Урок по физике "измерение длины световой волны с помощью дифракционной решетки". Измерение длины световой волны с помощью дифракционной решетки

  • Дата: 10.10.2019

Лабораторная работа №6.

Измерение световой волны.

Оборудование: дифракционная решетка с периодом 1/100 мм или 1/50 мм.

Схема установки:

  1. Держатель.

  2. Черный экран.

    Узкая вертикальная щель.

Цель работы: экспериментальное определение световой волны с помощью дифракционной решетки.

Теоретическая часть:

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными помежутками.

Источник

Длина волны определяется по формуле:

Где d – период решетки

k – порядок спектра

    Угол, под котором наблюдается максимум света

Уравнение дифракционной решетки:

Поскольку углы, под которыми наблюдается максимумы 1-го и 2-го порядков, не превышают 5 , можно вместо синусов углов использовать их тангенсы.

Следовательно,

Расстояние а отсчитывают по линейке от решетки до экрана, расстояние b – по шкале экрана от щели до выбранной линии спектра.

Окончательная формула для определения длины волны имеет вид

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра.

Примерный ход работы:

    b=8 см, a=1 м; k=1; d=10 -5 м

(красный цвет)

d – период решетки

Вывод: Измерив экспериментально длину волн красного света с помощью дифракционной решетки, мы пришли к выводу, что она позволяет очень точно измерить длины световых волн.

Лабораторная работа №5

Лабораторная работа №5

Определение оптической силы и фокусного расстояния собирающей линзы .

Оборудование: линейка, два прямоугольных треугольника, длиннофокусная собирающая линза, лампочка на подставке с колпачком, источник тока, выключатель, соединительные провода, экран, направляющая рейка.

Теоретическая часть:

Простейший способ измерения оптической силы и фокусного расстояния линзы основан на использовании формулы линзы

d – расстояние от предмета до линзы

f – расстояние от линзы до изображения

F – фокусное расстояние

Оптической силой линзы называют величину

В качестве предмета используется светящаяся рассеянным светом буква в колпачке осветителя. Действительное изображение этой буквы получают на экране.

Изображение действительное перевернутое увеличенное:

Изображение мнимое прямое увеличенное:

Примерный ход работы:

    F = 8 см = 0,08 м

    F = 7 см = 0,07 м

    F = 9 см = 0,09 м

Лабораторная работа № 4

Лабораторная работа № 4

Измерение показателя преломления стекла

ученицы 11 класса «Б» Алексеевой Марии.

Цель работы: измерение показателя преломления стеклянной пластины, имеющей форму трапеции.

Теоретическая часть: показатель преломления стекла относительно воздуха определяется по формуле:

Таблица вычислений:

Вычисления:

n пр1=AE 1 / DC 1 =34мм/22мм=1,5

n пр2=AE 2 / DC 2 =22мм/14мм=1,55

Вывод: Определив показатель преломления стекла, можно доказать что это величина не зависит от угла падения.

Лабораторная работа по физике №3

Лабораторная работа по физике №3

ученицы 11 класса «Б»

Алексеевой Марии

Определение ускорения свободного падения при помощи маятника.

Оборудование:

Теоретическая часть:

Для измерения ускорения свободного падения применяются разнообразные гравиметры, в частности маятниковые приборы. С их помощью удается измерить ускорение свободного падения с абсолютной погрешностью порядка 10 -5 м/с 2 .

В работе используется простейший маятниковый прибор – шарик на нити. При малых размерах шарика по сравнению с длиной нити и небольших отклонениях от положения равновесия период колебания равен

Для увеличения точности измерения периода нужно измерить время t остаточно большого числа N полных колебаний маятника. Тогда период

И ускорение свободного падения может быть вычислено по формуле

Проведение эксперимента:

    Установить на краю стола штатив.

    У его верхнего конца укрепить с помощью муфты кольцо и повесить к нему шарик на нити. Шарик должен висеть на расстоянии 1-2 см от пола.

    Измерить лентой длину l маятника.

    Возбудить колебания маятника, отклонив шарик в сторону на 5-8 см и отпустив его.

    Измерить в нескольких экспериментах время t 50 колебаний маятника и вычислить t ср:

    Вычислить среднюю абсолютную погрешность измерения времени и результаты занести в таблицу.

    Вычислить ускорение свободного падения по формуле

    Определить относительную погрешность измерения времени.

    Определить относительную погрешность измерения длины маятника

    Вычислить относительную погрешность измерения g по формуле

Вывод: Получается, что ускорение свободного падения, измеренное при помощи маятника, приблизительно равно табличному ускорению свободного падения (g=9,81 м/с 2) при длине нити 1 метр.

