Самые последние достижения медицины. Современные инновационные технологии медицины Стопы в медицине на год

  • Дата: 03.03.2020

Победить рак за 11 дней, полноценно жить с сахарным диабетом, встать на ноги после инсульта, увеличить резервуар яйцеклеток… То, что раньше казалось фантастикой, сегодня уже становится реальностью. Краткий обзор самых значительных открытий и новинок в медицине в 2016 году.

1. Иммунная терапия помогает победить рак

В последние несколько лет иммунотерапия считается наиболее перспективным направлением в и некоторых других тяжелых заболеваний. Суть метода - заставить собственный иммунитет человека бороться со злокачественной опухолью. Речь идет о новых препаратах, которые нейтрализуют факторы, мешающие работе иммуной системы, и мобилизируют иммунитет для эффективной борьбы с раком. 2016 год ознаменовался значительным расширением арсенала для лечения некоторых видов рака благодаря разрешению к применению новых препаратов иммунотерапии.

Самыми первыми препаратами иммунотерапии стали « » и « », которые с успехом применяются при лечении меланомы, а в последнее время - также и рака легких. С недавнего времени «Опдиво» разрешен к примению для лечения рака почек.

В 2016 году FDA (Американское Федеральное управление по надзору за качеством лекарственных препаратов) разрешило к использованию эти препараты и для лечения ряда других злокачественных заболеваний. Например, в мае 2016 года препарат «Опдиво» был одобрен для лечения лимфомы Ходжкина, а в августе для лечения рака головы и шеи. Препарат «Кейтруда» в августе 2016 года был утвержден для лечения злокачественных заболеваний головы и шеи, а в октябре как препарат первой линии терапии при некоторых видах рака легких.

Другим новыйшим препаратом для лечения рака стал «Тецентрик», который в мае 2016 года был одобрен для лечения рака мочевого пузыря, в октябре - для лечения рака легких.

2. Поджелудочная железа - включайте!

Около 6 млн человек во всем мире страдает первого типа. Лекарства от этого заболевания до сих пор нет, но зато медикам удалось значительно улучшить качество жизни пациентов с помощью заместительной терапии. Правда, до недавнего времени пациенты были вынуждены регулярно измерять уровень глюкозы в крови и делать инъекции инсулина. В минувшем году был одобрен выпуск устройства, которое объединит эти две жизненно необходимые для диабетика процедуры. С виду прибор больше похож на музыкальный плеер, а по функциональности - новенькая поджелудочная железа. Прибор MiniMed 670G от компании Medtronic сам анализирует уровень глюкозы в крови каждые 5 минут и, при необходимости, вводит инсулин. Ожидается, что уже в 2017 году устройство появится в продаже. Оценить новинку пока что смогут только пациенты старше 14 лет.

3. Лечение рака молочной железы за 11 дней

«Победить можно всего за 11 дней», - с таким многообещающим заявлением выступили специалисты из Манчестерского университета и Института исследования рака в Лондоне в марте 2016 года на конференции Европейской ассоциации рака (ECCO). Эксперты предложили при лечении рака молочной железы сочетать два препарата: « » и «Тайверб». Оба препарата воздействуют только на клетки с рецепторами HER-2, предотвращая пагубное влияние факторов роста на развитие опухоли.

Всего в данном исследовании приняли участие 257 женщин, у которых опухоль в груди была размером не более 3 см. После комбинированного курса лечения у 11% пациенток опухоль исчезла полностью, а у 17% - стала меньше 0,5 см. В целом, у 87% женщин, принимавших участие в исследовании, была отмечена положительная динамика.

Следует отметить, что данная комбинированная химиотерапия будет эффективна только для пациенток с HER-2-позитивным раком молочной железы, который встречается примерно у каждой пятой женщины с этим диагнозом.

4. Стволовые клетки поставят на ноги

Паралич после ишемического инсульта практически всегда становится причиной инвалидности, которая может быть временной или пожизненной.

В июне 2016 года ученые из Стэнфордского университета объявили о результатах эксперимента, в ходе которого были применены стволовые клетки для лечения пациентов, перенесших ишемический инсульт. Всего в исследовании приняли участие 18 пациентов, у которых были отмечены беспрецендентные успехи в восстановлении двигательных и разговорных функций. Некоторые из них смогли заново ходить, а одна из участниц даже бегать спустя год после эксперимента.

Лечение проводилось с помощью мезенхимальных стволовых клеток из костного мозга доноров, которые могут созревать и делиться, превращаясь в элементы самых разных тканей. Результаты исследования были опубликованы в научном издании Stroke. Клинические исследования в данном направлении продолжаются.

5. Химиотерапия повышает фертильность

До недавнего времени считалось, что каждая женщина рождается с ограниченным резервом яйцеклеток, увеличить который не представляется возможным. Однако ученые Эдинбургского университета опровергли это утверждение. В декабре 2016 года в научном издании Human Reproduction были опубликованы результаты лечения пациенток с диагнозом « », проходивших курс химиотерапии по протоколу ABVD.

В процессе лечения оказалось, что протокол ABVD, в отличие от других протоколов химиотерапии, не приводит к бесплодию, а наоборот — повышает количество яйцеклеток у пациенток. По результатам биопсии яичников у женщин, проходивших данный вид химиотерапии, количество зрелых яйцеклеток было примерно в 9-21 раз выше, чем у здоровых женщин.

Ученые полагают, что данная комбинация препаратов заставляет стволовые клетки яичников продуцировать фолликулы, из которых впоследствии образуются яйцеклетки. Ожидается, что в ближайшее время ученые найдут способ увеличить производство яйцеклеток также у здоровых женщин, что станет поворотным событием в современной репродуктологии.

