Возможна ли сверхсветовая скорость? Что такое скорость света

  • Дата: 13.10.2019

эпиграф
Учительница спрашивает: Дети, что быстрее всего на свете?
Танечка говорит: Быстрее всего слово. Только сказал, уже не вернешь.
Ванечка говорит: Нет, быстрее всего свет.
Только нажал на выключатель, а в комнате тут же светло стало.
А Вовочка возражает: Быстрей всего на свете понос.
Мне однажды так приспичило, что ни слова
сказать не успел, ни свет включить.

Задумывались ли вы когда-нибудь, почему скорость света максимальна, конечна и постоянна в нашей Вселенной? Это весьма интересный вопрос, и сразу, в качестве спойлера, выдам страшную тайну ответа на него - никто точно не знает, почему. Скорость света берется, т.е. мысленно принимается за константу, и на этом постулате, а так же на идее, что все инерциальные системы отсчета равноправны Альберт Эйнштейн построил свою специальную теорию относительности, которая вот уже сто лет выводит ученых из себя, позволяя Эйнштейну безнаказанно показывать миру язык и ухмыляться в гробу над размерами свиньи, которую он подложил всему человечеству.

Но почему, собственно, она такая постоянная, такая максимальная и такая конечная ответа так и нет, это лишь аксиома, т.е. принятое на веру утверждение, подтверждаемое наблюдениями и здравым смыслом, но никак ниоткуда логически или математически не выводимое. И вполне вероятно, что не такое уж и верное, однако никто до сих пор не смог его опровергнуть ни каким опытом.

У меня есть свои соображения на этот счет, о них попозже, а пока по простому, на пальцах™ попытаюсь ответить хотя бы на одну часть - что значит скорость света "постоянна".

Нет, я не буду грузить вас мысленными экспериментами, что будет если в ракете, летящей со скоростью света, включить фары и т.д., сейчас немного не об этом.

Если вы посмотрите в справочнике или википедии, скорость света в вакууме определена как фундаментальная физическая константа, которая точно равна 299 792 458 м/с. Ну, то есть если говорить примерно, то это будет около 300 000 км/с, а вот если прям точно - 299 792 458 метров в секунду.

Казалось бы, откуда такая точность? Любая математическая или физическая константа, что ни возьми, хоть Пи, хоть основание натурального логарифма е , хоть гравитационная постоянная G, или постоянная Планка h , всегда содержат какие-то цифры после запятой . У Пи этих знаков после запятой на сегодняшний момент известно около 5 триллионов (хотя какой-бы то ни было физический смысл, имеют только первые 39 цифр), гравитационная постоянная сегодня определена как G ~ 6,67384(80)x10 -11 , а постоянная Планка h ~ 6.62606957(29)x10 -34 .

Скорость же света в вакууме составляет ровно 299 792 458 м/с, ни сантиметром больше, ни наносекундой меньше. Хотите узнать, откуда такая точность?

Началось все как обычно с древних греков. Науки, как таковой, в современном понимании этого слова, у них не существовало. Философы древней Греции потому и назывались философами, ибо сначала выдумывали какую-то хрень у себя в голове, а потом при помощи логических умозаключений (а иногда и реальных физических опытов) пытались доказать ее или опровергнуть. Однако использование реально существующих физических измерений и феноменов считались у них доказательствами "второго сорта", которые не идут ни в какое сравнение с первосортными логическими выводами получаемыми умозаключениями прямо из головы.

Первым, кто задумался о существовании у света собственной скорости, считают философа Эмпидокла, который заявлял, что свет есть движение, а у движения должна быть скорость. Ему возражал Аристотель, который утверждал, что свет это просто присутствие чего-то в природе, и все. И ничего никуда не движется. Но это еще что! Эвклид с Птолемеем так те вообще считали, что свет излучается из наших глаз, а потом падает на предметы, и поэтому мы их видим. Короче древние греки тупили как могли, покуда их не завоевали такие же древние римляне.

В средние века большинство ученых продолжали считать, что скорость распространения света бесконечна, среди таковых были, скажем, Декарт, Кеплер и Ферма.

Но некоторые, например Галилей, верили, что у света есть скорость, а значит ее можно измерить. Широко известен опыт Галилея, который зажигал лампу и светил помощнику, находящемуся от Галилея в нескольких километрах. Увидев свет, помощник зажигал свою лампу, и Галилей пытался измерить задержку между данными моментами. Естественно у него ничего не получалось, и в конце концов он вынужден был написать в своих сочинениях, что если у света есть скорость, то она чрезвычайно велика и не поддается измерению человеческими усилиями, а посему можно считать ее бесконечной.