Алексеева Мария, ученица 11 “Б” класса гимназии № 201 , г. Москва

Учитель физики гимназии № 201 Львовский М.Б.

Лабораторная работа по физике №7

Ученицы 11 класса «Б» Садыковой Марии

Наблюдение сплошного и линейчатого спектров.

О
борудование:
проекционный аппарат, спектральные трубки с водородом, неоном или гелием, высоковольтный индуктор, источник питания, штатив, соединительные провода, стеклянная пластина со скошенными гранями.

Цель работы: с помощью необходимого оборудования наблюдать (экспериментально) сплошной спектр, неоновый, гелиевый или водородный.

Ход работы:

Располагаем пластину горизонтально перед глазом. Сквозь грани наблюдаем на экране изображение раздвижной щели проекционного аппарата. Мы видим основные цвета полученного сплошного спектра в следующем порядке: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный.

Данный спектр непрерывен. Это означает, что в спектре представлены волны всех длин. Таким образом, мы выяснили, что сплошные спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы.

Мы видим множество цветных линий, разделенных широкими темными полосами. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенной длины волны.

Водородный спектр: фиолетовый, голубой, зеленый, оранжевый.


Наиболее яркой является оранжевая линия спектра.

Спектр гелия: голубой, зеленый, желтый, красный.


Наиболее яркой является желтая линия.

Основываясь на нашем опыте, мы можем сделать вывод, что линейчатые спектры дают все вещества в газообразном состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Изолированные атомы излучают строго определенные длины волн.

Тема: « Измерение длины световой волны с помощью дифракционной решетки».

Цели урока: экспериментально получить дифракционный спектр и определить длину световой волны с помощью дифракционной решетки;

воспитывать внимательность, доброжилательность, толерантность в процессе работи в малых группах;

развивать интерес к изучению физики.

Тип урока: урок формирования умений и навыков.

Оборудование: длины световой волны, инструкция по ОТ, инструкции по выполнению лабораторной работы, компьютеры.

Методы проведения: лабораторная работа, работа в группах.

Межпредметные связи: математика, информатика ИКТ.

Все познание реального мира

исходит из опыта и завершается им

А. Эйнштейн.

Ход урока

І. Организационный момент.

    Сообщение темы и цели урока.

ІІ. 1. Актуализация опорных знаний. Опрос обучающихся (Дополнение 1).

    Выполнение лабораторной работы.

Обучающимся предлагается измерять длину световой волны с помощью дифракционной решетки.

Обучающиеся объединяются в малые группы (по 4-5 человек) и вместе выполняют лабораторную работу согласно инструкции. С помощью компьютерной программы Excel делают вычисления и результаты работы заносят в таблицу (в программе Word).

Критерии оценивания:

Команда, выполнившая задание первой, получает – оценку 5;

второй – оценку 4;

третьей – оценку 3

    Правила безопасности жизнедеятельности во время выполнения работы.

    Работа в группах под руководством преподавателя.

    Обобщение и систематизация обучающимися результатов работы.

Результат работы заносится в таблицу на компьютере (Дополнение 2) .

ІІІ.

    Подведение итогов. Сравнить полученные результаты с табличными данными. Сделать выводы.

    Рефлексия.

    Всё ли получилось так, как я задумывал?

    Что было сделано хорошо?

    Что было сделано плохо?

    Что было выполнить легко, а что оказалось неожиданно трудно?

    Работа в малой группе мне помогла или создала дополнительные трудности?

VI. Домашнее задание.

    Оформить работу.

    Повторить теоретический материал по теме «Интерференция и дифракция света» .

    Составить кроссворд по теме «Свойства электромагнитных волн».

Дополнение 1

1. Что такое свет?

2. Из чего состоит белый свет?

3. Почему свет называется видимым излучением?

4. Как разложить белый свет в цветной спектр?

5. Что такое дифракционная решетка?

6. Что можно измерить с помощью дифракционной решетки?

7. Могут ли две разноцветные световые волны, например красного и зеленого излучений, иметь одинаковые длины волн?

8. А в одной среде?

Дополнение 2

Красный

10 -7 м

Оранжевый

10 -7 м

Желтый

10 -7 м

Зеленый

10 -7 м

Голубой

10 -7 м

Синий

10 -7 м

Фиолетовый

10 -7 м

Лабораторная работа

Тема: Измерение длины световой волны.

Цель работы: измерить длину волны красного и фиолетового цветов, сравнить полученные значения с табличными.

Оборудование: электрическая лампочка с прямой нитью накаливания, прибор для определения длины световой волны.

Теоретическая часть

В работе для определения длины световой волны используется дифракционная решетка с периодом 1/100 мм или 1/50 мм (период указан на решетке). Она является основной частью измерительной установки, показанной на рисунке. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же располагается черный экран 4 с узкой вертикальной щелью 5 посредине. Экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой. На экране и линейке имеются миллиметровые шкалы. Вся установка крепится на штативе 6.