Эксперты различных дисциплин из Калифорнийского университета в Сан-Франциско поделились своими прогнозами на тему того, в каких областях здравоохранения будут произведены основные научные открытия в следующем году, а также предположили, каким образом, по их мнению, результаты фундаментальной медицины будут переведены в методы практического лечения в 2016 году.

Переход к точной медицине

Точная медицина стремится собрать и использовать огромное количество данных о нашем здоровье, чтобы понять, почему разные люди различным образом реагируют на одни и те же болезни и способы их лечения.

Полученная информация используется для разработки диагностических средств, методов профилактики и для . Эти данные включают информацию не только о генетике и состоянии здоровья индивида, но также о социальной среде и образе жизни, которые нередко связаны с болезнями. Совокупность этих данных позволит предсказывать заболевание прежде, чем оно наступит.

В настоящее время учёные уже разрабатывают массу программ, способных обрабатывать гигабайты данных. Однако их цель сейчас - создание проводника, который сможет преобразовать код в полезную информацию для диагностов, разработчиков лекарств и, в конце концов, .

Средства, позволяющие искоренить ВИЧ во всём мире

Главная сложность, которая не позволяет излечить мир от ВИЧ, заключается в том, что почти половина из 37 миллионов человек, об этом не знают. И это даже несмотря на то, что сейчас в большинстве городов развитых и даже развивающихся стран можно пройти своевременную диагностику.

Между тем, ранняя диагностика ВИЧ и СПИД значительно облегчает жизнь пациенту. Но дело не только в том, что болезнь на первых этапах ещё не успела сильно навредить здоровью. Доктор Дайан Хэвлир (Diane Havlir) и её команда в 2010 году обнаружили, что выгоды от раннего лечения ВИЧ перевешивают вред наносимый используемыми токсичными препаратами. Это означает, что лечение вредит пациенту меньше, чем тогда, когда вирус атаковал все органы и системы. Кроме того, ранняя диагностика позволяет защитить большее количество людей от последующего заражения.

По этой причине Всемирная организация здравоохранения взяла на вооружение новую тактику. Теперь учёные бьются над созданием простого и при этом эффективного , который позволит миллионам узнать о заболевании на самых ранних стадиях.

"Всемирная организация здравоохранения настаивает на том, что лечение всех ВИЧ-инфицированных лиц станет переломным моментом в борьбе с эпидемией СПИДа, - говорит Хэвлир. — Тестовые испытания должны пройти в Африке, где в настоящее время с ВИЧ живут почти 26 миллионов человек".

Выращенные в лабораториях органоиды ускорят исследования заболеваний

Лабораторные мыши за последнее столетие уже очень много сделали для улучшения здоровья живущих на Земле людей, однако в последние годы ряд медицинских прорывов не удалось опробовать не на модельных организмах, а на человеке.

Человеческая биология, хоть и похожа на биологию модельных организмов, слишком отличается от неё в ряде сложных заболеваний, таких как , и даже .

Теперь некоторые исследователи решили обратиться к выращенным в лаборатории органоидам или ― упрощённым моделям человеческих органов, таких как , молочные железы и даже . Органоиды могут быть созданы из собственных стволовых клеток индивидуума, а значит, опробованные на них лекарства будут максимально эффективными.

"Существуют определённые "человеческие" аспекты заболеваний головного мозга, которые просто невозможно воссоздать на животной модели, - говорит доктор Арнольд Кригштейн (Arnold Kriegstein), директор центра регенеративной медицины и исследований стволовых клеток. - Я считаю, что органоиды, полученные от пациентов, смогут стать полем для испытаний, в ходе которых будут учтены индивидуальные факторы и найдено оптимальное лечение".

В этом году Кригштейн и ряд других учёных использовали органоиды, чтобы изучить природу тяжёлых генетических аномалий мозга и узнать, как иммунная система помогает сформировать молочную железу человека.

Также 3D-печатные органоиды из собственных клеток пациента позволяют быстро тестировать эффективность различных противораковых препаратов. Исследователи уверены, что в ближайшие годы исследования с использованием органоидов приведут к определённым успехам.

Наука обратится к данным об этнических меньшинствах

Так как мир постепенно продвигается к использованию персонализированной медицины, всё более важным становится изучение популяций, отражающих глобальное разнообразие. Однако люди неевропейского происхождения задействованы, например, в менее чем 2% клинических исследований рака. Учёные подчёркивают, что необходимо собирать более разнообразную выборку, чтобы действительно сократить влияние заболеваний.

"Этнические меньшинства почти не представлены в клинических исследованиях, - говорит профессор биоинженерии Эстебан Бурхард (Esteban Burchard). - Но мы не можем уменьшить бремя большинства болезней, не обращаясь к человеческому разнообразию".

Гематоэнцефалический барьер будет преодолён для целевой доставки лекарств в мозг

Гематоэнцефалический барьер (ГЭБ) - биологический щит, защищающий мозг от передающихся через кровь инфекций и токсинов. Он имеет решающее значение для выживания. Однако этот барьер также мешает некоторым терапевтическим агентам достичь мозга.

Большинство химиотерапевтических препаратов против опухоли головного мозга вводятся перорально ("через рот") или внутривенно и вызывают огромное количество побочных эффектов. Но на саму опухоль они часто оказывают минимальное воздействие из-за того самого ГЭБ.

"В течение многих лет учёные сталкивались с вопросом - препараты не воздействуют на заболевания мозга, потому что они неэффективны или же они просто не в состоянии пересечь гематоэнцефалический барьер?" - рассказывает профессор нейрохирургии Кристоф Банкевич (Krystof Bankiewicz), тестирующий препараты против глиобластомы (одной из самых агрессивных опухолей мозга).

Однако за последние два года учёным удалось добиться прогресса в , в том числе в ходе .