Первое документальное измерение скорости света приписывается датскому астроному Олафу Ремеру в 1676м году. К этому году астрономы, вооруженные подзорными трубами того самого Галилея, вовсю наблюдали за спутниками Юпитера и даже вычислили периоды их вращения. Ученые определили, что ближайший к Юпитеру спутник Ио имеет период вращения примерно 42 часа. Однако Ремер заметил, что иногда Ио появляется из-за Юпитера на 11 минут раньше положенного времени, а иногда на 11 минут позже. Как оказалось, Ио появляется раньше в те периоды, когда Земля, вращаясь вокруг Солнца, приближается к Юпитеру на минимальное расстояние, и отстает на 11 минут тогда, когда Земля находится в противоположном месте орбиты, а значит находится от Юпитера дальше.

Тупо поделив диаметр земной орбиты (а он в те времена был уже более-менее известен) на 22 минуты Ремер получил скорость света 220 000 км/с, примерно на треть не досчитавшись до истинного значения.

В 1729м году английский астроном Джеймс Бредли, наблюдая за параллаксом (небольшим отклонением местоположения) звезды Этамин (Гамма Дракона) открыл эффект аберрации света , т.е. изменение положения на небосклоне ближайших к нам звезд из-за движения Земли вокруг Солнца.

Из эффекта аберрации света , обнаруженного Бредли, так же можно вывести, что свет имеет конечную скорость распространения, за что Бредли и ухватился, вычислив ее равной примерно 301 000 км/с, что уже в пределах точности 1% от известной сегодня величины.

Затем последовали все уточняющие измерения другими учеными, но так как считалось, что свет есть волна, а волна не может распространяться сама по себе, нужно чтобы что-то "волновалось", возникла идея существования "светоносного эфира", обнаружение которого с треском провалил американский физик Альберт Майкельсон. Никакого светоносного эфира он не обнаружил, но в 1879м году уточнил скорость света до 299 910±50 км/с.

Примерно в это же время Максвелл публикует свою теорию электромагнетизма, а значит скорость света стало возможно не только непосредственно измерять, но и выводить из значений электрической и магнитной проницаемости, что и было сделано уточнив значение скорости света до 299 788 км/с в 1907м году.

Наконец Эйнштейн заявил, что скорость света в вакууме - константа и не зависит вообще ни от чего. Наоборот, все остальное - сложение скоростей и нахождение правильных систем отсчета, эффекты замедления времени и изменения расстояний при движении с большими скоростями и еще множество других релятивистских эффектов зависят от скорости света (потому что она входит во все формулы в качестве константы). Короче, все в мире относительно, а скорость света и есть та величина, относительно которой относительны все остальные вещи в нашем мире. Тут, возможно, следует отдать пальму первенства Лоренцу, но не будем меркантильны, Эйнштейн так Эйнштейн.

Точное определение значения этой константы продолжалось весь 20й век, с каждым десятилетием ученые находили все больше цифр, после запятой в скорости света, покуда в их головах не начали зарождаться смутные подозрения.

Все более и более точно определяя, сколько метров в вакууме свет проходит за секунду, ученые начали задумываться, а что это мы все в метрах-то меряем? Ведь в конце концов, метр это просто длина какой-то платино-иридиевой палки, которую кто-то забыл в неком музее под Парижем!

А поначалу идея введения стандартного метра казалась великолепной. Чтобы не мучаться с ярдами, футами и прочими косыми саженями, французами в 1791м году было решено принять за стандартную меру длины одну десятимиллионую часть расстояния от Северного Полюса до экватора по меридиану, проходящему через Париж. Измерили это расстояние с точностью, доступной на то время, отлили палку из платино-иридиевого (точнее сначала латунного, потом платиного, а уж потом платино-иридиевого) сплава и положили в эту самую парижскую палату мер и весов, как образец. Чем дальше, тем больше выясняется, что земная поверхность меняется, материки деформируются, меридианы сдвигаются и на одну десятимиллионую часть забили, а стали считать метром именно длину той палку, что лежит в хрустальном гробу парижского "мавзолея".

Такое идолопоклонничество не к лицу настоящему ученому, тут вам не Красная Площадь(!), и в 1960м году было решено упростить понятие метра до вполне очевидного определения - метр точно равен 1 650 763,73 длин волн, испускаемых переходом электронов между энергетическими уровнями 2p10 и 5d5 невозбужденного изотопа элемента Криптон-86 в вакууме. Ну, куда еще яснее?