Если смотреть сквозь решетку и прорезь на источник света (лампу накаливания или свечу), то на черном фоне экрана молено наблюдать по обе стороны от щели дифракционные спектры 1-го, 2-го и т. д. порядков.

Рис. 1

Длина волны λ определяется по формуле λ = dsinφ/k , где d - период решетки; k - порядок спектра; φ - угол, под которым наблюдается максимум света соответствующего цвета.

Поскольку углы, под которыми наблюдаются максимумы 1-го и 2-го порядков, не превышают 5°, можно вместо синусов углов использовать их тангенсы. Из рисунка видно, что tgφ = b/a . Расстояние а отсчитывают по линейке от решетки до экрана, расстояние Ь - по шкале экрана от щели до выбранной линии спектра.

Рис. 2

Окончательная формула для определения длины волны имеет вид λ = db/ka

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра данного цвета.

Работу можно выполнять используя инструкции №2 или №2

Инструкция №1

Ход работы

1. Подготовьте бланк отчета с таблицей для записи результатов измерений и вычислений.

2. Соберите измерительную установку, установите экран на расстоянии 50 см от решетки.

3. Глядя сквозь дифракционную решетку и щель в экране на источник света и перемещая решетку в держателе, установите ее так, чтобы дифракционные спектры располагались параллельно шкале экрана.

4. Вычислите длину волны красного цвета в спектре 1-го порядка справа и слева от щели в экране, определите среднее значение результатов измерения.

5. Проделайте то же для других цвет ов .

6. Сравните полученные результаты с табличными длинами волн.

Инструкция № 2

Ход работы

    Измерьте расстояние b до соответствующего цвета в спектре первого по строке влево и вправо от центрального максимума. Измерьте от-стань а от дифракционной решетки до экрана (см.рисунок 2).

    Определите или рассчитайте период решетки d.

    Вычислите длину света для каждого из семи цветов спектра.

    Результаты измерений и вычислений занесите в таблицу:

Цвет

b ,слева,м

b ,справа,м

b ,среднее,м

а

Порядок

спектра k

Период решетки

d

Измеренное λ , нм

Фи олетовый

Син ий

Голубой

Зелен ый

Жёлтый

Оранжев ый

Красный

4. Вычислите относительную погрешность эксперимента для каждого цвета по формуле

Цель работы : Определить длину световой волны, используя дифракционную решетку .

Оборудование:

1. Прибор для определения длины световой волны, состоящий из линейки, пластины с дифракционной решеткой и движка со щелью.

2. Штатив.

3. Электрическая лампочка на напряжение 42 В в патроне.

Краткая теория

Как известно, свет представляет собой электромагнитные волны , которые характеризуются длиной световой волны. Дифракционная решетка служит для выделения из света с разными длинами волн света с определенной длиной волны или, как говорят, разложения света на его спектральные компоненты . Основой работы дифракционной решетки служат явления дифракции и интерференции света, и именно волновая природа света приводит к возникновению указанных выше двух явлений.

Дифракцией называется отклонение распространения света от прямолинейного в область, где при прямолинейном распространении света должна бы была быть тень.

Интерференцией называется сложение световых пучков, ведущее к образованию светлых и темных полос.

Дифракция. Дифракция наблюдается в случаях, когда свет проходит сквозь прозрачный материал, в котором есть непрозрачные небольшие препятствия, либо через небольшие отверстия в непрозрачном материале.

Различают два типа дифракции: дифракция в параллельных пучках света или дифракция Фраунгофера и дифракция в расходящемся пучке света – дифракция Френеля . В первом случае для наблюдения дифракционной картины используют либо солнечные лучи, которые являются параллельными, либо создают параллельный пучок света, используя простейшую оптическую систему – выпуклую линзу. Во втором случае используется точечный источник света, например, лампа с малыми размерами спирали.

Схема наблюдения дифракции Фраунгофера приведена на рис. 1.

Рис.1. Дифракция Фраунгофера.

В случае прямолинейного распространения света параллельный пучок лучей, сформированный линзой 1, пройдя через круглое отверстие в непрозрачном экране 1 и через фокусирующую линзу 2, должен был бы собраться в точку. Однако, из-за дифракции на экране 2 получается сложная дифракционная картина, состоящая из чередования светлых и темных колец.

Интерференция. При интерференции волны света с одинаковыми длинами волн максимально усиливают друг друга, когда приходят в точку наблюдения в одинаковой фазе , и ослабляют друг друга, когда приходят в противофазе . Суть явления интерференции поясняет рис.2.

