 мин) меченым оказывался гк. в фц метка не обнаруживалась?45S пре-рРНК синтезируется в области пфк, а гранулярный компонент ядрышка соответствует прерибосомным частицам (55S-, 40S РНП).

окрашивание осмий-амином, ДНКазы, меченной золотом, связыванием меченого актиномицина, прямой молекулярной гибридизацией с меченой рДНК - что в составе фибриллярных центров находится ДНК, ответственная за синтез рРНК. Зоны фибриллярных центров отличаются от остального хроматина тем, что состоят из тонких хроматиновых фибрилл, значительно обедненных гистоном H2 (что показано с помощью меченных коллоидным золотом антител).

фц: неактивные рибосомные гены, спейсерные участки.

Транскрипция пре-рРНК происходит по периферии фц, где пфк и представляет собой 45S пре-рРНК, располагающиеся в виде “елочек” на деконденсированных участках рДНК После завершения

транскрипции 45S РНК теряет связь с транскрипционной единицей на ДНК в зоне плотного фибриллярного компонента, каким-то еще непонятным образом переходит в гранулярную зону, где и происходит процессинг рРНК, образование и созревание рибосомных субъединиц.

Фибриллярный центр и ядрышковый организатор

Строение и химические характеристики ФЦ оказались практически одинаковыми с таковыми ядрышковых организаторов митотических хромосом. И те и другие построены из тесно ассоциированных фибрилл, толщиной 6-10 нм; и те и другие обладают характерной особенностью - окрашиваться солями серебра, что зависит от наличия особых ядрышковых белков, содержат РНК-полимеразу I.

число ФЦ в интерфазных ядрышках, не соответствует числу ядрышковых организаторов в митозе. Так в клетках культуры СПЭВ число ФЦ может быть в 2-4 раза выше, чем число ядрышковых организаторов.

Более того, количество ФЦ возрастает по мере увеличения плоидности клетки (G2, 4n) и транскрипционной ее активности.

При этом уменьшается величина каждого отдельного фибриллярного центра. Однако суммарные объемы ФЦ при пересчете на гаплоидный хромосомный набор остаются постоянными в интерфазе, но превышают это число вдвое по сравнению метафазой. Другими словами при активации синтеза рРНК наблюдается такое изменение числа ФЦ и их размеров, которое может говорить о какой-то фрагментации исходных ФЦ в относительно мало активных ядрышках.

Противоположная картина наблюдается при затухании синтетических процессов в дифференцирующихся клетках эритроидного ряда мышей (табл. 12). При этом видно, что в размножающихся и активно синтезирующих гемоглобин проэритробластах количество фибриллярных центров зависит от плоидности клетки (88 в G1-фазе, 118 в G2-фазе клеточного цикла), размер индивидуальных ФЦ изменяется мало. После прекращения размножения этих клеток и падении их синтетической активности резко меняются параметры ядрышка. Их объем, уже начиная со стадии базофильного эритробласта

уменьшается в 4-5 раз, а на конечной стадии дифференцировки (нормобласт) - в сотню раз. При этом резко падает число ФЦ (10-40 раз) и возрастает объем почти в 10 раз величины отдельного фибриллярного центра.

Исходя из этих наблюдений можно так представить общую схему активации и инактивации ядрышка (рис. 90) на примере одного ядрышкового организатора.

В неактивной форме ядрышковый организатор представлен в виде одного крупного фибриллярного центра, включающего в себя компактно уложенную часть цепи хромосомной ДНК, несущей тандемно расположенные рибосомные гены (транскрипционные единицы). В начале активации ядрышка происходит деконденсация р-генов на периферии такого фибриллярного центра, эти р-гены начинают транскрибироваться, на них образуются РНП-транскрипты, которые при созревании дают начало появлению гранул - предшественников рибосом по периферии активированного ядрышка. По мере усиления транскрипции единый фибриллярный центр как бы распадается

РНК ДНК →ДНК , ДНК РНК , РНК РНК и РНК →белок имели экспери­ментальные прямые или... клетках быстро активируются эритроцитарные ядра ; в них син­тезируются РНК , ДНК и белки, специфичные для данного...

ДНК - это химическое вещество, тот материал, из которого состоят хромосомы. Каждая хромосома состоит из одной молекулы ДНК. Таким образом в ядре соматической клетки человека имеется 46 молекул ДНК. Однако ДНК и хромосомы - это не тождественные понятия. Помимо ядра, ДНК содержится в митохондриях, а у растений - ещё и в хлоропластах. Такая ДНК организована не в виде хромосом, а в виде мелких кольцеобразных структур, как у бактерий (сходство с организацией генома бактерий там прослеживается ещё по ряду признаков, вообще, считается, что нынешние митохондрии и пластиды - это бывшие бактерии, которые сначала существовали в эукариотической клетке на правах её симбионта, а со временем стали её частью), при этом в митохондии или пластиде может содержаться от 1 до нескольких десятков таких кольцеобразных ДНК.

