Полимеразная цепная реакция принцип. ПЦР: что это такое? Диагностика инфекционных заболеваний методом полимеразной цепной реакции. Результаты анализов ПЦР

  • Дата: 26.06.2020

Не так давно был разработан надежный, высокочувствительный и быстрый метод диагностики различных инфекционных заболеваний человека. Такой способ имеет название «анализ ПЦР». Что это такое, в чем его сущность, какие он может выявить микроорганизмы и как правильно его сдавать, мы расскажем в нашей статье.

История открытия


Также методы ПЦР используются в диагностике онкозаболеваний.

Преимущества метода

Диагностика ПЦР обладает рядом преимуществ:

  1. Высокая чувствительность. Даже при наличии всего нескольких молекул ДНК микроорганизма анализ ПЦР определяет наличие инфекции. Поможет метод при хронических и латентно протекающих заболеваниях. Часто в таких случаях микроорганизм является некультивируемым иными способами.
  2. Для исследования подходит любой материал, например слюна, кровь, половые выделения, волосы, клетки эпителия. Наиболее распространенным является анализ крови и урогенитального мазка на ПЦР.

  3. Не требуется длительного выращивания культур. Автоматизированный процесс проведения диагностики позволяет получить результаты исследования спустя 4-5 часов.
  4. Метод является практически стопроцентно достоверным. Зафиксированы лишь единичные случаи ложноотрицательного результата.
  5. Возможность определить несколько видов возбудителей из одной пробы материала. Это не только ускоряет процесс диагностики заболевания, но и существенно снижает материальные затраты. Часто врач назначает комплексный анализ ПЦР. Цена обследования, состоящего из определения шести возбудителей, составляет около 1500 рублей.
  6. Чтобы результаты были достоверными при проведении исследования ПЦР, сдать анализ нужно, соблюдая рекомендации по предварительной подготовке к диагностике:

    1. Перед сдачей слюны следует воздержаться от приема пищи и лекарств за 4 часа до забора материала. Непосредственно перед процедурой прополощите рот кипяченой водой.
    2. Вышеуказанными правилами нужно руководствоваться и при взятии образца с внутренней поверхности щеки. После полоскания рекомендуют провести легкий массаж кожи для выделения секрета железы.
    3. Мочу обычно собирают в домашних условиях. Для этого нужно провести тщательный туалет половых органов. В стерильный пластиковый контейнер необходимо собрать 50-60 мл мочи. Для обеспечения чистоты материала рекомендуется женщинам вставить тампон во влагалище, а мужчинам максимально оттянуть кожную складку. Нельзя сдавать материал в период менструальных выделений.
    4. Для сдачи спермы нужно воздержаться от полового акта в течение 3 дней до забора материала. Также врачи советуют отказаться от посещения сауны и принятия горячей ванны, употребления алкоголя и острой пищи. За 3 часа до анализа нужно воздержаться от мочеиспускания.
    5. Для сдачи например если проводится анализ на хламидии ПЦР, как женщинам, так и мужчинам рекомендуется половой покой в течение 3 дней. За 2 недели до анализа нельзя принимать антибактериальные препараты. За неделю нужно прекратить использование интимных гелей, мазей, влагалищных свечей, спринцевание. За 3 часа до исследования нужно воздержаться от мочеиспускания. Во время менструаций забор материала не проводится, лишь спустя 3 дня после прекращения кровяных выделений можно взять урогенитальный мазок.

    ПЦР во время беременности

    В период ожидания малыша многие инфекционные заболевания, передающиеся половым путем, являются крайне опасными для нормального развития плода. ЗППП могут спровоцировать внутриутробную задержку развития, выкидыш или преждевременные роды, врожденные пороки ребенка. Поэтому крайне важно пройти на ранних сроках беременности обследование методом ПЦР. Сдать анализ необходимо при постановке на учет - до 12 недель.