Рис. 2. Интерференция от 2-х источников.

Точечные источники света В 1 и В 2 расположены друг от друга на расстоянии t. Колебания электромагнитного поля совершаются в этих точках в одной и той же фазе. Интерференция (т.е. сложение или вычитание колебаний) наблюдается в точках А и С на экране, находящемся на большом расстоянии L по сравнению t и l. В оптике установлено, что для максимального усиления волн разность хода (т.е. разность расстояний от источников до точки наблюдения) должно выполняться условие:

,

а для максимального ослабления волн:

, где n – целое число.

Из Рис. 2 можно определить разность хода . Тогда, используя предыдущие равенства, можно получить, что светлые полосы располагаются на расстоянии от точки А, расстояние между светлыми полосами , а темные полосы располагаются между светлыми. Очевидно, что в точке А разность хода равна нулю и в этой точке наблюдается сложение колебаний от источников света В 1 и В 2

Дифракционная решетка . Ряд прозрачных щелей, разделенных непрозрачными полосами, называется дифракционной решеткой . Дифракционная картина, которая имела место на одной щели при использовании дифракционной решетки, усложняется, так как кроме дифракции на каждой щели происходит еще и интерференция световых волн от щелей, которые можно рассматривать как источники света. На экране возникают максимумы и минимумы света, причем главные максимумы возникают при значении угла j , удовлетворяющих соотношению , где - период решетки равный сумме ширины щели и полосы. Положение 1-го максимума при определяется выражением

Из (1) видно, что для данной дифракционной решетки положения 1-го максимума для различных длин волн разное: чем больше длина волны света, тем больше угол отклонения наблюдаемого максимума от направления падающего пучка света.

Программа работы

Схема прибора приведена на рис.3.


Рис.3. Прибор для определения длины волны.

1. Включить электрическую лампочку.

2. Глядя через дифракционную решетку, направить прибор на лампочку так, чтобы через щель в движке была видна нить накала лампы. На черном фоне движка по обе стороны от нуля должны быть видны дифракционные спектры, состоящие из полос разного цвета. Если полосы располагаются не параллельно шкале, то это означает, что нить накала не параллельна штрихам на решетке. В этом случае надо повернуть немного либо дифракционную решетку, либо лампочку. Закрепить прибор.

3. Определить расстояние от щели на движке (нуля) до красной полосы слева на шкале.

4. Определить расстояние от щели на движке (нуля) до красной полосы справа на шкале. Записать это значение в таблицу.

5. Определить среднее значение расстояния до красной полосы по формуле:

Записать это значение в таблицу.

6. Определить расстояние от щели на движке (нуля) до фиолетовой полосы слева на шкале. Записать это значение в таблицу.

7. Определить расстояние от щели на движке (нуля) до фиолетовой полосы справа на шкале. Записать это значение в таблицу.

8. Определить среднее значение расстояния до фиолетовой полосы по формуле:

Записать это значение в таблицу.

9. Определить расстояние от дифракционной решетки до движка. Записать это значение в таблицу.

Цель урока:

  • рассмотреть практическое применение явлений дифракции и интерференции света;
  • познакомить учащихся с одним из способов определения длины световой волны с помощью дифракционной решётки;
  • продолжить формирование умений учащихся пользоваться измерительными приборами, проводить наблюдения, снимать показания приборов, записывать их в таблицу, составлять отчёт и делать выводы.

Оборудование:

  • мультимедийный проектор, компьютер, слайдовые презентации, подготовленные к уроку учителем (Приложение№3 ) и учащимися (Приложение №1 ; Приложение №2 );
  • оптическая скамья, рейтер, источник света, слайд-рамка с комплектом масок, пенал, соединительные провода, выпрямитель ВУ-4М (для лабораторной работы).

Ход урока

1. Актуализация знаний.

Учитель: Уже несколько уроков мы изучаем с вами световые волны. Свет это поперечная электромагнитная волна, поэтому как и механические волны световые волны могут огибать препятствия на своём пути, могут усиливать и ослаблять друг друга. Как называются эти явления? При каких условиях и с помощью каких приборов их можно наблюдать?

(Заслушать ответы учащихся)

2. Проверка домашнего задания творческого характера.

Учитель: Проверим домашнее задание. К сегодняшнему уроку вам нужно было подготовить мини-проект на тему “Практическое применение интерференции и дифракции света” и представить свою работу в виде небольшой презентации.

Учащиеся представляют свои работы (Приложение №2 “Явление дифракции в природе и технике” , приложение №1 “Техническое применение интерференции” )

3. Выполнение лабораторной работы.