Так продолжалось 23 года, при этом скорость света в вакууме измерялась со все возрастающей точностью, покуда в 1983м году наконец даже до самых упертых ретроградов дошло, что скорость света и есть самая что ни на есть точная и идеальная константа, а не какой-то там изотоп криптона. И все было решено перевернуть с ног на голову (точнее, если задуматься, решено было все перевернуть как раз таки назад с головы на ноги), теперь скорость света с - истинная константа, а метр это расстояние, которое проходит свет в вакууме за (1 / 299 792 458) секунды.

Реальное значение скорости света продолжает уточняться и в наши дни, но что интересно - с каждым новым опытом ученые не скорость света уточняют, а истинную длину метра. И чем более точно будет найдена скорость света в ближайшие десятилетия, тем более точный метр мы в итоге получим.

А не наоборот.

Ну, а теперь вернемся к нашим баранам. Почему же скорость света в вакууме нашей Вселенной максимальна, конечна и постоянна? Я это понимаю так.

Всем известно, что скорость звука в металле, да и практически в любом твердом теле гораздо выше скорости звука в воздухе. Проверить это очень легко, стоит приложить ухо к рельсе, и можно будет услышать звуки приближающегося поезда гораздо раньше, чем по воздуху. Почему так? Очевидно, что звук по сути, один и тот же, и скорость его распространения зависит от среды, от конфигурации молекул, из которых эта среда состоит, от ее плотности, от параметров ее кристаллической решетки - короче от текущего состояния того медиума, по которому звук передается.

И хотя от идеи светоносного эфира давно уже отказались, вакуум, по которому происходит распространение электромагнитных волн, это не совсем прям абсолютное ничто, каким бы пустым он нам не казался.

Я понимаю, что аналогия несколько притянута за уши, ну так ведь на пальцах™ же! Именно в качестве доступной аналогии, а ни в коей мере не как прямой переход от одного набора физических законов к другим, я лишь прошу представить, что в четырехмерную метрику пространства-времени, которую мы по доброте душевной называем вакуумом, вшита скорость распространения электромагнитных (и вообще любых, включая глюонные и гравитационные) колебаний, как в рельсу "вшита" скорость звука в стали. Отсюда и пляшем.

UPD: Кстати говоря, "читателям со звездочкой" предлагаю пофантазировать, остается ли скорость света постоянной в "непростом вакууме". Например считается, что при энергиях порядка температуры 10 30 К, вакуум прекращает просто кипеть виртуальными частицами, а начинает "выкипать", т.е. ткань пространства разваливается на куски, планковские величины размываются и теряют свой физический смысл и т.д. Будет ли скорость света в подобном вакууме все еще равняться c , или это положит начало новой теории "релятивистского вакуума" с поправками вроде лоренцевских коэффициентов при экстремальных скоростях? Не знаю, не знаю, время покажет...

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала. Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу. Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду. Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду. Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно. Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало. Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча. Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света.

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше. В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду). Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды. Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.

Еще со школьных времен мы знаем, что скорость света, согласно законам Энштейна, - это непреодолимый максимум во Вселенной. Расстояние от Солнца до Земли свет проходит за 8 минут, а это примерно 150 000 000 км. До Нептуна доходит лишь через 6 часов, но космическим аппаратам требуются десятилетия на преодоление таких расстояний. Но далеко не всем известно, что значение скорости может значительно колебаться в зависимости от среды, в которой проходит свет.

Формула скорости света

Зная скорость света в вакууме (с ≈ 3*10 8 м\с), можно определить ее в других средах, исходя из их показателя преломления n. Сама формула скорости света напоминает законы механики из физики, а точнее, определение расстояния с помощью времени и скорости объекта.

К примеру, мы возьмем стекло, коэффициент преломления которого составляет 1,5. По формуле скорости света v = c \ n получаем, что скорость в данной среде примерно равна 200 000 км\с. Если брать жидкость, такую как вода, то скорость распространения фотонов (частиц света) в ней равна 226 000 км\с при показателе преломления в 1,33.

Формула скорости света в воздухе

Воздух - это тоже среда. Следовательно, она обладает так называемой Если в вакууме фотоны не встречают на своем пути преград, то в среде они тратят некоторое время на возбуждение частиц атомов. Чем плотнее среда, тем больше времени уходит на это самое возбуждение. Показатель преломления (n) в воздухе равен 1,000292. А это не сильно отходит от предела в 299 792 458 м/с.