В любой молекуле ДНК - линейной хромосоме или кольцевой из митохондрий или пластид - зашифрована информация о последовательности какого-то полипептида (упрощённо можно сказать, что белка, хотя это не совсем так, поскольку синтезированный белок, чтобы обрести свою функцию, после синтеза ещё "дозревает", при этом из молекулы могут ферментативно вырезаться какие-то участки белка, то есть та последовательность, которая зашифрована в ДНК, - это не редактированная последовательность исходного полипептида, из которого белок потом ещё будет формироваться с помощью некоторых химических преобразований). Так вот участок ДНК, с которого синтезируется какой-то конкретный полипептид, - это ген. В каждой хромосоме и в каждой кольцевой молекуле ДНК имеется разное количество генов: в Х-хромосоме человека (одна из самых крупных), к примеру, около 1500 генов, в Y-хромосоме человека их меньше сотни.

Также нужно понимать, что хромосома (либо кольцевая ДНК) - это отнюдь не только гены. Помимо них в любой молекуле ДНК есть и некодирующие участки, причём доля этих некодирующих участков различна у разных видов. Например у бактерий на некодирующую часть генома приходится где-то 20%, а у человека - 97-98%. Причём некодирующие участки есть и посреди генов (интроны) - когда информация с генов переписывается на м-РНК, участки РНК, синтезированные с интронов, вырезаются, и белок синтезируется уже с отредактированных молекул РНК. Но большая часть некодирующей ДНК сосредоточена между генами. Роль этой некодирующей ДНК не до конца изучена (тут, если нужно настолько подробно, можно глянуть в википедию), но считается, что совсем без неё клетка не может. Ну и мутации эта некодирующая часть накапливает гораздо быстрее, чем кодирующая, и поэтому в судебной медицине для идентификации личности используется некодирующая ДНК (поскольку гены - довольно консервативные участки ДНК, мутации в них тоже происходят, но не с такой частотой, чтобы там накапливалось достаточное количество нуклеотидных замен для достоверное идентификации двух индивидуумов).

4.1. Клеточное ядро

4.1.1. Общие представления

4.1.1.1. Функции ядра 4.1.1.2. Ядерная ДНК 4.1.1.3. Выявление транскрипции в клеточных ядрах 4.1.1.4. Структура ядра

4.1.2. Хроматин

4.1.2.1. Эу- и гетерохроматин 4.1.2.2. Половой хроматин 4.1.2.3. Нуклеосомная организация хроматина

4.1.3. Ядрышки

4.1.3.1. Строение 4.1.3.2. Выявление при световой микроскопии

4.1.4. Ядерная оболочка и матрикс

4.1.4.1. Ядерная оболочка 4.1.4.2. Ядерный матрикс

4.2. Деление клеток

4.2.1. Два способа деления

4.2.2. Клеточный цикл

4.2.2.1. Клеточный цикл постоянно делящихся клеток 4.2.2.2. Клеточный цикл для клеток, прекращающих деление 4.2.2.3. Пример - клеточный цикл клеток эпидермиса 4.2.2.4. Феномен полиплоидии

4.2.3. Митоз

4.2.3.1. Стадии митоза 4.2.3.2. Просмотр препарата: митозы в тонкой кишке 4.2.3.3. Просмотр препарата: митозы в культуре животных клеток 4.2.3.4. Метафазные хромосомы 4.2.3.5. Уровни укладки хромосом

4.1. Клеточное ядро

4.1.1. Общие представления

4.1.1.1. Функции ядра

Функции ядра в соматичес- ких клетках

а) Ядро - важнейшая органелла клетки, содержащая наследственный материал - ДНК.

б) Поэтому в соматических клетках оно выполняет 2 ключевые функции:

сохраняет наследственный материал для передачи дочерним клеткам (образующимся при делении исходной);

обеспечивает использование информации ДНК в самой клетке - в том объёме, в каком это необходимо данной клетке при данных условиях.

Информация, записанная в ДНК

Конкретно, ДНК каждой клетки содержит следующую информацию:

о первичной структуре (последовательности аминокислот) всех белков всех клеток организма (исключение - некоторые белки митохондрий, кодируемые митохондриальной ДНК),

о первичной структуре (последовательности нуклеотидов) примерно 60 видов транспортных РНК и 5 видов рибосомных РНК,

а также, видимо, о программе использования данной информации в разных клетках в разные моменты онтогенеза.

Последова- тельность передачи информации

а) Передача информации о структуре белка включает 3 этапа.-

Транскрипция. – В ядре на участке ДНК как на матрице образуется матричная РНК (мРНК); точнее, её предшественник (пре-мРНК).