Учитель: Теоретический материал о дифракционной решётке мы разобрали на предыдущем уроке, а сейчас с помощью этого замечательного прибора мы будем определять длину световой волны согласно описанию, данному в учебнике Г.Я.Мякишева, Б.Б.Буховцева “Физика-11” на стр. 329-330. Время выполнения работы – 15-17 минут.

Инструктаж учащихся по технике безопасности с росписями в журнале по ТБ!

4. Закрепление материала по теме “Волновые свойства света” (фронтальная работа)

Учитель: Приступаем к выполнению заданий различного уровня сложности из КИМов по подготовке к ЕГЭ (Приложение №3 “Готовимся к ЕГЭ” ).

5. Дополнительный материал к уроку

Учитель: Известно ли вам, что существует наука цветология? В основу этой науки положено изучение психологического восприятия цвета. Сегодня доказано, что каждый цвет испускает свойственную только ему определенную вибрацию. Вибрации чистых цветов оказывают восстанавливающее действие на те или иные функции организма, нормализуя их деятельность. Сегодня цветотерапия переживает второе рождение – специальная аппаратура позволяет во много раз усилить терапевтический эффект метода. Цветотерапия успешно используется в офтальмологии. Например, если 2-3 раза в год проводить лечение воздействием цвета на глаз, то возрастная дальнозоркость отодвинет время своего наступления. Успешно лечится косоглазие. Снимается астенопатия – зрительная утомляемость, которая возникает утех, кто много работает с компьютером.

Сообщение ученицы. Недавно читая газету-целительницу "Ай, Болит", я обратила внимание на статью Надежды Николаевны Ивановой из города Армавир Краснодарского края. Название статьи "Цвет – хорош он или нет – ищи ответ". В ней говорится, что с помощью "цветной" воды можно облегчить боль, поддержать себя и близкого человека в трудную минуту. Чтобы приготовить такую цветную воду нужно взять подставку (это может быть салфетка, бумага или картон) и поставит на нее стакан с чистой прозрачной водой нe менее, чем на 5 -10 минут. Вода воспримет и передаст вам энергию цвета. А пить ее следует не спеша, маленькими глотками.

  • Если вы с кем-то крупно поссорились, возбуждены, раздражены, выпейте несколько глотков воды из стакана, стоявшего на зеленой подставке.
  • После того как немного yспокоитесь, можете прибегнуть к помощи розового цвета: вы избавитесь от остатков напряженности. Так же работает и голубой цвет.
  • Бывает, после неприятного события или досадной неудачи никак не получается успокоиться: мучаете себя, вновь и вновь проигрывая в памяти, как все было. В таких случаях поможет лимонный цвет. Так же этот цвет поможет вам укрепить память.
  • При ежедневной работе на компьютере хорошо иметь рядом с собой стакан воды на бирюзовой подставке и почаще делать небольшие глотки, бирюзовый цвет защищает от радиоактивности и от теплового излучения компьютера. Эта вода способна сотворить чудо, она поможет вам подобрать без труда нужное слово на экзамене.
  • Если вы отправились в школу на контрольную, выпейте немного воды, приправленной энергией желтого цвета. Этот цвет способствует генерации блестящих идей, стимулирует духовную деятельность.
  • Если вы переутомились – то выпейте глоток воды из красного стакана. Вы сразу ощутите прилив энергии.
  • Воздействие оранжевого цвета зачастую становится первым толчком к позитивным переменам, а так же повышает аппетит.

6. Итоги урока.

7. Рефлексия.

Учащиеся продолжают фразу:

Сегодня на уроке я…

Больше всего мне сегодня запомнилось…

Самым интересным было…

8. Задание на дом:

п.66-72. Разобрать примеры решения задач на стр.207-208. Упр.10(1.4).

Определение длины световой волны при помощи дифракционной решётки

Цель работы : определение с помощью дифракционной решётки длины световых волн в различных частях видимого спектра.

Приборы и принадлежности : дифракционная решётка; плоская шкала со щелью и лампа накаливания с матовым экраном, укреплённые на оптической скамье; миллиметровая линейка.

1. ТЕОРИЯ МЕТОДА

Дифракцией волн называется огибание волнами препятствий. Под препятствиями понимаются различные неоднородности, которые волны, в частности, световые, могут огибать, отклоняясь от прямолинейного распространения и заходя в область геометрической тени. Дифракция наблюдается также, когда волны проходят через отверстия, огибая их края. Дифракция заметно выражена, если размеры препятствий или отверстий порядка длины волны, а также на больших расстояниях от них по сравнению с их размерами.

