Зачем создавать квантовую теорию без наблюдателя? Эффект наблюдателя. Корпускулярно-волновой дуализм

  • Дата: 24.09.2019

Эффект наблюдателя. Корпускулярно-волновой дуализм - принцип, согласно которому любой физический объект может быть описан как с использованием математического аппарата, основанного на волновых уравнениях, так и с помощью формализма, основанного на представлении об объекте как о частице или как о системе частиц. В частности, волновое уравнение Шрёдингера не накладывает ограничений на массу описываемых им частиц, и следовательно, любой частице, как микро-, так и макро-, может быть поставлена в соответствие волна де Бройля. В этом смысле любой объект может проявлять как волновые, так и корпускулярные (квантовые) свойства. Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В соответствии с теоремой Эренфеста квантовые аналоги системы канонических уравнений Гамильтона для макрочастиц приводят к обычным уравнениям классической механики. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля. Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла. Характер решаемой задачи диктует выбор используемого подхода: корпускулярного (фотоэффект, эффект Комптона), волнового или термодинамического. Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон). Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и/или противопоставлять материальный объект (электромагнитное излучение, например) и способ его описания (корпускулярный или волновой); и, во-вторых, число способов описания материального объекта может быть больше двух (корпускулярный, волновой, термодинамический, …), так что сам термин «дуализм» становится неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом интерпретировать поведение квантовых объектов, подбирая аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.

А.И. Липкин

Московский физико-технический институт (государственный университет), Москва

"В действительности всякий философ имеет свое домашнее естествознание, и всякий естествоиспытатель - свою домашнюю философию. Но эти домашние науки бывают в большинстве случаев несколько устаревшими, отсталыми" [Э. Мах , Познание и заблуждение. М., 2003, с. 38]

Рассматриваются физические и философские основания "проблемы" "редукции волновой функции". Показывается, что основания проблемы являются философскими, а не физическими, и решение этой проблемы лежит на пути правильной постановки вопроса и учете теоретико-операциональной гетерогенности структуры физики, а не во введении сознания в основания квантовой механики.

1. Введение

В была приведена "теорфизическая" формулировка созданной в 1925–1927 гг. квантовой механики, содержащая четкое изложение лежащих в ее основе принципов (постулатов), содержащихся в работах Шредингера, Борна, Гейзенберга и Бора, (по сути столь же четких, что и в теории относительности) . В классификации К. Поппера она отвечает "третьей" (после "копенгагенской" (Бор, Борн, Гейзенберг и др.) и "антикопенгагенской" (Эйнштейн, де Бройль, Шредингер и др.) "интерпретации" (точнее "парадигмы" ) квантовой механики, той, которой пользуются работающие в квантовой механике физики. Главным из этих принципов-постулатов является утверждение, что 1) в квантовой механике состояние физической системы определяется не значениями, а распределениями вероятности значений соответствующих измеримых величин (это естественное обобщение понятия состояния в физике); из этого следует, что 2)одно измерение ничего не говорит о состоянии системы, и чтобы определить распределение вероятности путем измерения, требуется достаточно длинная серия измерений , 3) а путем вычисления это можно сделать с помощью "вероятностной интерпретации волновой функции" (обычно с именем М. Борна связывают лишь последнее, но оно подразумевает и первые два, поэтому я объединяю все три под именем "постулаты М.Борна");. Это широко распространенное среди физиков представление (во всяком случае я его усвоил, обучаясь в Московском физико-техническом институте), которое в силу некоторой исторической традиции выпадает из философского обсуждения проблем квантовой механики. "Теорфизическая " "интерпретация" принимает положения "копенгагенской интерпретации" о полноте квантовой механики и о вероятностном типе описания , применяемом к индивидуальным квантовым объектам, но утверждает, что состояние квантовой системы существует независимо от того, измеряется оно или нет . В этой формулировке отсутствуют "парадоксы" и нет явления "редукции (коллапса) волновой функции" .

Однако существует широко распространенная (в том числе и среди физиков) традиция философского обсуждения проблем квантовой механики, где обсуждаются и "парадоксы" ("кота Шредитнгера" и др.) и проблема "редукции (коллапса) волновой функции" и, стремясь их решить, доходят до утверждения о включении сознания в формализм квантовой механики . Так известный физик В. Гайтлер, следуя положениям "копенгагенской" интерпретации, приходит к заключению, что "появляется наблюдатель как необходимая часть всей структуры, причем наблюдатель со всей полнотой своих возможностей сознательного существа". Он утверждает, что в связи с возникновением квантовой механики "нельзя более поддерживать разделение мира на "объективную реальность вне нас" и "нас", сознающих себя сторонних наблюдателей. Субъект и объект становятся неотделимы друг от друга". Поппер полагает, что Гайтлер здесь дает "четкую формулировку доктрины включения субъекта в физический объект, доктрина, которая в той или иной форме присутствует у Гейзенберга в "физических принципах квантовой теории" и во многих других..." [цит. по 20, с. 74]. Поэтому стоит особо рассмотреть основания всех этих утверждений, которые, к тому же, на поверку оказываются не физическими, а философскими (мировоззренческими) .

2. Формулировка "проблемы редукции (коллапса) волновой функции"

Для удобства анализа разобьем формулировку проблемы "редукции (коллапса) волновой функции" на следующие утверждения:

утверждение 1: измерение есть явление, которое должно описываться квантовой теорией;

утверждение 2: на языке квантовой теории это явление описывается как мгновенное изменение волновой функции системы, от Y=S k c k |b k > (в общем виде, в дираковских обозначениях, где |b k > - собственная функция для оператора измеряемой величины b ) к |b 1 ñ с вероятностью |c 1 | 2 (в соответствии с правилами Борна); этот скачок и называется "редукцией (или коллапсом) волновой функции ";

утверждение 3: такой переход не описывается уравнением Шредингера и поэтому оказывается "незаконным " с точки зрения уравнений стандартной квантовой механики. Выводимая из последнего утверждения (опирающегося на два первых) неполнота современной квантовой механики и необходимость дополнительного развития ее оснований и составляет суть того, что со времен фон Неймана имеют в виду под "проблемой редукции (коллапса) волновой функции".

Из попытки решения этой проблемы, путем расширения "копенгагенской интерпретации" вырастает особое направление в философии квантовой механики (на стыке "копенгагенской" ("боровской") и "антикопенгагенской" ("эйнштейновской") "интерпретаций" квантовой механики). Разделяя основные тезисы копенгагенцев о вероятностном описании и о том, что акт измерения порождает состояние, Фон Нейман показывает, что последний из них приводит к новой проблеме, добавляя тем самым еще один классический "парадокс" в копилку антикопенгагенцев, в поддержку их тезиса о неполноте (неокончательности) современной квантовой механики. Для решения этой проблемы в 1930-х гг. у самого фон Неймана (в его классической книге ) предлагается введение в формулировку квантовой механики наблюдателя, а во второй половине XX в. – сознания и такой экзотики как многомировая интерпретация Эверетта – Уиллера – ДеВитта.