На 2016 год запланировано клиническое исследование с участием детей, страдающих от опухолей головного мозга. Также два других исследования будут направлены на лечение . Есть планы также по разработке лечения и хореи Гентингтона .

Будет открыта биология психических заболеваний

Технологии геномики и нейронаук развиваются беспрецедентными темпами: в ближайшее время ожидается, что они приведут к новому пониманию .

"Серьёзные психические заболевания вряд ли принципиально отличаются от болезней сердца, рака или эпилепсии. Просто в настоящий момент мы недостаточно хорошо понимаем их основу, - считает Мэтью Стейт (Matthew State), заведующий кафедрой психиатрии. - В этом году учёным удалось выявить способ быстро измерять экспрессию восьми генов в тысячах отдельных клеток, а с помощью недавно разработанных технологий, таких, как CRISPR/Cas 9, мы можем определять функции генов точнее, чем когда-либо.

Неврологи также могут использовать подход, основанный на , для изучения целых участков мозга. Применение ряда современных интерфейсов в ближайшее время, вероятно, поможет определить, а может, и изменить факторы, определяющие психические заболевания".

Это существенно расширит наши знания о психических заболеваниях и откроет новые методы лечения. Кроме того, такой подход может показать, что психические заболевания ― это результат физических нарушений, что позволит избавить пациентов от определённого негативного отношения со стороны общества.

Биоинформатика поможет разработать новые методы лечения рака на основе геномики

Изучение геномики рака позволило открыть массу

При этом – очень плодотворные. Учёные совершили ряд научных прорывов и создали множество полезных медикаментов.

LJ Media предлагает ознакомиться с новыми медицинскими достижениями 2016.

Апокалипсис антибиотиков

Еще весной 2016 года главврач Великобритании Салли Дэвис провозгласила «Апокалипсис антибиотиков», поскольку бактерии смогли приспособиться ко всем новым видам антибиотиков и стали невосприимчивыми к ним. Это произошло не в одночасье, но ситуация начала вызывать серьезные опасения. Если ничего не изменится, в скором времени, то невозможно будет проводить операции, увеличится количество случаев летального исхода от пневмонии, роды станут опасными и т. д.

Однако наука не стояла на месте, и порадовала новыми медицинскими достижениями 2016 . На примере антибиотика рифампицина – противотуберкулезного средства, ученые Университета Виргинии смогли установить, каким образом работает механизм привыкания организма к антибиотикам и снижения их эффективности .

А в Гонконге группа ученых синтезировала теиксобактин, способный бороться с рядом болезнетворных микроорганизмов , включая смертельно опасный и устойчивый к метициллину золотистый стафилококк, устойчивый к ванкомицину энтерококк и микобактериальный туберкулез.

Впрочем, бороться с бактериями можно не только антибиотиками. Как выяснили ученые из Мельбурна, пептидные полимеры способны убивать бактерии , устойчивые ко всем известным видам антибиотиков, не причиняя при этом вреда человеческому организму.

Проблема антибиотиков не решена , но ученые надеются, что открытие может стать началом новой эры в борьбе с болезнями , не поддающимися лечению медикаментами.

Избавление от ВИЧ

Несмотря на то, что выиграть затяжную войну с раком, медицине пока не удается, ученые добились новых медицинских достижений 2016 , сделав ряд важных открытий по борьбе с другим, не менее коварным, заболеванием – ВИЧ .

Случай полного выздоровления от ВИЧ был зафиксирован осенью 2016 года. Вакцина , которую получал 44-летний житель Лондона, помогла иммунной системе обнаружить инфицированные клетки, чтобы потом уничтожить их. Теоретически, это исключает вероятность возвращения болезни.

Однако, говорить об окончательной победе над ВИЧ еще рано. Даже если окажется, что первый эксперимент прошел действительно удачно, испытания вакцины будут проводиться еще в течение 5 лет.

Американские ученые также внесли свой вклад в лечение ВИЧ, разработав антитела, способные нейтрализовать 98% штаммов вируса . Они обладают длительным действием и способны не только предотвращать заболевание, но и лечить его.

Были также найдены способы остановки распространения меланомы, раковой опухоли в почках , снижения сопротивляемости медикаментам клеток опухоли поджелудочной железы .

Рождение химер

Редактирование ДНК , начавшее победное шествие с конца 2015 года, полным ходом продолжилось и в 2016. Испанские ученые смогли перепрограммировать клетки кожи и создали из них человеческие сперматозоиды для лечения бесплодия. Американские - научились полностью перезаписывать геном живой бактерии , что позволит создавать организмы с невиданными доселе свойствами и культивировать в них иммунитет к вирусам. Они также открыли механизм обращения вспять биологических часов эмбриональных стволовых клеток человека, что открывает перед трансплантологией неограниченные перспективы - вплоть до выращивания «запасных» человеческих органов в организме животных (так называемых генетических химер ).

Однако, несмотря на то, что медицина вплотную приблизилась к возможности создавать искусственные сосуды, железы и ткани, выращивание полноценных человеческих органов в телах животных, .

Закон пока запрещает выращивать эмбрионы химер (гибридов человека и животных) более 28 дней, после чего эксперимент требуется прекратить. Что и было сделано генетиками Калифорнийского университета в Дейвисе, которые соединили стволовые клетки человека и ДНК свиньи.

2016 стал годом мгновенной диагностики . Все меньше людей хотят стоять в очередях, чтобы получить направление на анализ, а некоторым при всем желании не добраться до больницы с современным оборудованием. Носимые устройства и нанотехнологии позволили создавать приборы, определяющие болезни быстро, по капле крови, слюне, слезам и дыханию.

В Гонконге был создан нанобиодатчик для диагностики гриппа и лихорадки Эбола . С помощью смартфона стало возможно проводить компьютерную периметрию - определение границ поля зрения , важный анализ для диагностики глаукомы .