Дифракция света находит практическое применение в дифракционных решётках. Дифракционной решёткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Простейшая оптическая дифракционная решётка представляет собой ряд одинаковых параллельных очень узких щелей, разделённых одинаковыми непрозрачными полосами. Кроме таких прозрачных решёток существуют также отражательные дифракционные решётки, в которых свет отражается от параллельных неровностей. Прозрачные дифракционные решётки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповреждёнными частями стеклянной пластинки – щелями. Число штрихов, приходящихся на единицу длины, указывается на решётке. Периодом (постоянной) решётки d называется суммарная ширина одного непрозрачного штриха плюс ширина одной прозрачной щели, как показано на рис. 1, где подразумевается, что штрихи и полосы расположены перпендикулярно плоскости рисунка.

Пусть на решётку (ДР) перпендикулярно её плоскости падает параллельный пучок света, рис. 1. Поскольку щели являются очень узкими, то будет сильно выражено явление дифракции, и световые волны от каждой щели пойдут по различным направлениям. В дальнейшем прямолинейно распространяющиеся волны будем отождествлять с понятием лучей. Из всей совокупности лучей, распространяющихся от каждой щели, выделим пучок параллельных лучей, идущих под некоторым углом  (угол дифракции) к нормали, проведённой к плоскости решётки. Из этих лучей рассмотрим два луча, 1 и 2, которые идут от двух соответствующих точек A и C соседних щелей, как показано на рис. 1. Проведём к этим лучам общий перпендикуляр AB . В точках A и C фазы колебаний одинаковы, но на отрезке C B между лучами возникает разность хода , равная

 = d sin. (1)

После прямой AB разность хода  между лучами 1 и 2 сохраняется неизменной. Как видно из рис. 1, такая же разность хода будет существовать между лучами, идущими под тем же углом  от соответствующих точек всех соседних щелей.

Рис. 1. Прохождение света через дифракционную решетку ДР: Л – собирающая линза, Э – экран для наблюдения дифракционной картины, M – точка сведения параллельных лучей

Если теперь все эти лучи, т. е. волны, свести в одну точку, то они будут либо усиливать, либо ослаблять друг друга вследствие явления интерференции. Максимальное усиление, когда амплитуды волн складываются, происходит в том случае, если разность хода между ними равна целому числу длин волн:  = k , где k – целое число или ноль,  – длина волны. Следовательно, в направлениях, удовлетворяющих условию

d sin = k , (2)

будут наблюдаться максимумы интенсивности света с длиной волны .

Для сведения лучей, идущих под одним и тем же углом , в одну точку (M ) используется собирающая линза Л, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран Э. Фокальная плоскость проходит через фокус линзы и параллельна плоскости линзы; расстояние f между этими плоскостями равно фокусному расстоянию линзы, рис 1. Важно, что линза не изменяет разность хода лучей , и формула (2) остаётся справедливой. Роль линзы в настоящей лабораторной работе играет хрусталик глаза наблюдателя.

В направлениях, для которых величина угла дифракции  не удовлетворяет соотношению (2), будет происходить частичное или полное ослабление света. В частности, световые волны, приходящие в точку встречи в противоположных фазах, будут полностью гасить друг друга, и в соответствующих точках экрана будут наблюдаться минимумы освещённости. Кроме того, каждая щель из-за дифракции посылает в разных направлениях лучи разной интенсивности. В результате картина, возникающая на экране, будет иметь довольно сложный вид: между главными максимумами, определяемыми условием (2), располагаются добавочные, или побочные максимумы, разделённые совсем тёмными участками – дифракционными минимумами. Однако практически на экране будут видны лишь главные максимумы, так как интенсивность света в побочных максимумах, не говоря уже о минимумах, очень мала.

Если падающий на решётку свет содержит волны различных длин  1 ,  2 ,  3 , ..., то по формуле (2) можно подсчитать для каждой комбинации k и  свои значения угла дифракции , для которых будут наблюдаться главные максимумы интенсивности света.

При k = 0 для любого значения  получается  = 0, т. е. в направлении, строго перпендикулярном плоскости решётки, усиливаются волны всех длин. Это так называемый спектр нулевого порядка. Вообще, число k может принимать значения k = 0, 1, 2 и т. д. Два знака, , для всех значений k  0 соответствуют двум системам дифракционных спектров, расположенных симметрично по отношению к спектру нулевого порядка, слева и справа от него. При k = 1 спектр носит название спектра первого порядка, при k = 2 получается спектр второго порядка и т. д.

Поскольку всегда |sin|  1, то из соотношения (2) следует, что при заданных d и  значение k не может быть произвольно большим. Максимально возможное k , т. е. предельное число спектров k max , для конкретной дифракционной решётки можно получить из условия, которое следует из (2) при учете того, что |sin|  1:

Поэтому k max равно максимальному целому числу, не превосходящему отношения d /. Как было указано выше, каждая щель посылает в разных направлениях лучи разной интенсивности, причем оказывается, что при больших значениях угла дифракции  интенсивность посылаемых лучей слаба. Поэтому спектры с большими значениями |k |, которые должны наблюдаться под большими углами , практически видны не будут.