В последней предполагается, что каждая компонента в суперпозиции |Y>=S k c k |b k > "соответствует отдельному миру. В каждом мире существует своя квантовая система и свой наблюдатель, причем состояние системы и состояние наблюдателя скоррелированы. Процесс же измерения можно назвать… процессом "расщепления" миров. В каждом из параллельных миров измеримая величина b имеет определенное значение b i , и именно это значение и видит наблюдатель, "поселяющийся в этом мире"" . Согласно М.Б. Менскому в этой интерпретации считается, что «различные члены суперпозиции соответствуют различным классическим реальностям, или классическим мирам… Сознание наблюдателя расслаивается, разделяется, в соответствии с тем, как квантовый мир расслаивается на множество альтернативных классических миров" . При этом "никакой редукции при измерении не происходит, а различные компоненты суперпозиции соответствуют различным классическим мирам, одинаково реальным. Любой наблюдатель тоже оказывается в состоянии суперпозиции, т.е. его сознание “расщепляется” ("возникает “квантовое расщепление ” наблюдателя"), в каждом из миров оказывается “двойник”, сознающий то, что происходит в этом мире" ("для наглядности можно считать, что каждый наблюдатель “расщепляется” на множество наблюдателей-двойников, по одному для каждого из эвереттовских миров") (такое расщепление сознания очень напоминает то, что в психиатрии называется шизофренией (греч. schizo – разделяю)) . К этому М.Б. Менский добавляет утверждение "что селекция альтернативы должна быть осуществлена сознанием" . М.Б. Менский и др. полагают, что путь через такую интерпретацию и сознание – единственная альтернатива явлению "редукции волновой функции". Но так ли это?

В предисловии к статье М.Б. Менского "Концепция сознания в контексте квантовой механики" В.Л. Гинзбург пишет: "Не понимаю, почему так называемая редукция волновой функции как-то связана с сознанием наблюдателя. Например, в известном дифракционном опыте электрон проходит через щели и затем на экране (фотопластинке) появляется "точка", т.е. становится известно, куда попал электрон… Разумеется точки на экране наблюдатель увидит и на следующий день после осуществления опыта, и при чем здесь какая-то особая роль его сознания, мне непонятно" . Это – нормальная физическая позиция, идущая от Галилея и Ньютона: физик имеет дело с объектами и операциями (измерения состояний, приготовления системы), которые оторваны от конкретного "наблюдателя" и его (или их) сознания, т.е. объективированы. Эти операции четко описываются и не важно, кто их будет выполнять Петров, Иванов или автомат. Если полагается, что это не так – это уже не физика, а что-то иное.

На каком же основании некоторые физики пытаются ввести сознание в основания физики? Таким основанием служит притча о том, что в квантовой механике существует проблема измерения, ведущая к парадоксам "редукции (коллапса) волновой функции. При этом утверждается 1) существование этой проблемы, 2) необходимость для ее решения введения наблюдателя или сознания в квантовую механику (что такое сознание – никто толком не знает, но именно поэтому на него можно свалить все). Притчу эту рассказывают видные физики. Однако, "аргумент от авторитета" уже в средние века считался слабейшим, а А.Эйнштейн предупреждал: "Если вы хотите кое-что выяснить у физиков-теоретиков о методах, которые они применяют, я советую вам твердо придерживаться одного принципа: не слушайте, что они говорят, а лучше изучайте их действия..." ("О методе теоретической физики" (1933)).

В связи с этим проанализируем эту проблему более основательно. Для этого продолжим описание В.Л.Гинзбурга: "Если описывать состояние электрона после его взаимодействия с атомами в фотопластинке с помощью волновой функции, – говорит он, – то эта функция будет, очевидно отлична от первоначальной и, скажем, локализована в "точке" на экране. Это и называют обычно редукцией волновой функции" .

В этом "очевидно " и состоит корень всей проблемы. Это "очевидно" лежит в основании исходной формулировки проблем "редукции (коллапса) волновой функции" и "квантового измерения" в . Поэтому остановимся на этом "очевидно" и проанализируем, что же за ним стоит. Что "очевидно"? Очевидно, что измерение – это взаимодействие, это явление, которое можно теоретически описать, причем все без остатка . То есть очевидно «утверждение 1» (из приведенных выше трех утверждений). Но так ли это? “Появилась точка” и “произошел ”коллапс волновой функции” – не равнозначные утверждения. Первое – экспериментальный факт, второе – лишь возможная интерпретация этого факта. Поскольку последняя носит во многом не физический, а философский (натурфилософский) характер, и касается оснований физики, то надо эти основания и анализировать. Мне кажется, что многое объяснит небольшой экскурс в историю.

3. Структура эксперимента и механицистская редукция

Современная физика родилась в 17 в., ее истоками служат теория падения тела Галилея и динамика (механика) Ньютона. В первой было заложено фундаментальное отличие новой физики от умозрительной натурфилософии . Суть этого различия состояла в требовании материализации умозрительных построений с помощью операций приготовления (<П|) физической системы (например, гладкой наклонной плоскости, шарика, его помещения на определенной высоте) и измерения (|И>) соответствующих величин (времени, расстояния, скорости), которые предполагают наличие эталонов и операций сравнения с эталоном. Эти операции были заимствованы из техники . В результате возникает гетерогенная "теоретико-операциональная " структура физического эксперимента (приводимая Фоком в контексте спора с Бором) , выражающая важнейшие черты "научной революции XVII века":

<П| X(T) |И>. (1)

Здесь средняя часть отвечает теоретической модели явления (объекта или процесса) или самому явлению, если модели нет, и идет чисто экспериментальное исследование (которое нас пока интересовать не будет). При этом очень важны два момента: 1) именно операционные части <П| и |И> отличают физику от умозрительной натурфилософии ; 2) эти операции – особый материал, это технические операции, а не явления природы .

Так в Древней Греции науке о природе соответствовала натурфилософия (например, атомизм Демокрита), строящая онтологические модели «первой природы», и примыкавшая к ней физика Аристотеля, определенная им как наука о движении. При этом философия, натурфилософия и физика Аристотеля не имели ничего общего с техникой (механикой машин), с помощью которых мастеру удавалось перехитрить природу. Техника – это «вторая природа», предполагающая существование «первой природы» , являющейся предметом натурфилософии. Со времен Древней Греции до Нового времени господствовали представления, что «область механики – область технической деятельности , тех процессов, которые не протекают в природе как таковой без участия и вмешательства человека . Предмет механики – явления, происходящие «вопреки природе», т.е. вопреки течению физических процессов, на основе «искусства» (tecnh) или «ухищрения» (mhcanh)… «Механические» проблемы… представляют самостоятельную область, а именно – область операций с инструментами и машинами , область «искусства»… Под механикой понимается некое «искусство», искусство делать орудия и приспособления, помогающие одолеть природу…» . В XVII в. рассматриваемые две линии двигались раздельно. Математизированная натурфилософия (характеризовавшаяся метафорой "книги Природы, написанной на языке математики") искала законы естественного движения – «законы природы», не зависящие от деятельности человека . Не случайно знаменитый труд Ньютона называется «Математические начала натуральной философии», а не "механика", как это раздел физики стали называть позже. Машины же создавались искусством инженеров-механиков (порой с использованием механики-физики, как это было у Гюйгенса при расчете механизма часов), суть машины определялась людьми и сводилась к определенным функциям. Действия людей противопоставлялись природным явлениям , это были две разные области – области «второй» и «первой» природы .

У Галилея эти две линии пересекаются и порождают физический эксперимент и новую естественную науку – физику , которая в развитом виде представлена в "Математических началах натуральной философии" Ньютона. В этой новой физике используются операции приготовления и измерения относящиеся ко "второй" природе. Т.е. в структуре (1) средний член – принадлежащее "первой" природе явление, составляющее предмет исследования с помощью физических (естественнонаучных) понятийных средств, а крайние члены – принадлежащие "второй" природе технические средства. Важнейшим моментом структуры (1), образующей новое целое, является то, что эти крайние члены – не явления, а операции , действия человека, причем любого человека или даже автомата. Т.о. структура (1) включает кроме эмпирического явления и его теории еще и операции приготовления (<П|) и измерения (|И>), которые заимствованы из техники и имеют другую («вторую») природу.