А израильские ученые изобрели устройство, напоминающее трикодер из «Звездного пути» - анализатор дыхания, который выявляет 17 болезней на основе одного выдоха. Ставить диагноз стало возможно даже по голосу.

Надежды на будущее

Скорее всего, в будущем году мы увидим еще больше медицинских гаджетов и приложений для смартфона. Данные, собранные с фитнес-трекеров, станут полезной информацией, а не просто набором ничего не значащих сведений.

В свою очередь генетический анализ на наследственность перейдет в разряд общедоступной практики .

Технологии станут точнее, а законодательство в сфере здравоохранения поможет защитить личные данные от злоупотребления.

Чатботы и ИИ активнее проникнут в медицинские учреждения и оптимизируют их работу. И, возможно, диабетики смогут , наконец, воспользоваться теми многочисленными изобретениями (в том числе - первой в мире искусственной поджелудочной железой ), которые появились в 2016 году, но так пока и не дошли до пациентов.

Билл Гейтс, которого спросили о достижениях генной инженерии, заявил, что открытия в области медицины будут невероятными , но такие возможности, как редактирование генов, могут привести к проблемам в будущем.

fishki.net/2190693-apokalipsis-i-himery-medi

Невероятные факты

Человеческое здоровье напрямую касается каждого из нас.

Средства массовой информации изобилуют рассказами о нашем здоровье и теле, начиная созданием новых лекарственных препаратов и заканчивая открытиями уникальных методов хирургии, которые дают надежду инвалидам.

Ниже мы расскажем о самых свежих достижениях современной медицины.

Последние достижения медицины

10. Учёные идентифицировали новую часть тела

Ещё в 1879 году французский хирург по имени Пол Сегон (Paul Segond) описал в одном из своих исследований "жемчужную, устойчивую волокнистую ткань", проходящую вдоль связок в колене человека.


Об этом исследовании благополучно забыли до 2013 года, когда учёные обнаружили переднебоковую связку, коленную связку , которая часто повреждается при возникновении травм и других проблем.

Учитывая, как часто сканируется колено человека, открытие было сделано очень поздно. Оно описано в журнале "Анатомия" и опубликовано он-лайн в августе 2013 года.


9. Интерфейс мозг-компьютер


Учёные, работающие в Корейском университете и Технологическом университете Германии, разработали новый интерфейс, который даёт возможность пользователю управлять экзоскелетом нижних конечностей.

Он работает с помощью декодирования конкретных мозговых сигналов. Результаты исследования были опубликованы в августе 2015 года в журнале "Нейронная инженерия".

Участники эксперимента носили электроэнцефалограммовый головной убор и управляли экзоскелетом, просто смотря на один из пяти светодиодов, установленных на интерфейсе. Это заставляло экзоскелет двигаться вперёд, поворачивать направо или налево, а также сидеть или стоять.


Пока система была протестирована лишь на здоровых добровольцах, но есть надежда, что в конечном итоге её можно будет использовать, чтобы помочь инвалидам.

Соавтор исследования Клаус Мюллер (Klaus Muller) объяснил, что "люди с боковым амиотрофическим склерозом или с травмами спинного мозга часто сталкиваются с трудностями в общении и в контролировании своих конечностей; расшифровка их мозговых сигналов такой системой предлагает решение обеих проблем".

Достижения науки в медицине

8. Устройство, которое может двигать парализованную конечность силой мысли


В 2010 году Яна Беркхарта (Ian Burkhart) парализовало, когда во время несчастного случая в бассейне он сломал себе шею. В 2013 году благодаря совместным усилиям специалистов университета штата Огайо и Баттелль, мужчина стал первым в мире человеком, который теперь может обойти свой спинной мозг и двигать конечностью, используя только силу мысли.

Прорыв случился благодаря использованию нового вида электронного нервного байпаса, устройства размером с горошину, которое имплантируется в моторную кору головного мозга человека.

Чип интерпретирует сигналы мозга и передаёт их на компьютер. Компьютер считывает сигналы и посылает их на специальный рукав, который носит пациент. Таким образом, нужные мышцы приводятся в действие.

Весь процесс занимает доли секунды. Однако, чтобы добиться такого результата, команде пришлось изрядно потрудиться. Команда технологов сначала выяснила точную последовательность электродов, которая позволяла Беркхарту двигать рукой.

Затем мужчине пришлось проходить несколько месяцев терапию для восстановления атрофированных мышц. Конечным результатом является то, что теперь он может вращать рукой, сжимать её в кулак, а также на ощупь определять, что перед ним находится.

7. Бактерия, которая питается никотином и помогает курильщикам завязать с пагубной привычкой


Бросить курить – это чрезвычайно трудная задача. Любой, кто пытался это сделать, подтвердит сказанное. Почти 80 процентов тех, кто пробовал это совершить с помощью аптечных препаратов, претерпел неудачу.

В 2015 году учёные из научно-исследовательского института Скриппса дают новую надежду желающим бросить. Им удалось выявить бактериальный фермент, который поедает никотин ещё до того, как он успевает добраться до мозга.

Фермент принадлежит бактерии Pseudomonas putida. Данный фермент не является новейшим открытием, однако, его только недавно удалось вывести в лабораторных условиях.

Исследователи планируют использовать этот фермент для создания новых методов отказа от курения. Блокируя никотин прежде, чем он достигнет мозга и вызовет производство допамина, они надеются, что они смогут отбить у курильщика желание взять в рот сигарету.


Чтобы стать работоспособной, любая терапия должна быть достаточно стабильной, не вызывая во время активности дополнительных проблем. В настоящее время произведенный в лабораторных условиях фермент ведёт себя стабильно в течение более трёх недель , находясь в буферном растворе.