    Забор материала происходит из канала шейки матки с помощью специальной щеточки. Процедура безболезненная и не представляет опасности для малыша. Обычно во время беременности проводят анализ на хламидии ПЦР-методом, а также на уреаплазмоз, микоплазмоз, цитомегаловирус, герпес, папилломавирус. Такой комплекс обследования называют ПЦР-6.

    ПЦР для диагностики ВИЧ

    В связи с тем, что метод очень чувствителен к изменениям в организме и условиям проведения диагностики, многие факторы могут повлиять на результат. Поэтому анализ ПЦР на ВИЧ-инфекцию не является достоверным методом, его эффективность - 96-98 %. В остальных 2-4 % случаев тест дает ложноположительные результаты.

    Но в некоторых ситуациях без ПЦР-диагностики ВИЧ не обойтись. Обычно ее проводят людям с ложноотрицательным результатом ИФА. Такие показатели говорят о том, что у человека еще не выработались антитела к вирусу и их невозможно выявить без многократного увеличения количества. Именно этого можно достичь, проведя анализ крови ПЦР-методом.

    Также необходима такая диагностика детям первого года жизни, рожденным от ВИЧ-позитивной матери. Метод является единственным способом достоверного определения статуса ребенка.

    ПЦР для диагностики гепатитов

    Метод полимеразной цепной реакции позволяет обнаружить ДНК вируса гепатитов А, В, С задолго до образования антител к инфекции или появления симптомов болезни. Особенно эффективным является анализ ПЦР на гепатит С, так как в 85 % случаев такое заболевание протекает бессимптомно и без своевременного лечения переходит в хроническую стадию.

    Своевременное обнаружение возбудителя поможет избежать осложнений и длительного лечения.

    Комплексное обследование ПЦР

    Комплексный анализ ПЦР: обследование методом полимезарной цепной реакции, которое включает в себя определение одновременно нескольких видов инфекций: микоплазмы гениталиум, микоплазмы хоминис, гарднереллы вагиналис, кандиды, трихомонады, цитомегаловируса, герпеса 1-го и 2-го типов, гонореи, папилломавируса. Цена такой диагностики колеблется от 2000 до 3500 руб. в зависимости от клиники, используемых материалов и оборудования, а также от вида анализа: качественного или количественного. Какой необходим в вашем случае - решит врач. В одних случаях достаточно лишь просто определить наличие возбудителя, в других, например при ВИЧ-инфекции, важную роль играет количественный титр. При диагностике всех вышеперечисленных возбудителей обследование называют «анализ ПЦР-12».

    Расшифровка результатов анализа

    Расшифровка анализа ПЦР не представляет сложности. Есть лишь 2 шкалы показателя - «положительный результат» и «отрицательный результат». При обнаружении возбудителя врачи могут с 99%-й уверенностью подтвердить наличие заболевания и приступить к лечению пациента. При количественном методе определения инфекции в соответствующей графе будет указан числовой показатель обнаруженных бактерий. Только врач может определить степень заболевания и назначить необходимое лечение.

    В некоторых случаях, например при определении ВИЧ-инфекции методом ПЦР, при отрицательном результате возникает необходимость проведения дополнительных обследований для подтверждения полученных показателей.

    Где сдать анализ?

    Где сдать ПЦР-анализ: в государственной поликлинике или в частной лаборатории? К сожалению, в муниципальных медицинских учреждениях аппаратура и методы нередко устаревшие. Поэтому лучше отдать предпочтение частным лабораториям с современным оборудованием и высококвалифицированными кадрами. Кроме того, в частной клинике вы получите результаты значительно быстрее.

    В Москве многие частные лаборатории предлагают проведение анализа ПЦР на различные инфекции. Например, в таких клиниках, как «Вита», «Комплексная клиника», «Счастливая семья», «Уро-Про», проводят анализ ПЦР. Цена обследования составляет от 200 руб. за определение одного возбудителя.