Однако в начале XIX в. П. Лаплас порождает натурфилософию нового типа , в которой использует, вроде бы, понятия механики Ньютона, но без крайних операциональных частей. В результате чего по внешнему впечатлению они вытекают из физики, а по сути – типичные чисто умозрительные натурфилософские понятия. Эта натурфилософия стала называться механицизмом. Этот механицизм имеет несколько аспектов. Во-первых, это всеобщий детерминизм, отрицающий свободную волю: "Всякое имеющее место явление связано с предшествующим… мы должны рассматривать настоящее состояние вселенной как следствие ее предшествующего состояния и как причину последующего". "Воля, самая свободная, не может породить эти действия без побуждающей причины" (по сути здесь все живое сводится к сложной машине, предполагающей в качестве источника активности некую внешнюю силу). Во-вторых, - отрицание случайности – случайность есть "лишь проявление неведения, истинная причина которого – мы сами" .

Но самая главная для нас черта механицизма – редукционизм , сведение всего к механике (в XIX в. – классической). Суть этого редукционизма, и одновременно отношение к этому физиков очень ярко выразил видный физик и философ конца XIX в. Э.Мах: "Как бы вдохновенным тостом, посвященным научной работе XVIII ст., – говорит он – звучат часто цитируемые слова великого Лапласа: "Интеллект, которому были бы даны на мгновение все силы природы и взаимное положение всех масс и который был бы достаточно силен для того, чтобы подвергнуть эти данные анализу, мог бы в одной формуле представить движения величайших масс и мельчайших атомов; ничего не было бы для него неизвестного, его взорам было бы открыто и прошедшее и будущее". Лаплас разумел при этом, как это можно доказать, и атомы мозга ... В целом идеал Лапласа едва ли чужд огромному большинству современных естествоиспытателей..." . Эту лапласовскую редукционистскую логику, основанную на тезисе – все состоит из атомов, атомы подчиняются физическим законам, следовательно, все должно подчиняться физическим законам (для Лапласа – законам динамики и тяготения Ньютона), в ХХ в. на основе законов квантовой механики почти слово в слово воспроизводят Э.Шредингер и многие другие видные физики: "Если квантовая теория способна дать полное описание всего, что может произойти во вселенной, то она должна иметь возможность описать также сам процесс наблюдения через волновые функции измерительной аппаратуры и исследуемой системы. Кроме того, в принципе, квантовая теория должна описать и самого исследователя, наблюдающего явления при помощи соответствующей аппаратуры и изучающего результаты эксперимента... через волновые функции различных атомов, составляющих этого исследователя " . Эта же логика применима и в отношении операций приготовления: все приборы, инструменты и исходные материалы, а также манипулирующий ими человек, состоят из атомов, которые взаимодействуют между собой (все со всем связано), поэтому не бывает замкнутых систем и неоткуда взяться чистым состояниям отдельных микрочастиц, описываемых волновыми функциями.

Итак, в механицизме «вторая» природа растворяется в «первой» и забывается принципиальная разница между техническими операциями, связанными с деятельностью человека и естественными явлениями природы. Лапласовская натурфилософия, которая, по сути, превращала измерение (и приготовление) в явление, разрушая структуру эксперимента (1), не имела серьезных последствий для физики того времени, где по-прежнему царствовала структура (1), и никто всерьез не рассматривал вопрос об описании с помощью уравнений Ньютона операцию измерения длины стержня.

Иная ситуация возникла в квантовой механике XX в. Здесь И. Шредингер (в "кошке Шредингера") и многие другие физики, повторив рассуждение Лапласа (с точностью до замены механики Ньютона на квантовую механику), породили «проблему измерения в квантовой механике» и связанную с этим проблему «редукции (коллапса) волновой функции».

4. Критика постановки проблемы как ключ к ее решению

Все проблемы и парадоксы квантовой механики, включая "редукцию волновой функции", основываются на этой механицистской натурфилософии. Поэтому если ее убрать, то парадоксы рассыпаются, а проблема "редукции волновой функции" превращается в произвольное утверждение. Действительно, физическая суть "теории квантовых измерений" И. фон Неймана состоит в теоретическом рассмотрении составных систем, полученных путем последовательного "откалывания" от прибора частей, и включение их в исследуемую систему, т.е. в центральную часть (сх. 1), что приводит к усложнению теоретической части за счет включения в нее элементов измерительной части . Но эта процедура не приводит к принципиальным трудностям и описывается обычной квантовой механикой. "Редукция волновой функции" приписывается руками как ad hoc гипотеза в конце, на основании лишь механицистской натурфилософии . Если последний аргумент посчитать неосновательным, то сразу становится видна граница между "первой" природой – явлением, и "второй" природой – операциями сравнения с эталоном.

Сравнение с эталоном является операцией, актом деятельности людей, а не естественным природным явлением (в обсуждаемом выше В. Гинзбургом эксперименте можно включить в систему взаимодействие квантовой частицы с атомом фотопластинки, но фиксация положения этого атома фотопластинки производится каким-то прибором типа микрометра, и эта фиксация является операцией, которая не может рассматриваться как естественное явление ). Аналогичным качеством обладают и процедуры приготовления. Это свойство крайних «операциональных» элементов в структурной формуле (1) можно назвать «нетеоретичностью» (но не в позитвистском смысле чистого «эмпирического факта», а в смысле принадлежности техническим операциям). То есть в физике граница проходит между теоретическим описанием и операциями , а не между "наблюдаемым" и "ненаблюдаемым" (электрон – ненаблюдаем, но "приготовляем", его параметры ненаблюдаемы, но измеряемы), и не между микромиром и "классическим языком" (Бор) . Эту принципиальную границу фиксирует и Фон Нейман. Но он ее фиксирует как границу между "наблюдаемым" и "наблюдателем" , интерпретируя их в духе позитивизма Э.Маха: "опыт может приводить только к утверждениям этого типа - наблюдатель испытал определенное (субъективное) восприятие, но никогда не к утверждениям таким, как: некоторая физическая величина имеет определенное значение» . Я же утверждаю обратное: измеримая «физическая величина» имеет объективное «определенное значение», а «наблюдатель» может быть заменен автоматом. Итак, измерение (как и приготовление) является технической операцией, а не явлением , откуда следует отсутствие "явления" "редукции волновой функции", т.е. берущееся многими физиками в качестве очевидного "утверждени 1", которое не только не очевидно, но и ложно . В квантовой механике, как и в других разделах физики, измерения проявляют, а не изменяют состояния .

Что касается введенного И. фон Нейманом и П.Дираком проекционного оператора, действующего на волновые функции, то его место можно проиллюстрировать на примере "экрана со щелью". Согласно структуре (1), экран со щелью может выполнять различные функции, в зависимости от своего положения в этой структуре. В области приготовления он будет выполнять роль фильтра, приготавливающего исходное состояние. Он может быть и элементом измерительного прибора. Но в обоих этих случаях он включен в технические операции и находится вне области применимости языка волновых функций, который применим лишь к описанию явлений в центральной части (1) и предназначен только для описания "первой" природы. Только находясь внутри исследуемой системы, в рамках ее описания экран со щелью будет (в квазиклассическом приближении) описываться проекционным оператором.

Неверно и "утверждение 2". В качестве основного аргумента в его пользу приводится высказанный еще фон Нейманом тезис о том, что если систему подвергнуть двум непосредственно следующим друг за другом измерениям ("неразрушающим", "1-го рода" по Паули), то результат второго измерения совпадет с результатом первого. Он ссылался при этом на опыт Комптона–Симонса по столкновению фотонов и электронов. С тех пор его принято рассматривать как известный экспериментальный факт, подтверждающий "утверждение 2" . Но правильна ли подобная интерпретация этого опыта? Корректная постановка задачи о повторном взаимодействии в рамках стандартной квантовой механики, опирающейся на уравнение Шредингера, рассмотрена Л. Шиффом как задача о вычислении распределения вероятностей возбуждения двух атомов в камере Вильсона пролетающей быстрой квантовой частицей (электроном) . Другими словами, экспериментальные результаты, обычно приводимые в подтверждение тезиса фон Неймана и "утверждения 2" , корректно описываются в рамках стандартной квантовой механики, как задача об изменении состоянии частицы в ходе двух повторных взаимодействий. Поэтому "утверждение 2" и основанное на нем "утверждение 3" являются также необоснованными.