Тесты с участием лабораторных мышей не показали никаких побочных эффектов. Учёные опубликовали результаты своего исследования в он-лайн версии августовского номера журнала "Американское химическое сообщество".

6. Универсальная вакцина против гриппа


Пептиды – это короткие цепочки аминокислот, которые существует в клеточной структуре. Они выступают в качестве основного строительного блока для белков. В 2012 году учёным, работавшим в университете Саутгемптона, Оксфордском университете и лаборатории вирусологии Ретроскин, удалось выявить новый набор пептидов, найденных у вируса гриппа.

Это может привести к созданию универсальной вакцины против всех штаммов вируса. Результаты были опубликованы в журнале Nature Medicine.

В случае гриппа пептиды на внешней поверхности вируса очень быстро мутируют, что делает их почти недосягаемыми для вакцин и лекарств. Недавно обнаруженные пептиды живут во внутренней структуре клетки и мутируют довольно медленно.


Более того, эти внутренние структуры можно обнаружить в каждом штамме гриппа, начиная от классического и заканчивая птичьим. Для разработки современной вакцины от гриппа требуется около шести месяцев, однако, она не обеспечивает иммунитетом на долгое время.

Тем не менее, возможно, сориентировав усилия на работе внутренних пептидов, создать универсальную вакцину, которая даст долговременную защиту.

Грипп – это вирусное заболевание верхних дыхательных путей, которое поражает нос, горло и лёгкие. Оно может быть смертельно опасным, особенно если заразился ребёнок или пожилой человек.


Штаммы гриппа ответственны за несколько пандемий на протяжении всей истории, самая страшная из которых, - пандемия 1918 года. Никто не знает наверняка, сколько людей погибло от этой болезни, но по некоторым оценкам, 30-50 миллионов человек во всем мире.

Новейшие медицинские достижения

5. Возможное лечение болезни Паркинсона


В 2014 году учёные взяли искусственные, но полностью функционирующие человеческие нейроны и успешно привили их в мозг мышам. У нейронов есть потенциал для лечения и даже вылечивания таких заболеваний, как болезнь Паркинсона.

Нейроны были созданы группой специалистов из института Макса Планка, университетской клиники Мюнстера и университета Билефельда. Учёным удалось создать стабильную нервную ткань из нейронов, перепрограммированных из клеток кожи.


Другими словами, они индуцировали нейронные стволовые клетки. Это метод, который увеличивает совместимость новых нейронов. Спустя шесть месяцев у мышей не развилось никаких побочных эффектов, а имплантированные нейроны отлично интегрировались с их мозгом.

Грызуны продемонстрировали нормальную мозговую деятельность, в результате которой сформировались новые синапсы.


У новой методики есть потенциал, который может дать нейрологам возможность заменить больные, поврежденные нейроны здоровыми клетками, которые в один прекрасный день смогут справиться с болезнью Паркинсона. Из-за неё нейроны, поставляющие допамин, умирают.

На сегодняшний день никакого лечения от этого заболевания нет, но симптомы поддаются лечению. Болезнь, как правило, развивается у людей в возрасте 50-60 лет. При этом мышцы становятся жёсткими, происходят изменения в речи, меняется походка и появляется тремор.

4. Первый в мире бионический глаз


Пигментный ретинит является наиболее распространённым среди наследственных заболеваний глаз. Он приводит к частичной потере зрения, а зачастую и к полной слепоте. К ранним симптомам относится потеря ночного видения и трудности с периферийным зрением.

В 2013 году была создана система протезирования сетчатки Argus II, первый в мире бионический глаз, предназначенный для лечения запущенной стадии пигментного ретинита.

Система Argus II – это пара наружных стёкол, оснащённых камерой. Изображения преобразуются в электрические импульсы, которые передаются электродам, имплантированным в сетчатку глаза пациента.

Эти изображения головным мозгом воспринимаются как световые шаблоны. Человек учится интерпретировать эти паттерны, постепенно восстанавливая зрительное восприятие.

В настоящее время система Argus II пока доступна только на территории США и Канады, но есть планы по её внедрению во всём мире.

Новые достижения в области медицины

3. Обезболивающее, которое работает только за счёт света


Сильную боль традиционно лечат опиоидными препаратами. Основной недостаток в том, что многие такие препараты могут вызывать привыкание, поэтому потенциал для злоупотреблений у них огромен.

А что если учёные смогли бы останавливать боль не используя ничего, кроме света?

В апреле 2015 года неврологи Вашингтонской медицинской школы при университете в Сент-Луисе объявили, что им удалось это сделать.


Путём соединения свето-чувствительного белка с опиоидными рецепторами в пробирке, они смогли активировать опиоидные рецепторы также, как это делают опиаты, но только с помощью света.

Есть надежда, что эксперты смогут разработать способы использования света для облегчения боли при применении лекарств с меньшими побочными эффектами. Согласно исследованиям Эдварда Сиуда (Edward R. Siuda), вполне вероятно, что после дополнительных экспериментов, свет сможет полностью заменить лекарства.


Для тестирования нового рецептора светодиодный чип размером примерно с человеческий волос был имплантирован в мозг мыши, который после этого связали с рецептором. Мышей помещали в камеру, где их рецепторы стимулировали на выработку допамина.

Если мыши уходили из специальной отведённой зоны, то свет выключали и стимулирование останавливалось. Грызуны быстро возвращались на место.

2. Искусственные рибосомы


Рибосома – это молекулярная машина, состоящая из двух субъединиц, которые используют аминокислоты из клеток, чтобы создавать белки.

Каждая из субъединиц рибосом синтезируется в ядре ячейки, а затем экспортируется в цитоплазму.