Картина, возникающая на экране в случае монохроматического света, т. е. света, характеризуемого одной определённой длиной волны , показана на рис. 2а. На тёмном фоне можно видеть систему отдельных ярких линий одного цвета, из которых каждая соответствует своему значению k .

Рис. 2. Вид картины, получаемой с помощью дифракционной решетки: а) случай монохроматического света, б) случай белого света

Если же на решётку падает немонохроматический свет, содержащий набор волн различных длин (например, белый свет), то при данном k  0 волны с различными длинами  будут усиливаться под разными углами , и свет будет разложен в спектр, когда каждому значению k соответствует весь набор спектральных линий, рис. 2б. Способность дифракционной решётки разлагать свет в спектр используют на практики для получения и исследования спектров.

Основными характеристиками дифракционной решётки являются её разрешающая способность R и дисперсия D . Если в световом пучке присутствуют две волны с близкими длинами  1 и  2 , то возникнут два близко расположенных дифракционных максимума. При малой разности длин волн  =  1   2 эти максимумы сольются в один и не будут видны раздельно. Согласно условию Рэлея, две монохроматические спектральные линии видны ещё раздельно в том случае, когда максимум для линии с длиной волны  1 попадает на место ближайшего минимума для линии с длиной волны  2 и наоборот, как показано на рис. 3.

Рис. 3. Схема, поясняющая условие Рэлея: I – интенсивность света в относительных единицах

Обычно для характеристики дифракционной решётки (и других спектральных приборов) используют не минимальное значение , когда линии видны раздельно, а безразмерную величину

называемую разрешающей способностью. В случае дифракционной решётки, используя условие Рэлея, можно доказать формулу

R = kN , (5)

где N – полное число штрихов решётки, которое можно найти, зная ширину решётки L и период d :

Угловая дисперсия D определяется угловым расстоянием  между двумя спектральными линиями, отнесённым к разности их длин волн :

Она показывает быстроту изменения угла дифракции  лучей в зависимости от изменения длины волны .

Отношение /, входящее в (7), можно найти, заменив его производной d /d , которую можно вычислить, используя соотношение (2), что даёт

. (8)

Для случая малых углов , когда cos  1, из (8) получаем

Наряду с угловой дисперсией D используют также линейную дисперсию D l , которая определяется линейным расстоянием l между спектральными линиями на экране, отнесённым к разности их длин волн :

где D – угловая дисперсия, f – фокусное расстояние линзы (см. рис. 1). Вторая формула (10) справедлива для малых углов  и получается, если учесть, что для таких углов l f .

Чем больше разрешающая способность R и дисперсия D , тем качественнее любой спектральный прибор, содержащий, в частности, дифракционную решётку. Формулы (5) и (9) показывают, что хорошая дифракционная решётка должна содержать большое число штрихов N и иметь малый период d . Кроме того, желательно использовать спектры больших порядков (с большими значениями k ). Однако, как отмечалось выше, такие спектры плохо видны.

Целью данной лабораторной работы является определение длины световых волн в различных областях спектра при помощи дифракционной решётки. Схема установки показана на рис. 4. Роль источника света играет прямоугольное отверстие (щель) А в шкале Шк, освещаемое лампой накаливания с матовым экраном S . Глаз наблюдателя Г, находящийся сзади дифракционной решётки ДР, наблюдает мнимое изображение щели в тех направлениях, в которых световые волны, идущие от различных щелей решётки, взаимно усиливаются, т. е. в направлениях главных максимумов.

Рис. 4. Схема лабораторной установки

Исследуются спектры не выше третьего порядка, для которых в случае используемой дифракционной решётки углы дифракции  малы, в связи с чем их синусы можно заменить тангенсами. В свою очередь, тангенс угла , как видно из рис. 4, равен отношению y /x , где y – расстояние от отверстия A до мнимого изображения спектральной линии на шкале, а x – расстояние от шкалы до решётки. Таким образом,

. (11)

Тогда вместо формулы (2) будем иметь , откуда

2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Установите, как показано на рис. 4, шкалу с отверстием А на один конец оптической скамьи вблизи от лампы накаливания S , а дифракционную решётку – на другой её конец. Включите лампу, перед которой находится матовый экран.

2. Передвигая решётку по скамье, добейтесь, чтобы красная граница правого спектра первого порядка (k = 1) совпала с каким-либо целым делением на шкале Шк; запишите его значение y в табл. 1.

3. Используя линейку, измерьте расстояние x для этого случая и также занесите его значение в табл. 1.