Таким образом, экспериментальные результаты, обычно приводимые в подтверждение утверждений фон Неймана, можно описать в рамках стандартной квантовой механики без этого утверждения. "На сегодняшний день, – по словам Д.Н. Клышко, – по-видимому, все известные эксперименты количественно описываются стандартными алгоритмами квантовой теории и постулатом Борна . Снова и снова подтверждается лишь адекватность квантового формализма (при правильном выборе модели) и постулата Борна. Примечательно, что проекционный постулат фон Неймана–Дирака (в отличие от постулата Борна), по-видимому, никогда не используется при количественном описании реальных экспериментов. Он, как и понятие частичной редукции, фигурирует лишь в общих качественных натурфилософских рассуждениях. По крайней мере, на сегодня авторам неизвестно экспериментальных результатов, которые было бы нельзя подобным образом теоретически описать… Таким образом, мы приходим к выводу, что “проблема редукции волновой функции” является лишь некоторой гипотезой (или постулатом), предложенной Дираком и фон Нейманом (1932 г.) и представляет собой типичный пример "порочного круга": сперва принимается на веру, что волновая функция по неизвестной причине уничтожается вне области регистрации (для измерения типа определения положения частицы), а потом это принимается за закон природы, согласно известному англоязычному выражению – “adopted by repetition”" . Часто редукцию представляют как “реальное” событие . В ряде учебников и монографий редукция объявляется одним из основных постулатов квантовой механики, как это делается, например, в (но при этом на стр. 294 делается следующее знаменательное примечание: "...при проведении тщательного различия между процедурой приготовления и процедурой измерения проективный постулат не нужен"). Однако, проекционный постулат фон Неймана–Дирака фактически не нужен и никогда не используется для количественного описания реально наблюдаемых эффектов . Поэтому не удивительно, что в ряде работ понятие редукции, его необходимость подвергается сомнению (см. ). Например, согласно , "...проекционное правило фон Неймана следует рассматривать как чисто математическое и ему не следует придавать никакого физического смысла".

Итак, приводимые в "теорфизическом" формализме постулаты Борна (см. начало этой статьи) дают все, что надо для сравнения теории и эксперимента. Это основные постулаты квантовой механики, согласующиеся со всеми известными экспериментами. Понятие же "редукции волновой функции" в момент измерения выглядит излишним. Более того, описание квантовых корреляционных эффектов в терминах редукции и связанная с этим терминология (нелокальность, телепортация (их обсуждение см. в )) ведет к псевдопарадоксам типа сверхсветового телеграфа. Главной логической ошибкой, приводящей к "проблеме редукции волновой функции" (и "парадоксов" "кота Шредитнгера" и др.), является игнорирование гетерогенности структуры физики (1), из которой следует, что измерение (и приготовление) – это не явление природы, а операция, связанная с человеческой техникой, которая может то, что не может природа . И это имеет место в физике, начиная с теории падения тела у Г.Галилея, а не только в квантовой механике.

Полнота квантовой механики состоит не в теоретическом квантовомеханическом описании всех операций измерения (и приготовления), а, также как и в других разделах физики, в формулировке непротиворечивых оснований квантовой механики, включающих операции измерения (и приготовления). В этом смысле "новая" квантовая механика, созданная в 1925-1927 гг., полна (это демонстрирует "теорфизическая" формулировка оснований). Именно поэтому после 1925-1927 гг. квантовая механика успешно развивается как нормальная наука, опирающаяся на "теорфизическую" формулировку квантовой механики, и большинство физиков мало обеспокоено проблемой "редукции волновой функции", зачастую даже не зная о ней вовсе.

Литература

1. Барвинский А.О., Каменщик А.Ю., Пономарев В.Н. Фундаментальные проблемы интерпретации квантовой механики. Современный подход. М.: МГПИ, 1988.

2. Бом Д. Квантовая теория. М.: Наука, 1965.

3. Бор Н. Избранные научные труды. М.: Наука, т.1, 1970. -582 с.; т.2, 1971.

4. Гейзенберг В. Физика и философия. Часть и целое . (М.: Наука,1989)

5. Григорьян А.Т., Зубов В.П. Очерки развития основных понятий механики. М.: Наука, 1962.

6. Клышко Д.Н., Липкин А.И. "О "коллапсе волновой функции", "квантовой теории измерений" и "непонимаемости" квантовой механики". Электронный журнал "Исследовано в России", 53, стр 736-785, 2000 г.

7. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика в 10 т. М.: Наука, 1965–1987.

8. Лаплас, П. С. Опыт философии теории вероятностей: Попул. излож. основ теории вероятностей и ее прил. М. : Типо-лит. Кушнерев, 1908.

9. Липкин А.И. Основания современного естествознания. Модельный взгляд на физику, синергетику, химию. М.: "Вузовская книга", 2001.

10. Липкин А.И. Существует ли явление "редукции волновой функции" при измерении в квантовой механике? // Успехи физических наук, т.171, N4, 2001, с. 437-444.

11. Липкин А.И. Квантовая механика как раздел теоретической физики. Формулировка системы исходных понятий и постулатов // Актуальные вопросы современного естествознания. 2005, вып.3, с. 31-43.

12. Липкин А.И. Объектная теоретико-операциональная модель структуры научного знания // Философия науки (под ред. А.И. Липкина). М.: ЭКСМО, 2007.

13. Липкин А.И. Философские проблемы квантовой механики // Философия науки (под ред. А.И. Липкина). М.: ЭКСМО, 2007.

14. Мах Э.. Популярно-научные очерки. СПб.: Образование, 1909.

15. Менский М.Б. Квантовая механика: новые эксперименты, новые приложения и новые формулировки старых вопросов // Успехи физических наук, 2000, т.170, вып. 6, с. 631-648.

16. Менский М.Б. Квантовая механика, сознание и мост между двумя культурами // Вопросы философии, 2004, № 6, 64–74.

17. Менский М.Б. Концепция сознания в контексте квантовой механики // Успехи физических наук. 2005. Т. 175. № 4. С. 413-435.

18. Нейман фон И . Математические основы квантовой механики. М.: Наука, 1964.

19. Пенроуз Р. Тени разума в поисках науки о сознании. Москва; Ижевск: Ин-т компьютер. исслед., 2005.

20. Поппер К. Квантовая теория и раскол в физике. Из "Постскриптума" к "Логике научного открытия" (пер. С англ., комм., и послесл. А.А.Печенкина) М.: Логос, 1998.

21. Садбери А. Квантовая механика и физика элементарных частиц (М.: Мир,1989).

22. Фок В.А. Критика взглядов Бора на квантовую механику // Успехи физических наук, 1951, XLV. 1, с. 3–14.

23. Шифф Л . Квантовая механика (М.: ИЛ, 1959) .

24. Эйнштейн А. Собрание научных трудов. Тт. 1-4. М., Наука, 1965-1967.

25. Ballentine L E Int. J. Theor. Phys. 27 , 211 (1988)

26. Braginsky V B, Khalili F Y Quantum Measurement (Cambridge Univ.Press, 1992)

27. Compton A. H., Simon A.W. Directed Quanta of Scattered X-rays // Phys.Rev., 1925, v. 26, p. 289–299.

28. Home D, Whitaker M A B Interpretations of Quantum Measurement without the Collapse Postulate // Phys. Lett. 1988, v. A 128, p. 1-3.