В 2015 году исследователи Александр Мэнкин (Alexander Mankin) и Майкл Джеветт (Michael Jewett) смогли создать первую в мире искусственную рибосому. Благодаря этому у человечества появился шанс узнать новые подробности о работе этой молекулярной машины.

Достижения в науке и технике изменили до неузнаваемости нашу жизнь за последние десятилетия. Изменения коснулись не только того, как мы общаемся, получаем информацию, ведем бизнес, но и медицинской сферы.

Можно с легкостью найти и недовольных этими изменениями: люди жалуются, что мы стали меньше общаться вживую, уделяя больше времени общению в социальных сетях, разговорам по мобильникам.

Однако эти же самые достижения сжали, образно выражаясь, наше глобальное мировое пространство до размеров небольшого города.

Человечество получило уникальную возможность оперативно обмениваться информацией в медицинской сфере, получив мощные инструменты контроля и борьбы с различными заболеваниями. И в последние годы эти изменения продолжают наращивать темп, как никогда.

Вы еще не слышали о последних достижениях генетиков , которые позволяют остановить старение? А как вам новость о том, что наконец-то найдено по-настоящему эффективное средство от обычной простуды? Наконец, что вы скажете о возможности диагностирования многих раковых заболеваний на самых ранних стадиях развития, когда болезнь еще может быть остановлена?

Этим достижениям предшествовали долгие годы (и даже десятилетия) напряженной работы. И в 2017-ом году многие задачи, стоящие перед человечеством, были решены (или были сделаны серьезные шаги по их решению).

Предлагаем вашему вниманию десять значительных достижений медицинской науки за прошлый год, которые наверняка окажут значительное влияние на нашу жизнь в совсем уже недалеком будущем.
Ученые создали искусственную матку, которая обеспечивает развитие так называемых глубоко недоношенных новорожденных в течение примерно одного месяца. На данный момент времени изобретение было протестировано на восьми недоношенных ягнятах.

Будущих ягнят изъяли из маток овец преждевременно, в начале второй половины беременности , переведя их в искусственные матки. Животные продолжили развитие, продемонстрировав нормальный рост вплоть до своего «второго рождения», которое было осуществлено четыре недели спустя.

Искусственная матка состоит, по сути, из стерильного пластикового пакета, заполненного искусственной околоплодной жидкостью. Пуповина плода крепится к специальному механическому прибору, который обеспечивает развивающийся организм питательными веществами, а также насыщает кровь кислородом (этакий аналог плаценты).

Нормальное внутриутробное развитие человеческого эмбриона происходит приблизительно в течение 40 недель. Однако ежегодно во всем мире тысячи и тысячи младенцев появляется на свет преждевременно.

При этом многие из них проводят в утробе менее 26-ти недель. Выживает примерно половина младенцев. У многих из выживших отмечается детский церебральный паралич , задержка умственного развития , другие патологии.

Искусственная матка, адаптированная для развития эмбриона человека, должна дать шанс на нормальное развитие этим преждевременно появляющимся на свет младенцам.

Ее задача заключается в обеспечении возможности более длительного «дозревания» в среде, аналогичной той, которая имеется в матке женщины. Создатели искусственной матки планируют перейти к испытаниям на человеческих эмбрионах в ближайшие пять лет.

Первый гибрид свиньи и человека


В 2017-ом году ученые объявили об успешном создании первого гибрида свиньи и человека – организма, который в научных кругах часто называют химерой. Если упрощенно, то речь идет об организме, который совмещает в себе клетки от двух различных видов.

Один из способов создания химеры – это пересадить орган одного животного в тело другого. Однако этот путь ведет к высокому риску отторжения вторым телом чужеродного органа.

Другой путь создать химеру – это начать осуществлять изменения на эмбриональном уровне посредством введения клеток одного животного в эмбрион другого, после чего происходит их совместное развитие.

Первые опыты по созданию химеры привели к успешному развитию клеток крысы внутри эмбриона мыши. В мышином эмбрионе произошли генетические изменения, приведшие к образованию поджелудочной железы крысы, ее глаз и сердца , которые развивались вполне нормально. И только после этих экспериментов ученые решились провести аналогичные опыты с клетками человеческого организма.

Известно, что органы свиньи весьма схожи с органами человека, именно поэтому это животное было выбрано в качестве реципиента (то есть организма-хозяина). Клетки человека были введены в свиные эмбрионы на ранней стадии его развития. Затем уже гибридные эмбрионы были вживлены в суррогатные свиноматки, где и развивались в течение почти целого месяца. После этого эмбрионы извлекли для детального изучения.

В результате ученым удалось вырастить 186 химерных эмбрионов, в которых было зафиксированы начальные стадии формирования таких важнейших органов, как сердце и печень .

Это означает гипотетическую возможность выращивания человеческих органов и тканей внутри других видов. А это первый шаг к выращиванию органов в лабораторных условиях, способных спасти тысячи пациентов, из которых многие умирают, не дождавшись трансплантации .

Тело одного из видов лягушек, относительно недавно обнаруженного в Южной Индии, оказалось покрыто слизью, которая способна противостоять инфекции гриппа.

В жидкости, выделяемой кожей этой лягушки, найдены молекулы, содержащие аминокислоты, соединенные пептидными связями (то есть пептиды). Они-то и служат защитой против инфекции гриппа.

Ученые протестировали пептиды этой индийской лягушки, обнаружив, что только один из них, названный впоследствии «урумином», обладает противомикробными и противовирусными свойствами, и способен защитить от гриппа. Примечательно, что за основу было взято название традиционного индийского меча-пояса – уруми.

Как известно, липидная оболочка каждого штамма вируса гриппа содержит такие поверхностные белки, как гемагглютинин и нейраминидаза. Штаммы вируса названы по комбинации каждого содержащегося в них белка. К примеру, H1N1 содержит комбинацию гемагглютинина H1 и комбинацию нейраминидазы N1.