    Можно сделать вывод, что диагностика инфекционных заболеваний методом ПЦР в большинстве случаев является быстрым и достоверным способом обнаружения возбудителя в организме на ранних сроках инфицирования. Но все же в определенных случаях стоит выбрать другие способы диагностики. Определить необходимость проведения такого исследования может только специалист. Расшифровка анализа ПЦР также требует профессионального подхода. Следуйте рекомендациям врача и не сдавайте самостоятельно анализы, в которых нет необходимости.

Полимеразная цепная реакция (ПЦР, PCR - polymerase chain reaction) - метод получения множества копий определенных фрагментов ДНК (генов) в биологическом образце.

Сущность ПЦР как метода молекулярной биологии заключается в многократном избирательном копировании определённого гена (участка ДНК) при помощи специальных ферментов в условиях in vitro . Важной особенностью ПЦР является получение копий конкретного участка ДНК (гена), соответствующего заданным условиям. Синонимом процесса копирования ДНК является «амплификация». Репликация ДНК in vivo также может считаться амплификацией. Однако в отличие от репликации, в процессе полимеразной цепной реакции амплифицируются короткие участки ДНК (максимум 40 000 пар нуклеотидов).

Основные принципы

Итак, ПЦР - это многократное копирование определенных фрагментов ДНК in vitro в процессе повторяющихся температурных циклов. Как же протекает процесс реакции в пределах одного температурного цикла?

Образование нуклеотидной цепи осуществляется ферментом ДНК-полимеразой. Однако для начала работы ферменту необходима стартовая площадка. В качестве площадок выступают "праймеры" (затравки) - синтетические олигонуклеотиды длиной 15-20 нуклеотидов. Праймеров должно быть два (прямой и обратный), они комплементарны участкам ДНК-матрицы и именно фрагмент ДНК, ограниченный праймерами, будет многократно копироваться ДНК-полимеразой. Работа полимеразы заключается в последовательном добавлении нуклеотидов, комплементарных последовательности ДНК-матрицы. Тем самым в одном температурном цикле вновь синтезируется два новых фрагмента ДНК (т.к. молекула ДНК - двуцепочечная, то и матриц изначально две). Таким образом, за 25-35 циклов в пробирке накапливаются миллиарды копий участка ДНК, определенного праймерами. Структуру отдельного цикла можно представить следующим образом:

  1. денатурация ДНК (плавление, расхождение цепей ДНК) - 95°С - 1 или 2 минуты;
  2. отжиг праймеров (затравки связываются с ДНК-матрицей, температура данной стадии определяется нуклеотидным составом праймера) - 60°С (к примеру) - 1 минута;
  3. элонгация ДНК (полимераза синтезирует цепь ДНК) - 72°С - 1 минута (время зависит от длины синтезируемого фрагмента).

Приборная база для применения метода полимеразной цепной реакции в лаборатории должна состоять из:

  1. (или, как его еще называют, термоциклера);
  2. системы для с (для визуализации результатов ПЦР);
  3. системы (для анализа результатов ПЦР);
  4. (для пробоподготовки);
  5. набора (механических или электронных).

Помимо основного и вспомогательного оборудования для полноценного функционирования ПЦР-лаборатории, необходимы некоторые расходные материалы: стерильные наконечники, пробирки, штативы для пробирок и дозаторов.

Реагентная база в обычной ПЦР-лаборатории для проведения полноценной полимеразной цепной реакции включает в себя фермент ДНК-полимеразу с буфером, праймеры (небольшие синтетические фрагменты ДНК, комплементарные началу и концу анализируемого участка ДНК-матрицы), смесь нуклеотидов (А, Т, Г, Ц). Также абсолютно необходима очищенная вода.

Достоинства метода ПЦР

Высокая чувствительность исследования

Чувствительность метода такова, что амплифицировать в ПЦР и выявить целевую последовательность можно даже в том случае, если она встречается однажды в образце из 10 5 клеток.

Специфичность анализа

ПЦР позволяет выявлять ДНК конкретного инфекционного агента в присутствии ДНК других микроорганизмов и ДНК организма-хозяина, а также проводить генотипирование. Специфически подбирая компоненты реакции (праймеры), Вы можете одновременно выявлять ДНК близкородственных микроорганизмов.