Созревание мРНК (процессинг) и перемещение её в цитоплазму.

Трансляция. - В цитоплазме на рибосомах происходит синтез полипептидной цепи в соответствии с последовательностью нуклеотидных триплетов (кодонов) в мРНК.

б) Т.к. среди белков около 50 % являются ферментами, то их образование приводит, в конечном счёте, к синтезу и всех прочих (небелковых) компонентов клетки и межклеточного вещества.

Процессы, происходя- щие в ядре

а) Итак, вторая ключевая функция ядра (использование информации ДНК для обеспечения клеточной жизнедеятельности) реализуется за счёт того, что в нём проходят

транскрипция определённых участков ДНК (синтез пре-мРНК), созревание мРНК, синтез и созревание тРНК и рРНК.

б) Кроме того, в ядре

формируются субъединицы рибосом (из рРНК и поступающих из цитоплазмы рибосомальных белков).

в) Наконец, перед делением клетки (кроме второго деления мейоза) в ядре происходит

репликация (удвоение) ДНК,

причём в дочерних молекулах ДНК

одна из цепей является старой, а вторая - новой (синтезированной на первой по принципу комплементарности).

Функции ядра в половых клетках

В половых клетках (сперматозоидах и яйцеклетках) функция ядер несколько иная. Это

подготовка наследственного материала для объединения с аналогичным материалом половой клетки противоположного пола.

4.1.1.2. Ядерная днк

I. Выявление ДНК

1. а) Обнаружить ДНК в клеточных ядрах можно с помощью метода Фёльгена (п. 1.1.4). –

б) При этой окраске

ДНК окрашивается в вишнёвый цвет , а прочие вещества и структуры - в зелёный .

2. а) На снимке мы видим, что, действительно, в ядрах (1) клеток содержится ДНК.

б) Исключения составляютядрышки (2): в них содержание ДНК низкое, отчего они, как и цитоплазма (3), имеют на препарате зелёный цвет .

1. Препарат - дезоксирибонуклеиновая кислота (ДНК) в ядре клетки. Окраска по методу Фёльгена.

Полный размер

II. Характеристики ядерной ДНК

4.1.1.3. Выявление транскрипции в клеточных ядрах

I. Принцип метода

Мечение уридином

а) Чтобы выявить транскрипционную активность клеточных ядер, животным in vivo вводят в кровь раствор радиоактивного уридина.

б) Данное соединение в клетках превращается в Н 3 –УТФ (уридинтрифосфат) - один из четырёх нуклеотидов, используемых при синтезе РНК.

в) Поэтому вскоре после введения метки она оказывается в составе новосинтезированных цепей РНК.

Замечание. - При образовании ДНК вместо уридилового нуклеотида используется тимидиловый; так что Н 3 –УТФ включается только в РНК.

Последу- ющие процедуры

а) Через определённое время животных забивают и готовят срезы изучаемых тканей.

б) Срезы покрывают фотоэмульсией. - В местах нахождения радиоактивного соединения происходит разложение фотоэмульсии и образуются гранулы серебра (2) . Т.е. последние являются маркёрами радиоактивной метки.

в) Затем срез (после промывки и закрепления) красят как обычный гистологический препарат.

II. Препарат

1. а) На представленном снимке мы видим, что меченое вещество сосредоточено, главным образом, в ядрах (1) клеток.

б) Это и отражает тот факт, что

в ядрах происходит синтез всех видов РНК - мРНК, тРНК и рРНК.

2. Наличие метки в других частях препарата объясняется, например, тем, что

какая-то часть меченого вещества (Н 3 –уридина) не успела включиться в состав РНК,

а какая-то часть новообразованной РНК, наоборот, уже успела выйти из ядра в цитоплазму.

2. Препарат - включение Н 3 –уридина в РНК. Окраска гематоксилин-эозином.

Полный размер

4.1.1.4. Структура ядра

1. а) А здесь - обычный препарат печени. б) В печёночных клетках хорошо выявляются округлые ядра (1). б) Последние окрашиваются гематоксилином в фиолетовый цвет.

2. а) В свою очередь, в ядрах можно видеть 3 основных элемента:

ядерную оболочку (2), глыбки хроматина (3), округлые ядрышки (4).

б) Другие компоненты ядра -

ядерный матрикс и ядерный сок -

формируют ту среду, в которой находятся хроматин и ядрышко.

3. Препарат - структура клеточного ядра. Клетки печени. Окраска гематоксилин-эозином.

Полный размер

3. Кроме ядер, обратим внимание на оксифильную, слегка зернистую,цитоплазму (5) и не очень заметные границы (6) клеток.

Теперь рассмотрим более подробно строение ядерных структур.