Наиболее распространенный штамм сезонного вируса гриппа содержит комбинацию H1. Урумин в результате лабораторных анализов продемонстрировал способность к эффективному уничтожению каждого типа комбинации вируса H1; причем даже тех типов, у которых развилась сопротивляемость к современным противовирусным препаратам .

Воздействие современных медицинских препаратов, которыми сейчас лечат от гриппа, направлено на гликопротеин нейраминидаза, мутирующий гораздо чаще, чем гемагглютинин. Новое лекарство, воздействующее на гемагглютинин, будет эффективной защитой от многих штаммов вируса гриппа, став основой для универсальной вакцины против данного заболевания.


Крупные медицинские достижения в 2017-ом году

Группа исследователей из Университета штата Мичиган (США) создала потенциальное лекарство от меланомы, которое способно кардинальным образом снизить уровень смертности от данного заболевания.

Это смертельная форма рака кожи отличается высокой степенью летальности, так как приводит к быстрому образованию метастаз, распространяющихся по всему телу и поражающих внутренние органы (к примеру, легкие и мозг).

Раковые клетки распространяются по всему телу потому, что в результате процесса, называемого транскрипцией, на матрице ДНК происходит синтез и трансформация РНК и определенных белков в злокачественную опухоль – меланому. Химическое же вещество, о котором идет речь в данном открытии, продемонстрировало способность к успешному прерыванию этого цикла.

Упрощенно говоря, это вещество способно прервать процесс транскрипции. Благодаря этой профилактической мере удастся остановить агрессивное распространение ракового заболевания. В результате лабораторных испытаний уже удалось прийти к тому, что тестируемое вещество способно успешно останавливать распространение ракового заболевания в 90% случаев.

От создания медицинского препарата на базе данного вещества нас отделяет еще несколько лет клинических испытаний на людях, страдающих от меланомы.

Однако исследователи уже сейчас выражают изрядный оптимизм по поводу возможностей будущего лекарства. Помимо меланомы, препарат будет протестирован на других видах раковых заболеваний с целью выявления его потенциальной возможности их лечения.

Стирание плохих воспоминаний


Люди, которые страдают от посттравматического стрессового расстройства или других тревожных расстройств, связанных с психологическими и иными травмами , смогут вскоре просто «стирать» плохие воспоминания, провоцирующие данные расстройства.

Ученые работали над решением данной проблемы на протяжении многих лет. Но лишь совсем недавно группа исследователей из Калифорнийского университета в Риверсайде (США), изучая влияние стрессовых ситуаций на память человека, совершила удивительное открытие. Они акцентировали свое внимание на проводящие пути нервной системы, которые создают воспоминания и позволяют нам обращаться к ним.

Когда происходят травмирующие события, наиболее сильными оказываются нейронные связи, обеспечивающими доступ именно к плохим воспоминаниям, нежели чем ко всем остальным. Именно поэтому людям зачастую легче вспомнить детали какой-нибудь трагедии, произошедшей годы назад, чем, к примеру, то, что они ели сегодня на завтрак.

В своих опытах над подопытными мышами ученые из вышеупомянутого университета включали звук высокой частоты, одновременно ударяя грызунов разрядом тока. Вскоре, как и предполагалось, этот высокочастотный звук заставлял мышей буквально замирать в ужасе.

Однако исследователям удалось ослабить связь между нейронами, заставлявшую мышей вспоминать о своем страхе в момент включения высокочастотного звука.

Для этого ученые использовали методику, называющуюся оптогенетикой. В итоге мыши перестали испытывать страх перед звуком высокой частоты. Иными словами, их воспоминания о травмирующем событии были стерты.

Важным аспектом данного исследования является тот факт, что могут быть стерты только необходимые воспоминания. Таким образом, люди смогут забывать свои плохие воспоминания, не разучившись при этом зашнуровывать свою обувь.

Не позавидуешь человеку, которого укусит австралийский воронковый водяной паук, обитающий в сельскохозяйственном регионе Австралии под названием Дарлинг-Даунз.

Яд этого паука способен убить в течение 15-ти минут. Однако этот же яд содержит один ингредиент, который способен защитить клетки головного мозга от разрушения, вызванного инсультом.

Когда у человека случается инсульт, происходит нарушение кровоснабжения головного мозга, который начинает испытывать кислородное голодание .

В мозге происходят патологические изменения, в результате которой вырабатывается кислота, разрушающая клетки мозга. Молекулы же пептида Hi1a, обнаруженного в яде австралийского паука, способны защитить клетки мозга от уничтожения, спровоцированного инсультом.

В рамках экспериментов у подопытных крыс вызывали инсульт, а через два часа вводили им препарат, содержащий пептид Hi1a. В результате степень повреждения головного мозга грызунов удалось уменьшить на 80 процентов.

В повторном эксперименте препарат был введен через восемь часов после инсульта. Степень повреждения в этом случае удалось уменьшить на 65 процентов.

На данный момент не существует лекарства, которое бы сохраняло клетки головного мозга после инсульта. Один из видов лечения заключается в хирургической операции по удалению сгустков крови.

При лечении геморрагического инсульта хирургическим путем устанавливают контроль над кровотечением . Ни одного препарата, чтобы обратить процесс, не существует. Если Hi1a подтвердит свою успешность в испытаниях на людях, это коренным образом снизит количество жертв инсульта.

Человечество стало на один шаг ближе к появлению препарата, позволяющего обратить процесс старения. Испытания на животных уже доказали его эффективность в вопросе лечения старения. Сейчас в процессе воплощения находятся испытания на людях.

Наши клетки обладают способностью к восстановлению самих себя, однако это их свойство утрачивается по мере старения нашего организма.