Универсальность метода ПЦР

Дело в том, что для ПЦР-диагностики инфекционных заболеваний, либо наследственных заболеваний человека можно использовать одно и то же оборудование, следовать универсальным процедурам подготовки образцов (проб) и постановки анализа, а также однотипные наборы реактивов.

Экономия времени

Важное преимущество ПЦР - отсутствие стадий культуральной микробиологической работы. Подготовка образцов, проведение реакции и анализ результатов максимально облегчен и во многом автоматизирован. Благодаря этому, время получения результата может сокращаться до 4-5 часов.

Эффективность метода ПЦР

Широта исследуемого клинического материала

В качестве образца при полимеразной цепной реакции может быть использован не только биологический материал от больного, но также и многие другие субстраты, в которых могут быть идентифицированы молекулы ДНК с высокой чувствительностью, например, вода, почва, продукты питания, микроорганизмы, смывы и многое другое.

Все перечисленные выше достоинства этого уникального метода - высокая чувствительность и специфичность, идентификация инфекционного агента и проведение генотипирования любого гена человека, высокая эффективность и экономия времени, универсальность приборной базы - позволяют широко применять сегодня метод ПЦР в клинической диагностике, медицинской практике, научных исследованиях, контроле качества и многих других областях.

Применение ПЦР

Области применения полимеразной цепной реакции как современного метода молекулярной биологии разнообразны. Во многом это обусловлено широтой материала, который можно анализировать (практически все, из чего можно выделить более-менее качественую ДНК может стать объектом исследования), а также подобранных праймеров. Основные области применения ПЦР:

клиническая медицина

  • диагностика инфекционных заболеваний
  • диагностика наследственных заболеваний
  • выявление мутаций
  • генотипирование
  • клеточные технологии
  • создание генетических паспортов

экология

  • мониторинг состояния окружающей среды
  • анализ продуктов питания
  • анализ генетически-модифицированных организмов (ГМО)

судебная медицина и криминалистика

  • идентификация личности
  • установление отцовства

фармакология

ветеринария

научные исследования (молекулярная биология, генетика)

Организация лаборатории ПЦР

Информация для заказа

Наименование Объем Производство Метод Кат.Номер

Принципы ПЦР-диагностики

РЕФЕРАТ

разделов, 34 страницы, 5 рисунков, 5 литературных источников

Цель данной работы - краткое изложение основных принципов и технологических особенностей метода ПЦР, его научного и практического применения в диагностике инфекционных заболеваний.

СПИСОК УСЛОВНЫХ СОКРАЩЕНИЙ

ВГС - вирус гепатита С

дАТФ - дезоксиаденозинтрифосфат

дГТФ - дезоксигуанозинтрифосфат

дНТФ - дезоксинуклеотидтрифосфат

дТТФ - дезокситимидинтрифосфат

дЦТФ - дезоксицитозинтрифосфат

ДНК - дезоксирибонуклеиновая кислота

ПЦР - полимеразная цепная реакция

РНК - рибонуклеиновая кислота- иммуноглобулин класса GTime PCR - метод ПЦР в режиме реального времени

ВВЕДЕНИЕ

ПРИНЦИП МЕТОДА ПЦР

СТАДИИ ПРОВЕДЕНИЯ ПЦР-АНАЛИЗА

МЕТОД ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ (Real-Time PCR)

ПРЕИМУЩЕСТВА МЕТОДА ПЦР

ОГРАНИЧЕНИЯ МЕТОДА ПЦР

ПРИМЕНЕНИЕ МЕТОДА ПЦР

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Открытие метода полимеразной цепной реакции (ПЦР) стало одним из наиболее выдающихся событий в области молекулярной биологии за последние десятилетия. Это позволило поднять медицинскую диагностику на качественно новый уровень. Принцип метода полимеразной цепной реакции был разработан Кэрри Мюллисом в 1983 году. За разработку ПЦР-анализа К.Мюллис в 1993 году был удостоен Нобелевской премии в области химии.