29. Margenau H. Measurement in Quantum Mechanics // Annals of Physics (N.Y.), 1963, v. 23, p. 469-485.

30. Namiki M, Pascazio S, in Fundamental Problems in Quantum Theory // Phys. Rev. 1993, v. A 44, p. 39-48.

31. Quantum mechanics without reduction (Eds. M Sini, J Levy-Leblond) (Bristol: Hilger, 1990).

32. Quantum Theory and Measurement (Eds JAWheeler, W H Zurek) (Princeton: Princeton University Press, 1983) p. 168

33. Wigner E.P. The Problem of Measurement // Amer. J. of Physics, 1963, v. 31, p. 6-15.

Эта формулировка основана на более общем "объектном теоретико-операциональном" взгляде на физику, являющимся результатом анализа двух фундаментальных научных революций – XVII в. и границы XIX–XX вв. (на отрезке от создания максвелловской электродинамики до формулировки "новой" квантовой механики) . В ходе последней физика разбивается на отдельные разделы, каждый из которых имеет четкие основания (в виде системы принципов-постулатов), в которые входит определение основных ("первичных ") идеальных объектов (ПИО ) данного раздела физики (типа механической частицы в классической механике и электромагнитного поля в электродинамике), из которых строятся "вторичные" идеальные объекты (ВИО) – модели различных явлений (подобно тому, как в геометрии из точек и прямых строятся различные фигуры). При этом формирование ПИО и оснований раздела физики идет не по эмпирическо-реалистической схеме Фр. Бэкона (от эмпирических фактов к эмпирическим обобщениям (закономерностям), а затем к общим теоретическим законам), которая была раскритикована еще в XVIII в. Д.Юмом и И.Кантом, а в XX в. – К. Поппером (с которым был солидарен А. Эйнштейн), а по рационалистически-конструктивистской схеме Г.Галилея: от теоретического определения понятия к его материализации с помощью обсуждаемых ниже операций приготовления и измерения (вакуум у Галилея – это то, где тело падает равномерноускоренно, инерциальная система отсчета у Ньютона – это то, где выполняются законы Ньютона, и т.д. и далее дается способ их реализации в эмпирическом материале). То есть ПИО первичны, а их эмпирическая материализация – приближение. Для ВИО – наоборот: они служат приближенной моделью для описываемого ими природного явления. В центре этой, сформировавшейся к началу XX в. формы представления физического знания, содержащегося в курсах теоретической физики ( и др.), оказывается физический объект (система) и его состояния, а не законы, которые выступают в качестве одной из сторон объекта (ПИО).

Значения же этих величин в отдельном акте измерения сопоставить с состоянием системы нельзя ни до, ни после этого акта измерения (если оно не приготовлено в особом “собственном” состоянии).

Она представлена в мире сегодня такими видными учеными, как Е. Вигнер и Р. Пенроуз , а у нас в стране М.Б. Менским и др.

Данная работа продолжает критический анализ подобных утверждений, начатый в .

Сделал я одно измерение и попал в одну "проекцию", сделал другое – в другую. А как быть, если я не один на Земле этим занимаюсь? Ответ на этот вопрос в выглядит так: "В любом эвереттовском мире все наблюдатели видят одно и то же, их наблюдения согласованы друг с другом". То есть оказывается, что сознание одно на всех (епископ Беркли в аналогичном месте вводил Бога как универсального наблюдателя), хотя ранее говорилось, что "индивидуальное сознание субъективно осуществляет выбор (селекцию)". На каком же основании делается столь сильное утверждение? На основании того, что иначе все развалится (не будет "линейности квантовой эволюции") и автор не видит другого пути, как призвать всемогущее сознание. Т.е. один из центральных для "многомировой интерпретации" вопрос (его ахиллесова пята) – преодоление "шизометрии" при наличии многих наблюдателей – не решается.

С чем приятнее жить: с простым сознанием вероятностного поведения квантовых объектов и операциональным характером измерения (о чем говорится ниже) или с сознанием "шизометрии" бесконечно расщепляющихся существований для "объяснения" этого вероятностного поведения квантовых объектов, наверное, – дело вкуса, но никакой логической стройности последняя ни к чему не добавляет, что подтверждает ее изложение в , кишащее многочисленными "есть основания думать", "если принять эту гипотезу", "достаточно правдоподобной представляется", "если отождествить", и т.п., которые скрывают множество произвольных ad hoc гипотез. Принципиальная непроверяемость ("многомировая интерпретация не может быть проверена экспериментально" ) данной конструкции говорит о ее чисто натурфилософском характере. Нет и связи многомировой интерпретации с "квантовой криптографией" и "квантовым компьютером", которые используют свойства (идеи) не многомировой интерпретации, а "перепутанных" состояний, введенных в знаменитом мысленном эксперименте Эйнштейна, Подольского, Розена, который в рамках "теорфизического" подхода был рассмотрен в .

Это напоминает сценический прием "Бога из машины" в пьесах XVII-XVIII вв. (для того, чтобы получить благополучный конец в пьесе, в конце действия на сценической машине спускается античный бог и все расставляет на нужные места).

Подобное членение можно найти и у Гейзенберга , а также у Г. Маргенау , но там оно трактуется по-другому.

Наряду с такой "квантовой теорией измерения", существует теория измерений, которая, как и в классической физике, занимается вопросами отличия идеального измерения, фигурирующего в физической теории (и схеме (1)) от реального, выполненного в данной материальной реализации на основе имеющихся материалов и приборов.

К этому следует добавить, что так называемая "проблема квантовых измерений" часто рассматривается как смесь двух явлений: 1) взаимодействия квантовой частицы (системы) с квазиклассической системой или с квантовой статистической системой, которая описывается матрицей плотности, а не волновой функцией, и 2) собственно "редукции волновой функции". Но первая не представляет каких-либо принципиальных проблем.

Именно эта имеющая логически необходимый статус граница скрывается за утверждением Бора, что «экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики», «должны производиться на обычном языке, дополненном терминологией классической физики» . Но боровская форма их выявления неадекватна. Его обоснование необходимости «классичности» приборов опирается на утверждение, что иначе нельзя бы было «рассказать, что мы сделали и что узнали в итоге»». Но что такое «обычный язык» и «классическая физика»? И язык и физика развиваются. Новые понятия возникают вместе с новыми разделами физики. Так в конце XIX в. «неклассическим» и непонятным понятием было электромагнитное поле. Язык позволяет формулировать и новые "неклассические" понятия.

"Однако в любом случае, сколь далеко ни продолжали бы мы вычисления - до ртутного сосуда термометра, до его шкалы, до сетчатки или до клеток мозга, - в некоторый момент мы должны будем сказать: а это воспринимается наблюдателем. Это значит, что мы всегда должны делить мир на две части - наблюдаемую систему и наблюдателя . В первой из них мы можем, по крайней мере принципиально, сколь угодно подробно исследовать все физические процессы; в последней это бессмысленно. Положение границы между ними в высокой степени произвольно Однако это обстоятельство ничего не меняет в том, что при каждом способе описания эта граница должна быть где-нибудь проведена , если только все не проходит впустую, т. е. если сравнение с опытом должно быть возможным" (курсив мой. – А.Л. ) .

Поэтому нет в квантовой механике "странного дуализма", состоящего в "предположении наличия двух типов изменений вектора состояний", о котором говорил Вигнер .

Результат дает заметную вероятность только в случае, если направление движения частицы почти параллельно как линии, соединяющей атомы, так и направлению конечного импульса рассеянной частицы. Т.е. взаимодействие движущейся частицы высокой энергии с другой частицей (которая может использоваться как «пробное тело» в косвенном измерении) в случае малой передачи энергии слабо изменяет состояние этой частицы. Естественным развитием рассмотрения пары последовательных измерений являются рассматриваемые в "непрерывные измерения" типа следа в камере Вильсона.