Американским ученым удалось замедлить скорость света практически до полного нуля. Больше чем 1/299 792 458 сек. свет скорость не может преодолеть. Все дело в том, что свет - это такая же электромагнитная волна, как и рентген, радиоволны или тепло. Отличие состоит только в разнице между длиной волны и частоты.

Интересным фактом считается отсутствие массы у фотона, а это говорит об отсутствии времени для данной частицы. Проще говоря, для фотона, который был рожден несколько миллионов, а то и миллиардов лет назад, не прошло ни секунды времени.

Еще задолго до того, как ученые измерили скорость света, им пришлось изрядно потрудиться над определением самого понятия «свет». Одним из первых над этим задумался Аристотель, который считал свет некой подвижной субстанцией, распространяющейся в пространстве. Его древнеримский коллега и последователь Лукреций Кар настаивал на атомарной структуре света.

К XVII веку сформировались две основные теории природы света – корпускулярная и волновая. К приверженцам первой относился Ньютон. По его мнению, все источники света излучают мельчайшие частицы. В процессе «полета» они образуют светящиеся линии – лучи. Его оппонент, голландский ученый Христиан Гюйгенс настаивал на том, что свет – это разновидность волнового движения.

В результате многовековых споров ученые пришли к консенсусу: обе теории имеют право на жизнь, а свет – это видимый глазу спектр электромагнитных волн.

Немного истории. Как измеряли скорость света

Большинство ученых древности были убеждены в том, что скорость света бесконечна. Однако результаты исследований Галилея и Гука допускали ее предельность, что наглядно было подтверждено в XVII веке выдающимся датским астрономом и математиком Олафом Ремером.


Свои первые измерения он произвел, наблюдая за затмениями Ио – спутника Юпитера в тот момент, когда Юпитер и Земля располагались с противоположных сторон относительно Солнца. Ремер зафиксировал, что по мере отдаления Земли от Юпитера на расстояние, равное диаметру орбиты Земли, изменялось время запаздывания. Максимальное значение составило 22 минуты. В результате расчетов он получил скорость 220000 км/сек.

Через 50 лет в 1728 году, благодаря открытию аберрации, английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.

Опыт Майкельсона по определению скорости света

Опыты продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. Суть эксперимента заключалась в следующем. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму.

Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Поскольку расстояние между вершинами и частота вращения были известны, Майкельсон определил величину скорости света – 299796 км/сек.

Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. К началу 70-х погрешность в измерениях снизилась до 1 км/сек. В результате по рекомендации XV Генеральной конференции по мерам и весам, состоявшейся в 1975 году, было решено считать, что скоростью света в вакууме отныне равна 299792,458 км/сек.

Достижима ли для нас скорость света?

Очевидно, что освоение дальних уголков Вселенной немыслимо без космических кораблей, летящих с огромной скоростью. Желательно со скоростью света. Но возможно ли такое?

Барьер скорости света – одно из следствий теории относительности. Как известно, увеличение скорости требует увеличения энергии. Скорость света потребует практически бесконечной энергии.

Увы, но законы физики категорически против этого. При скорости космического корабля в 300000 км/сек летящие навстречу ему частицы, к примеру, атомы водорода превращаются в смертельный источник мощнейшего излучения, равного 10000 зивертов/сек. Это примерно то же самое, что оказаться внутри Большого адронного коллайдера.

По мнению ученых Университета Джона Хопкинса, пока в природе не существует адекватной защиты от столь чудовищной космической радиации. Довершит разрушение корабля эрозия от воздействия межзвездной пыли.

Еще одна проблема световой скорости – замедление времени. Старость при этом станет намного более продолжительной. Также подвергнется искривлению зрительное поле, в результате чего траектория движения корабля будет проходить как бы внутри тоннеля, в конце которого экипаж увидит сияющую вспышку. Позади корабля останется абсолютная кромешная тьма.

Так что в ближайшем будущем человечеству придется ограничить свои скоростные «аппетиты» 10 % от скорости света. Это означает, что до ближайшей к Земле звезды – Проксимы Центавра (4,22 св. лет) придется лететь примерно 40 лет.

Скорость света в различных средах различается значительно. Сложность состоит в том, что человеческий глаз не видит его во всем спектральном диапазоне. Природа происхождения световых лучей интересовала ученых еще в древности. Первые попытки расчета скорости света были предприняты еще за 300 лет до н.э. В тот период ученые определили, что волна распространяется по прямой линии.

Быстрый ответ

Им удалось описать математическими формулами свойства и света и траекторию его движения. стала известной через 2 тысячи лет после проведения первых исследований.

Что такое световой поток?