После открытия ПЦР она была очень быстро внедрена в практику. Метод стал настолько популярен, что сегодня уже трудно представить работу в области молекулярной биологии без его использования. Особенно бурное развитие метод ПЦР получил благодаря международной программе «Геном человека». Были созданы современные лазерные технологии секвенирования (расшифровки нуклеотидных последовательностей ДНК). Если в недавнем прошлом для расшифровки последовательности ДНК размером в 250 пар нуклеотидов (п.н.) требовалась неделя, то современные лазерные секвенаторы позволяют определять до 5000 п.н. в день. Это в свою очередь способствует значительному росту информационных баз данных, содержащих последовательности ДНК. В настоящее время предложены различные модификации ПЦР, показана возможность создания тест-систем для обнаружения микроорганизмов, выявления точечных мутаций, описаны десятки возможных применений метода.

Появление метода ПЦР было обусловлено определенными достижениями в области молекулярной генетики, прежде всего расшифровкой нуклеотидной последовательности геномов ряда микроорганизмов. Следует отметить, что этому открытию сопутствовало развитие некоторых технологий. В частности, появление приборов, позволяющих автоматически синтезировать одноцепочечные фрагменты ДНК (олигонуклеотиды). В тот же период были обнаружены уникальные микроорганизмы, живущие в гейзерах. Их ферментативная система, в частности ДНК-полимераза, выдерживает высокие температуры горячих источников и сохраняет свою биологическую активность вплоть до 95°С, что является необходимым условием для проведения полимеразной цепной реакции.

Полимеразная цепная реакция в настоящее время является наиболее совершенным диагностическим методом молекулярной биологии, молекулярной генетики и клинической лабораторной диагностики, позволяющим выявлять в тканях и биологических жидкостях организма единичные клетки возбудителей многих инфекционных заболеваний.

В основе метода ПЦР лежит комплиментарное достраивание участка геномной ДНК или РНК возбудителя, осуществляемое in vitrо с помощью фермента термостабильной ДНК-полимеразы. Специфичность метода определяется уникальностью генетического материала выявляемых инфекционных агентов, к которому подобраны олигонуклеотидные праймеры, участвующие в процессе амплификации.

Диагностика инфекционных заболеваний, в том числе вызванных трудно культивируемыми агентами, генотипирование микроорганизмов, оценка их вирулентности, определение устойчивости микрофлоры к антибиотикам, пренатальная диагностика, биологический контроль препаратов крови - вот неполный перечень направлений медицины с применением ПЦР. На сегодняшний день ПЦР-анализ остается наиболее распространенной и динамично развивающейся технологией. Ежегодно на рынке появляются десятки новых тест-систем для ПЦР-анализа, предназначенных как для выявления нуклеотидных последовательностей различных микроорганизмов - возбудителей заболеваний, так и для исследования генов человека. Себестоимость ПЦР-анализа неуклонно снижается, что способствует все более широкому использованию метода в лечебных и диагностических учреждениях. Количество ПЦР-лабораторий в странах СНГ растет в геометрической прогрессии и, видимо, в ближайшее время ПЦР-анализ станет одним из самых распространенных методов лабораторной диагностики.

1. ПРИНЦИП МЕТОДА ПЦР

Полимеразная цепная реакция - это метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить единственную специфическую молекулу ДНК в присутствии миллионов других молекул.

Суть метода заключается в многократном копировании (амплификации) в пробирке определенных участков ДНК в процессе повторяющихся температурных циклов. На каждом цикле амплификации синтезированные ранее фрагменты вновь копируются ДНК-полимеразой. Благодаря этому происходит многократное увеличение количества специфических фрагментов ДНК, что значительно упрощает дальнейший анализ.

В основе метода ПЦР лежит природный процесс - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы. Эта реакция носит название репликации ДНК.