Включая современные реальные экспериментальные реализации мысленного эксперимента Эйнштейна, Подольского, Розена (ЭПР) и "телепортации" состояний фотона (см. ).

То же можно сказать и о применении в "квантовой теории измерений" концепции декогеренции , действительной областью применения которой являютсязадачи по взаимодействию квантовой системы с термостатом и систем состоящих из большого числа атомов (мезосистем) .

Из не гуманитарных дисциплин мне всегда нравилась физика. Несмотря на то, что с математикой и геометрией отношения не складывались, по физике я всегда имела стабильную четверку. Видимо, дело в том, что наука это прикладная, понятная и чем-то сродни языку или даже литературе. Не спрашивайте, почему я так считаю – образное мышление, оно такое загадочное. В отличие от алгебры, где за абстрактным сложением, вычитанием и другими действиями я никогда не видела смысла, физические формулы и задачи всегда были для меня конкретными. Физику можно представить, описать, даже нарисовать, а математика – всего лишь набор бездушных и непонятных «закорючек».

Квантовая физика – наука интересная вдвойне. Для меня – это некий гибрид точных знаний и философских рассуждений, допусков, условий, вероятностей. Теоретическая физика благодатное поле для размышлений, споров, немыслимых гипотез и спонтанных открытий. Мне, как философу и эзотерику эта сторона жизни весьма интересна. Теоретическая и квантовая физика дают ответы на вопросы, которыми задаются мои коллеги и проливают хоть какой-то свет на суть загадочных явлений.

Именно квантовая физика предполагает вариативность Вселенной и наличие параллельных пространств. С ее помощью можно хоть как-то объяснить пространственно-временные странности, которые время от времени происходят в жизни.

Основные принципы квантовой механики даже легли в основу популярного психологического направления.

Простой пример, известный даже тем, кто не интересуется наукой – это знаменитый «кот Шредингера». Эксперимент много раз описывался в различных источниках. Если опустить технические термины и заумные подробности, то его суть такова: для наблюдателя со стороны кот находится сразу в двух состояниях. Он либо жив, либо мертв. Пока не откроем крышку ящика с котом и радиоактивным веществом, мы этого не узнаем. Да, радиоактивное вещество для экспериментатора тоже в двух состояниях: либо распадается, либо нет. От этого зависит жизнь пресловутого кота. Если еще проще, то окружающий нас мир всегда двойственен. Все зависит от того, «подглядываем» мы за ним или нет.

На этом утверждении и основан так называемый «эффект наблюдателя», примеров которому в жизни можно найти массу. Представьте себе морозный зимний день. Вы стоите на остановке общественного транспорта, уткнувшись в шарф, мерзните и проклинаете себя, за то, что не удосужились проверить заряд аккумулятора в машине. Автобуса нет уже минут десять. Вы в нетерпении топчетесь на месте, выходите на проезжую часть, высматривая злосчастный автобус. А он все не едет. Вы наблюдаете за ним, понимаете, о чем я? Страстно желаете его увидеть, но на горизонте пусто. Наконец, вы не выдерживаете пытки холодом, и решаетесь идти пешком. И тут же, словно из воздуха, в нескольких метрах от остановки появляется желанный автобус! Совпадение? Вовсе нет. Это сработал т.н. эффект наблюдателя. Пока мы тоскливо всматривались в туманную морозную дымку, мир вел себя враждебно, словно насмехаясь над нашими мученьями. Стоило бросить бесполезное занятие, как он тут же повел себя по-другому. Вывод – окружающая действительность меняется в зависимости от того, «подсматриваем» мы за ней или нет. Чем больше мы чего-то хотим, тем меньше вероятность это получить. Пока мы торопим Вселенную, нетерпеливо подгоняя ее, она так и будет задерживать вожделенный автобус! А если бы вы вовремя проверили аккумулятор, то вообще не оказались бы на этой остановке.

Курильщики знают: чтобы транспорт, который долго ждешь, быстрее пришел, нужно обязательно закурить. Не успеешь чиркнуть зажигалкой, как обязательно на горизонте появляется нужная маршрутка! И это не шутка, я много раз проверяла данное утверждение. Могу с полным правом называть себя физиком-практиком в области квантовой механики! Стоит только забыть о своей просьбе, расхотеть что-либо, как мир моментально реализует наши «хотелки». Вот уж, во истину: стоит только расхотеть! И это не фантастика – так работает принцип наблюдения за реальностью. Хитрая Вселенная ведет себя как затаившийся в камышах тигр: пока не выпрыгнет, не узнаешь, есть он там, или нет.

Наверняка, многие сталкивались с еще одним удивительным эффектом из области теоретических знаний: вспоминаешь о ком-то усиленно, и этот человек словно из-под земли вырастает на твоем пути. Даже если вы живете в разных концах города или не виделись несколько лет. Мы, люди, словно притягиваем друг друга. Как притягиваются заряженные частицы, разлученные на много километров в пространстве.

А задумывались ли вы, что мы одновременно и наблюдатели, и коты, закрытые в коробке? С одной стороны, ты ждешь трамвая на остановке в зимний день, с другой, как выглядел бы этот мир, если бы тебя в нем не было? И скорее всего, есть такие параллельные Вселенные, где нас нет. Или мы выбрали иной жизненный путь и никогда не окажемся на этой остановке. Быть может, в иной реальности мы раскатываем на личном лимузине и наблюдаем абсолютно другие картинки. Мы одновременно и исследователи, и подопытные.

То, что фаталисты называют «судьбой» не более чем физическая вероятность того или иного события. Стоит сделать шаг влево или вправо, как линия жизни делает ответвление, и вот уже река событий, встреч, неудач и побед поворачивает в другое русло.

Мы наблюдаем за жизнью в замочную скважину своих представлений о ней. А как она в действительности выглядит, никто толком и не знает. Мир такой, каким видит его каждый в отдельности. Помните притчу о том, как слепые разглядывали слона? Одному достался хвост, другому хобот, а третьему нога. Вот так и мы – все зависит от того, какая часть слона досталась, какой угол зрения мы выбрали – так и будет выглядеть мир. Птица и змея тоже видят землю по-разному, и каждое существо уверено, что именно его взгляд правильный.

Вот за это и люблю я физику, в особенности такую заумную – хлебом не корми, дай поговорить о тайнах и загадках. Беспроигрышная позиция с точки зрения наблюдателя: на любой вечеринке я всегда в центре внимания!

А именно в посте Random Science: как квантовый эффект Зенона останавливает время , в котором описывается эффект Зенона из квантовой физики. Он заключается в том, что если наблюдать за распадающимся (или радиоактивным) атомом с определенной частотой (или так называемой вероятностью события, причем при вычислении вероятности сразу включается только ограниченная двоичная логика - да или нет), то атом может не распадаться практически безконечно - пока вы наблюдате за ним и насколько вас хватит. Проводились эксперименты, подтверждались данные - действительно, изначальные атомы, за которыми "наблюдали" ученые с определенной частотой (или вероятностью) - не распадались. Почему слово "наблюдали" вынесено в кавычки? Ответ под катом вместе с постом lana_artifex и моими комментариями к нему.

Элейский Зенон - греческий философ, который предположил, что если время разделить на множество отдельных частей, то мир замрет. Оказалось, что Зенон был прав, если говорить о квантовой механике. Он делал это, предлагая серии парадоксов, среди которых было доказательство, что ничего никогда не двигается. И в случае с этим парадоксом, ученые только в 1977 г. смогли догнать безумные идеи Зенона.