Крайне важным для процесса восстановления является определенный метаболит (продукт метаболизма), названный NAD+, который присутствует в каждой клетке.

Группа исследователей из Университета Нового Южного Уэльса (Австралия) провели испытания на подопытных мышах, в рамках которых использовался никотинамид мононуклеотид (препарат NMN), повышающий количество молекул NAD+.

После введения старым мышам препарата, те продемонстрировали улучшенную способность к восстановлению поврежденных клеток. Всего лишь через неделю лечения препаратом NMN клетки старой мыши функционировали так же, как клетки более молодой особи.

В финале эксперимента на мышей воздействовали дозами радиации. У мыши, которой до этого вводили препарат NMN, было отмечено меньшее повреждение клеток по сравнению с особью, которой такой препарат не вводили.

Также меньшую степень повреждений клеток отметили и у той подопытной особи, которой ввели препарат после воздействия радиацией. Результаты исследований позволяют рассчитывать не только на то, что человечество научится обращать процесс старения: лечение можно будет использовать и для других целей.

Известно, что космонавты подвергаются преждевременному старению из-за воздействия космической радиации. Организм людей, которые часто летают самолетами, также чаще подвергается облучению. Лечение можно будет применить и к детям, которых удалось вылечить от раковых заболеваний: клетки их организма также подвергаются преждевременному старению, что приводит их ко многим хроническим заболеваниям (к примеру, к болезни Альцгеймера до 45-ти лет и так далее).


Достижения медицинской науки, которые перевернут мир


Определение ракового заболевания на самой ранней стадии


Исследователи из Рутгерского университета (США) открыли способ эффективного обнаружения микрометастаз, являющихся по сути микроскопическими раковыми образованиями в организме, которые настолько малы, что их невозможно обнаружить с помощью привычных клинических методов диагностики .

Для обнаружения этих опухолей ученые предлагают новую технику диагностики, в рамках которой в кровь пациента вводят светоизлучающее вещество. Команда ученых из Рутгерского университета использовала в своих исследованиях наночастицы, которые испускают коротковолновой инфракрасный свет.

Предназначение этих «светящихся» наночастиц в данном эксперименте следующее: обнаружение раковых клеток в процессе перемещения по организму пациента. На самых ранних стадиях исследования эксперименты проводились, как водится, на подопытных мышах.

Благодаря введенным наночастицам в мышь с раком молочной железы , ученым удалось абсолютно точно отследить распространение раковых клеток по организму грызуна, обнаружив их в ее лапках и надпочечных железах .

Метод диагностики раковых заболеваний с помощью наночастиц позволяет выявить раковую опухоть за месяцы до того момента, как болезнь можно будет диагностировать с помощью метода витамин С, отвары и чаи от кашля, различные лекарственные препараты, которые можно без рецепта купить в любой аптеке. Несмотря на это актуальной остается поговорка, согласно которой «простуда, если ее лечить, проходит за неделю; а если не лечить – за семь дней».

Впрочем, похоже на то, что ситуация вскоре изменится. Простуду способны вызвать многие вирусы; наиболее распространенным вирусом, ответственным за возникновение 75-ти процентов инфекций, является риновирус. Ученые из Эдинбургского университета Нейпира (Шотландия) в самом начале прошлого года, в рамках исследования определенных антимикробных пептидов, пришли к интересному открытию.

Группе ученых удалось синтезировать пептиды, которые продемонстрировали высочайшую эффективность в лечении риновируса, полностью уничтожив его.

Изначально эти пептиды были выявлены у свиней и овец. Сейчас ведется работа над тем, чтобы усилить эффективность будущих препаратов против простуды, в состав которых будут входить синтезированные пептиды.

Генетическое редактирование эмбриона человека


Впервые в истории генной инженерии ученым удалось успешно редактировать ДНК человеческого эмбриона, что не повлекло никаких нежелательных опасных мутаций. Международная группа ученых осуществила этот эксперимент, используя новейшую технику редактирования генов.

Для опыта была использована сперма донора с генетической мутацией, вызывающей кардиомиопатию (заболевание, являющееся причиной ослабления сердца, нарушения ритма, проблем с клапаном и сердечной недостаточности).

Этой спермой оплодотворили донорскую яйцеклетку, а затем, с помощью техники редактирования генов, внесли изменения в механизм мутации. Ученые образно описали данную процедуру, как «микроскопическую операцию на мутировавшем гене».

Эта операция привела к тому, что эмбрион самостоятельно «отремонтировал» поврежденный ген. Техника редактирования уже была применена на 58-ми эмбрионах, и генная мутация была успешно скорректирована в 70-ти процентах случаев.

Важным моментом ученые считают тот факт, что коррекция не привела к случайным мутациям других участков ДНК (в отличие от более ранних экспериментов). Несмотря на успешность процедуры, детей выращивать из «скорректированных» эмбрионов пока никто не собирался. Во-первых, необходимы дополнительные исследования.

Кроме того, противники генетических модификаций выразили свою обеспокоенность некоторыми обстоятельствами. Вмешательство в ДНК эмбриона найдет свое отражение и у будущих поколений; таким образом, любая ошибка, которая может быть допущена в результате процедуры редактирования генов, может в конечном итоге привести к новому генетическому заболеванию.

Существует также и этическая проблема – подобные эксперименты могут привести к выращиванию «искусственных детей», когда родители смогут выбирать черты характера ребенка до его рождения, присваивая ему желаемые физические характеристики.

Ученые в свою очередь заявили о том, что ими руководит желание найти способы предупреждения генетических заболеваний, а не попытки создания людей на заказ. Уже сейчас очевидно, что на эмбриональной стадии можно предупреждать такие патологии, как болезнь Хантингтона , кистозный фиброз , а также рак яичников и молочных желез, вызванные мутацией гена BRCA.

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!