Световой луч представляет собой электромагнитную волну в сочетании с фотонами. Под фотонами понимают простейшие элементы, которые также называют квантами электромагнитного излучения. Световой поток во всех спектрах невидим. Он не перемещается в пространстве в традиционном понимании этого слова. Для описания состояния электромагнитной волны с квантовыми частицами введено понятие показателя преломления оптической среды.

Световой поток переносится в пространстве в виде луча с малым поперечным сечением. Способ движения в пространстве выведен геометрическими методами. Это прямолинейный пучок, который на границе с различными средами начинает преломляться, формируя криволинейную траекторию. Ученые доказали, что максимальная скорость создается в вакууме, в других средах скорость движения может различаться в разы. Учеными разработана система, световой луч и выведенная величина в которой является основной для выведения и отсчета некоторых единиц СИ.

Немного исторических фактов

Примерно около 900 лет назад Авиценой было выдвинуто предположение, что независимо от номинала величины скорость света имеет конечное значение. Галилео Галилей пытался опытным путем вычислить скорость светового потока. С помощью двух фонариков экспериментаторы пытались засечь время, за которое световой пучок от одного объекта будет виден другому. Но такой эксперимент выявился неудачным. Скорость оказалась столь высока, что им не удалось засечь время задержки.

Галилео Галилей обратил внимание на то, что у Юпитера промежуток между затмениями четырех его спутников составил 1320 секунд. На основе этих открытий в 1676 году астроном из Дании Оле Ремер рассчитал скорость распространения светового пучка, как значение 222 тысячи км/сек. На тот период данное измерение было наиболее точным, но его не могли проверить земными мерками.

Через 200 лет Луизи Физо смог вычислить скорость движения светового луча опытным путем. Он создал специальную установку с зеркалом и зубчатым механизмом, который вращался на огромной скорости. Световой поток отражался от зеркала и через 8 км возвращался назад. При увеличении скорости колеса возникал тот момент, когда зубчатый механизм перекрывал луч. Таким образом, скорость луча была установлена, как 312 тысяч километров в секунду.

Фуко усовершенствовал это оборудование, уменьшив параметры за счет замены зубчатого механизма плоским зеркалом. У него точность измерений получилась наиболее приближенной к современному эталону и составила 288 тысяч метров в секунду. Фуко предпринял попытки рассчитать скорость света в инородной среде, взяв за основу воду. Физику удалось сделать вывод, что данная величина не постоянная и зависит от особенностей преломления в данной среде.

Вакуум представляет собой пространство, свободное от вещества. Скорость света в вакууме в системе Си обозначена латинской буквой C. Она является недостижимой. Ни один предмет нельзя разогнать до такого значения. Физики только предполагают, что может произойти с объектами, если они разгонятся до такой степени. Скорость распространения светового луча обладает постоянными характеристиками, она:

  • постоянная и конечная;
  • недостижимая и неизменная.

Знание этой константы позволяет вычислить, с какой максимальной скоростью объекты могут перемещаться в космосе. Величина распространения луча света признана фундаментальной постоянной. Она используется для характеристик пространства времени. Это предельно допустимое значение для движущихся частиц. Какая скорость света в вакууме? Современную величину получили посредством лабораторных измерений и математических подсчетов. Она равна 299.792.458 метров в секунду с точностью до ± 1,2 м/с . Во многих дисциплинах, в том числе в школьных, при решении задач используются приближенных вычисления. Берется показатель, равный 3 108 м/с.

Световые волны видимого человеку спектра и рентгеновские волны возможно разогнать до показаний, приближающихся до скорости распространения света. Они не могут сравняться с этой константой, а также превысить ее значение. Константа выведена на основе отслеживания поведения космических лучей в момент разгона их в специальных ускорителях. Она зависит от той инерциальной среды, в которой происходит распространение луча. В воде прохождение света ниже на 25%, а воздухе будет зависеть от температуры и давления на момент вычислений.

Все расчеты проведены с использованием теории относительности и закону причинности, выведенному Энштейном. Физик считает, что если объекты достигнут скорости 1 079 252 848,8 километров/час и превысят ее, то произойдут необратимые изменения в строении нашего мира, система поломается. Время начнет отсчитываться в обратном порядке, нарушая порядок событий.

На основе скорости светового луча выведено определение метра. Под ним понимают участок, который успевает пройти световой луч за 1/299792458 секунды. Не следует смешивать данное понятие с эталоном. Эталон метра - это специальное техническое устройство на кадмиевой основе со штриховкой, позволяющее видеть данное расстояние физически.