Физики из Университета Техаса - Д. Сударашан и Б. Мишра, предложили доказательства эффекта Зенона, показав, что можно остановить распад атома просто наблюдая за ним достаточно часто.

Официальное название современной научной теории - квантовый эффект Зенона, и он основан на довольно известном Парадоксе Стрелы. Стрела летит в воздухе. Ее полет является серией состояний. Состояние определяется самым коротким промежутком времени из возможных. В любой момент состояния, стрела неподвижна. Если бы она не была неподвижна, то было бы два состояния, одно, в котором стрела находится в первой позиции, второе, где стрела находится во второй позиции. Это вызывает проблему. Не существует другого способа описать состояние, но если время состоит из множества состояний, и стрела не двигается ни в одном из них, то стрела не может двигаться вовсе.

Данная идея сокращения времени между наблюдениями движений заинтересовала двух физиков. Они поняли, что распадом некоторых атомов можно манипулировать при помощи Парадокса Стрелы. Атом Натрия, который не находится под наблюдением имеет потенциал к распаду, по крайней мере с нашей точки зрения данный атом находится в состоянии суперпозиции. Он как разложился, так и нет. Проверить нельзя пока никто не посмотрит на него. Когда это происходит, атом переходит в одно из двух состояний. Это как подбросить монетку, шанс 50/50, что атом распался. В определенный момент времени, после того как он перешел в состояние суперпозиции, существует больший шанс, что он не распался при наблюдении за ним. В другие моменты наоборот, он скорее распадется.

Предположим, что атом скорее распался после трех секунд, но маловероятно, что распался после одной. Если проверить через три секунды, то атом скорее будет разложившимся. Однако Мишра и Сударашан предполагают, что если проверять атом три раза в секунду, то вероятность того, что он не распадется вырастает. На первый взгляд звучит как полный бред, но это именно то, что происходит. Исследователи проводили наблюдение за атомами: в зависимости от частоты измерений, они повышали или уменьшали шанс на распад, нежели в случае с обычной ситуацией.

“Усовершенствованный” распад является результатом квантового анти-эффекта Зенона. Если правильно подстроить частоту измерений, можно заставить систему распадаться быстрей или медленней. Зенон был прав. Мы действительно можем остановить мир, главное научиться смотреть на него правильно. В то же время, мы можем и привести к его разрушению, если не будем аккуратны.

Мои комментарии к посту:

kactaheda
Интересные темы поднимаете. Нет ли случайно информации, с помощью чего наблюдали за атомом?
"Атом Натрия, который не находится под наблюдением имеет потенциал к распаду, по крайней мере с нашей точки зрения данный атом находится в состоянии суперпозиции"

lana_artifex
Определённые темы поднимаю на уровне общедоступного блога, обсуждаю их со своим кругом друзей и не развиваю далее - пусть в блоге они остаются на уровне науки, не всякий поймёт эти темы в их развитии. Информации такой нет, но вы как читаете мысли - есть возможность запросить инфу по этому вопросу у автора, что уже было сделано, пока без ответа

kactaheda
Можете не утруждаться - я вам попробую ответить сам:) А вы разве не автор этого блога?
Итак, что такое процесс наблюдения в квантовой физике? Классически - это момент регистрации определенной частички в пространстве. Но идем дальше. Наблюдаем мы не глазами и не камерой, а... тоже частичками. В классическом эксперименте с двумя щелями за прохождением электрона через одну из щелей наблюдают с помощью фотонов. Получается забавная вещь - наблюдающие фотоны как бы сбивают пролетающие электроны. Но есть еще один интересный момент - что электроны, что фотоны являются электромагнитными волнами, распространяющимися в среде (назовем ее эфир, как привычнее для меня или же поле, физический вакуум, как его называют современные ученые) на скорости света. То есть одни волны интерферируют с другими, причем ортогонально - то есть перпендикулярно направлениям распространения друг друга. При таком наблюдении фотонами за электронами, электрон, являясь волной, не может проинтерферировать сам с собой, создавая спектральную картину на экране из максимумов и минимумов, а пролетает как бы только через одну щель - что видно в виде одной полоски на экране.

Итак, исходя из всего этого, можно сделать вывод, что "бомбардируя" распадающийся атом натрия другими наблюдательными частичками, в этом эксперименте просто постоянно пытаются поддерживать его устойчивое состояние, добавляя энергию порциями - в каждый момент наблюдения.

lana_artifex
Спасибо, поняла суть!

lana_artifex
Тему с эффектом Зенона подняла как философскую подводку к следующему посту о картине, а сами по себе прочтения эффекта Зенона - тема уже больше эзотерическая, в лучшем смысле этого слова

kactaheda
Да, в эзотерике именно об этом и говорится - наши мысли (являясь электромагнитными волнами) влияют на другие электромагнитные волны, из которых состоит весь Мир - вплоть до мельчайшего атома, протона, мюона и любого возможного бозона:) И таких частичек можно открывать миллиарды - например частичку Бога в БАКе:)
Так что вот я и вернулся к своему первому посту в ЖЖ - про Наблюдателя в квантовой физике... Только теперь у меня есть научное объяснение чудесам.

Наука кроме всего прочего интересна своей непредсказуемостью. Среди физиков, и не только, известна история о том, как в середине XIX века профессор Филипп фон Жолли отговаривал молодого Макса Планка заниматься теоретической физикой, утверждая, что эта наука близка к завершению и что в ней остались лишь незначительные проблемы. Планк, к счастью, его не послушал и стал основоположником квантовой механики, одной из самых успешных теорий в истории физики. Большинство технических достижений физики ХХ века справедливо связывают с квантовой механикой. Атомная энергетика и лазеры, теории элементарных частиц и физика твердого тела, успехи наноэлектроники и теория сверхпроводимости немыслимы без квантовой механики. Эти вызывающие восхищение успехи привели к почти всеобщей вере в справедливость основных принципов квантовой механики. Сомнения, казалось бы, здесь неуместны. Но семинар «Квантовая теория без наблюдателя» в университете немецкого города Билефельд 22–26 апреля 2013 года свидетельствует о том, что всё не так однозначно. Семинар проводится в рамках программы научных исследований Европейского сообщества «Фундаментальные проблемы квантовой физики» . Программа включает четыре основные темы: 1) квантовая теория без наблюдателя, 2) эффективное описание сложных систем, 3) квантовая теория и теория относительности, 4) от теории к эксперименту.

В обосновании необходимости данной программы говорится, что сейчас многие ученые согласны с известным высказыванием Эйнштейна 1926 года: «Квантовая механика, несомненно, впечатляет. Но внутренней голос говорит мне, что это не есть, однако, реальная вещь. Теория говорит многое, но она не приближает нас к секретам Создателя. Я, во всяком случае, уверен, что Он не играет в кости ». Судя по составу участников программы, ученых, согласных с Эйнштейном, действительно немало. В программе MP1006 принимают участие ученые из 22 европейских стран и Израиля, а также из отдельных университетов США, Австралии, Индии, Мексики и Южной Африки.