4. Проделайте те же операции для фиолетовой границы правого спектра первого порядка и для середины зелёного участка, расположенного в средней части спектра (в дальнейшем эта середина будет для краткости называться зелёной линией); значения x и y для этих случаев также занесите в табл. 1.

5. Аналогичные измерения проделайте для левого спектра первого порядка (k = 1), занося результаты измерений в табл. 1.

Учтите, что для левых спектров любого порядка k y.

6. Те же самые операции проделайте для красной и фиолетовой границ и для зелёной линии спектров второго порядка; данные измерений занесите в ту же таблицу.

7. Занесите в табл. 3 ширину дифракционной решётки L и значение периода решётки d , которые указаны на ней.

Таблица 1

Спектр лампы

накаливания

x , см

y , см

i , нм

 i =  i , нм

Фиолетовая

3. ОБРАБОТКА ОПЫТНЫХ ДАННЫХ

    По формуле (12) рассчитайте длины волн  i для всех проведённых измерений

(d = 0,01 см). Внесите их значения в табл. 1.

2. Найдите средние значения длин волн отдельно для красной и фиолетовой границ сплошного спектра и изучаемой зелёной линии, а также средние арифметические ошибки определения  по формулам

где n = 4 – число измерений для каждого участка спектра. Занесите величины и в табл. 1.

3. Результаты измерений представьте в виде табл. 2, куда запишите границы видимого спектра и длину волны наблюдаемой зелёной линии, выраженные в нанометрах и ангстремах, взяв в качестве  средние значения полученных длин волн из табл. 1.

Таблица 2

4. По формуле (6) определите полное число штрихов решётки N , а затем с помощью формул (5) и (9) вычислите разрешающую способность R и угловую дисперсию решётки D для спектра второго порядка (k = 2).

5. Пользуясь формулой (3) и пояснением к ней, определите максимальное число спектров k max , которые можно получить с помощью данной дифракционной решётки, используя в качестве  среднюю длину волны наблюдаемой зелёной линии.

6. Вычислите частоту  наблюдаемой зелёной линии по формуле  = c /, где с – скорость света, взяв в качестве  также величину .

Все рассчитанные в пп. 46 величины занесите в табл. 3.

Таблица 3

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чём состоит явление дифракции и когда дифракция наиболее заметно выражена?

Дифракцией волн называется огибание волнами препятствий. Дифракция света – это совокупность явлений, наблюдаемых при распространении света сквозь малые отверстия, вблизи границ непрозрачных тел и т.д. и обусловленных волновой природой света. Явление дифракции, общее для всех волновых процессов, имеет особенности для света, а именно здесь, как правило, длина волны λ много меньше размеров d преград (или отверстий). Поэтому наблюдать дифракцию можно только на достаточно больших расстояниях l от преграды (l > d 2 / λ).

2. Что такое дифракционная решётка и для чего подобные решётки используются?

Дифракционной решеткой называют всякую периодическую структуру, влияющую на распространение волн той или иной природы. Дифракционной решеткой осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

3. Что обычно представляет собой прозрачная дифракционная решётка?

Прозрачные дифракционные решетки обычно представляют собой стеклянную пластинку, на которой алмазом с помощью специальной делительной машины прочерчены полосы (штрихи). Эти штрихи являются почти полностью непрозрачными промежутками между неповрежденными частями стеклянной пластинки – щелями.

4. Каково назначение линзы, используемой вместе с дифракционной решёткой? Что служит линзой в данной работе?

Для сведения лучей, идущих под одним и тем же углом φ, в одну точку используется собирающая линза, обладающая свойством собирать параллельный пучок лучей в одной из точек своей фокальной плоскости, куда помещается экран. Роль линзы в данной работе играет хрусталик глаза наблюдателя.

5. Почему при освещении белым светом в центральной части дифракционной картины возникает белая полоса?

Белый свет является немонохроматическим светом, содержащим набор волн различных длин. В центральной части дифракционной картинки k = 0 образуется центральный максимум нулевого порядка, следовательно, возникает белая полоса.

6. Дайте определение разрешающей способности и угловой дисперсии дифракционной решётки.

Основными характеристиками дифракционной решетки являются её разрешающая способность R и дисперсия D.

Обычно для характеристики дифракционной решетки используют не минимальное значение Δλ, когда линии видны раздельно, а безразмерную величину

Угловая дисперсия D определяется угловым расстоянием δφ между двумя спектральными линиями, отнесенным к разности их длин волн δλ:

Она показывает быстроту изменения угла дифракции φ лучей в зависимости от изменения длины волны λ.

ПомощьюМетодичка >> Физика

Расчетной формулой для вычисления длин световых волн при помощи дифракционных решеток. Измерение длины волны сводится к определению угла отклонения лучей...