В качестве мотивации необходимости создания квантовой теории без наблюдателя приводится одно из высказываний ирландского физика Джона Белла (1928–1990): «Формулировки квантовой механики, которые вы находите в книгах, предполагают разделение мира на наблюдателя и наблюдаемое, и вам не говорят, где проходит это разделение - с какой стороны очков, например, или с какой стороны моего оптического нерва... Таким образом, мы имеем теорию, которая является фундаментально неясной ». Эта проблема не является новой. Она возникла сразу после того, как совсем молодой Гейзенберг предложил в 1925 году описывать не то, что происходит, а то, что наблюдается. По воспоминаниям самого Гейзенберга, в беседе, после его выступления в 1926 году в Берлинском университете, Эйнштейн сказал, что «с принципиальной точки зрения желание строить теорию только на наблюдаемых величинах совершенно нелепо. Потому что в действительности всё ведь обстоит как раз наоборот. Только теория решает, что именно можно наблюдать. Видите ли, наблюдение, вообще говоря, есть очень сложная система ». Через 63 года, в 1989 году, Белл писал в статье «Против измерения»: «Эйнштейн говорил, что теория определяет, что может быть "наблюдаемым". Я думаю, он был прав: "наблюдение" - это крайне сложный процесс для теоретического описания. Поэтому такого понятия не должно быть в формулировке фундаментальной теории ». Таким образом, согласно мнению не только Белла, но и достаточно большого числа ученых, с ним согласных, в наиболее успешной теории ХХ века есть такие понятия, которых не должно быть в формулировке фундаментальной теории. Стоит ли обращать на это внимание? Ответ на данный вопрос, очевидно, связан с ответом на вопрос о целях научного исследования.

Ортодоксальная квантовая механика отказалась от того, что Эйнштейн считал «высшей целью всей физики: полное описание реального состояния произвольной системы (существующей независимо от акта наблюдения или существования наблюдателя)... ». Этот отказ явился следствием того, что Гейзенберг, Бор и др. потеряли надежду на возможность реалистического описания некоторых явлений, таких, например, как эффект Штерна-Герлаха. Штерн и Герлах обнаружили в 1922 году, что измеряемые значения проекций магнитного момента атомов имеют дискретные значения. Бор писал в 1949 году, что, «как ясно показали Эйнштейн и Эренфест [в 1922 году], наличие такого эффекта ставило непреодолимые трудности перед всякой попыткой наглядно представить себе поведение атома в магнитном поле ». А спустя 32 года Белл писал: «Из-за явлений подобного рода среди физиков возник скепсис относительно возможности создания непротиворечивого пространственно-временного описания процессов, происходящих на атомном и субатомном уровнях... Более того, некоторые стали утверждать, что атомы и субатомные частицы не имеют определенных параметров, кроме тех, что наблюдаются. Не существует, например, определенного значения параметра, по которому можно было бы различить частицы, приближающиеся к анализатору Штерна-Герлаха, до отклонения их траектории вверх или вниз. В действительности реально не существуют даже частицы ».

Вопрос о существовании параметров до наблюдения был главным предметом спора между основоположниками квантовой теории Гейзенбергом, Бором и др., с одной стороны, и Эйнштейном, Шрёдингером и др. - с другой стороны. Шрёдингер писал в 1951 году, что «Бор, Гейзенберг и их последователи... имеют в виду, что объект не существует независимо от наблюдающего субъекта ». Он выражал свое несогласие с тем, «что глубокое философское размышление об отношении объекта и субъекта и об истинном значении отличий между ними зависит от количественных результатов физических или химических измерений ». Эйнштейн свое несогласие выразил, в частности, известным высказыванием «Мне хотелось бы думать, что Луна существует, даже когда я на нее не смотрю ». Наиболее известным эпизодом в этом споре гигантов явилась статья 1935 года - Эйнштейна, Подольского и Розена.

ЭПР стремились доказать, как писал в 1981 году Белл, «что теоретики, создавшие квантовую механику, опрометчиво поспешили отказаться от реальности микроскопического мира ». Но сейчас статья ЭПР известна большинству не этим доказательством, а ЭПР-корреляцией, которую сами ЭПР считали невозможной, а многие современные авторы считают реально существующей. Это является, пожалуй, главным парадоксом в истории с ЭПР-корреляцией. ЭПР-корреляция и неравенства Белла с наибольшей достоверностью доказали, что предположение о существовании параметров до измерения противоречит ортодоксальной квантовой механике. Из нелокальности ЭПР-корреляции следует, что описание акта измерения не может быть полным без включения в него сознания наблюдателя. Нелокальность является следствием того, что имеет разные названия: скачок Дирака, коллапс или редукция волновой функции, «квантовый скачок от возможности к действительности» (по Гейзенбергу), но один смысл - мгновенное, нелокальное, необратимое превращение суперпозиции в собственное состояние при измерении. Эта особая роль акта измерения определяется тем, что, как писал Дирак в 1930 году, «измерение всегда вызывает скачок системы в собственное состояние той динамической переменной, измерение которой производилось ». Этот скачок не может быть следствием воздействия прибора на квантовую систему, так как неравенства Белла выводятся именно из этого предположения. Воздействие может быть любым, которое необходимо для описания результатов измерений. Единственным условием при выводе неравенств Белла является локальность воздействия: изменение условий эксперимента не может мгновенно повлиять на результат измерений в пространственно удаленной области. Нелокальное воздействие прибора есть реальная нелокальность, означающая возможность изменить прошлое, что логически невозможно. Поэтому нарушение неравенств Белла, предсказываемое квантовой механикой, может быть только следствием нелокальности нашего сознания.

Для Гейзенберга и других создателей квантовой механики не могло быть вопроса, с какой стороны очков проходит разделение между наблюдателем и наблюдаемым. Для них, мысливших в традициях европейской философии, это разделение могло быть только следствием картезианского разделения на сущности мыслящие и сущности протяженные. Утверждение Гейзенберга «Классическая физика основывалась на предположении - или, можно сказать, на иллюзии, - что можно описать мир или, по меньшей мере, часть мира, не говоря о нас самих » подчеркивает, что квантовая механика отказалась от полярности этого разделения, когда сущности протяженные мыслились независимо от сущностей мыслящих. Но, отказавшись от иллюзии, Гейзенберг не сказал, как описать мир, говоря о нас самих. Это, пожалуй, является главной причиной, почему желание строить теорию только на наблюдаемых величинах совершенно нелепо. Поэтому задача создания квантовой теории без наблюдателя, т. е. без нас самих, всегда была актуальной. Самыми известными попытками ее решения являются «многомировая» интерпретация, предложенная Эвереттом в 1957 году, и интерпретация Бома 1952 года, вдохновившая Белла на создание знаменитых неравенств Белла.

Но для большинства физиков эта задача была и остается непонятной. В одной из своих последних работ Белл писал об одной из статей 1988 года, которая «особенно выделяется своим здравым смыслом. Автора шокируют "...такие ошеломляющие фантазии, как многомировая интерпретация..". Он отвергает утверждения фон Неймана, Паули, Вигнера, что описание "измерения" не может быть полным без включения в него сознания наблюдателя ». Такое отношение к квантовой механике с позиций здравого смысла характерно для большинства физиков. Во всех или почти во всех учебниках и книгах акт измерения (наблюдения) рассматривается как процесс взаимодействия квантовой системы не с наблюдателем, а с бездушным измерительным прибором. Заблуждение о возможности замены сознания наблюдателя измерительным прибором особенно сильно среди физиков советской школы. Наш выдающийся ученый, лауреат Нобелевской премии академик В. Л. Гинзбург признавался в предисловии к статье «Концепция сознания в контексте квантовой механики», опубликованной в журнале «Успехи физических наук» в 2005 году, что, являясь материалистом, он не понимает, «почему так называемая редукция волновой функции как-то связана с сознанием наблюдателя ». Квантовую механику учили (и учат) так, что многие не знают не только о проблеме «сознания наблюдателя», но даже о редукции волновой функции. Автор статьи «Две методологические революции в физике - ключ к пониманию оснований квантовой механики», опубликованной в 2010 году в журнале «Вопросы философии», признается: «Сам я услышал о ней уже после окончания МФТИ и защиты диссертации по квантовой механике ». Поэтому сам факт постановки задачи создания квантовой теории без наблюдателя должен быть интересен нашим ученым. Этот факт свидетельствует о возрастающем понимании значения работ Джона Белла, сборник которых впервые был опубликован в 1987 году и несколько раз переиздавался, последний раз в 2011 году.