Естественная репликация ДНК включает в себя несколько стадий:

) Денатурация ДНК (расплетение двойной спирали, расхождение нитей ДНК);

) Образование коротких двухцепочечных участков ДНК (затравок, необходимых для инициации синтеза ДНК);

) Синтез новой цепи ДНК (комплементарное достраивание обеих нитей).

Данный процесс можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителей инфекционных заболеваний.

Открытие термостабильной ДНК-полимеразы (Taq-полимеразы) из термофильных бактерий Thermisaquaticus , оптимум работы которой находится в области 70-72°С, позволило сделать процесс репликации ДНК циклическим и использовать его для работы in vitro. Создание программируемых термостатов (амплификаторов), которые по заданной программе осуществляют циклическую смену температур, создало предпосылки для широкого внедрения метода ПЦР в практику лабораторной клинической диагностики. При многократном повторении циклов синтеза происходит экспоненциальное увеличение числа копий специфического фрагмента ДНК, что позволяет из небольшого количества анализируемого материала, который может содержать единичные клетки микроорганизмов получить достаточное количество ДНК копий для их идентификации.

Комплементарное достраивание цепи начинается не в любой точке последовательности ДНК, а только в определенных стартовых блоках - коротких двунитевых участках. При присоединении таких блоков к специфическим участкам ДНК можно направить процесс синтеза новой цепи только в этом участке, а не по всей длине ДНК цепи. Для создания стартовых блоков в заданных участках ДНК используют две олигонуклеотидные затравки (20 нуклеотидных пар), называемые праймерами. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними.

Таким образом, ПЦР представляет собой многократное увеличение числа копий (амплификация) специфического участка ДНК катализируемое ферментом ДНК- полимеразой.

. СТАДИИ ПРОВЕДЕНИЯ ПЦР-АНАЛИЗА

Методика проведения анализа с использованием метода ПЦР включает три этапа:

1. Выделение ДНК (РНК) из клинического образца;

2. Амплификация специфических фрагментов ДНК;

. Детекция продуктов амплификации.

. Выделение ДНК (РНК)

На данной стадии проведения анализа клиническая проба подвергается специальной обработке, в результате которой происходит лизис клеточного материала, удаление белковых и полисахаридных фракций, и получение раствора ДНК или РНК, свободной от ингибиторов и готовой для дальнейшей амплификации. Выбор методики выделения ДНК (РНК) в основном определяется характером обрабатываемого клинического материала.

2.Амплификация специфических фрагментов ДНК

На данной стадии происходит накопление коротких специфических фрагментов ДНК в количестве, необходимом для их дальнейшей детекции.

Для проведения полимеразной цепной реакции необходимо наличие в реакционной смеси ряда компонентов:

·Праймеры - искусственно синтезированные олигонуклеотиды, имеющие, как правило, размер от 15 до 30 п.н., идентичные соответствующим участкам ДНК-мишени. Они играют ключевую роль в образовании продуктов реакции амплификации. Правильно подобранные праймеры обеспечивают специфичность и чувствительность тест-системы.

·Taq-полимераза - термостабильный фермент, обеспечивающий достраивание 3-конца второй цепи ДНК согласно принципу комплиментарности.

·Смесь дезоксинуклеотидтрифосфатов (дНТФ) - дезоксиаденозинтрифосфата (дАТФ), дезоксигуанозинтрифосфата (дГТФ), дезоксицитозинтрифосфата (дЦТФ) и дезокситимидинтрифосфата (дТТФ) - «строительный материал», используемый Taq- полимеразой для синтеза второй цепи ДНК.

·Буфер - смесь катионов и анионов в определенной концентрации, обеспечивающих оптимальные условия для реакции, а также стабильное значение рН.

·Анализируемый образец - подготовленный к внесению в реакционную смесь препарат, который может содержать искомую ДНК, например, ДНК микроорганизмов, служащую мишенью для последующего многократного копирования.

Рис.1 Компоненты реакционной смеси

Каждый цикл амплификации включает 3 этапа, протекающих в различных температурных режима:

1 этап: Денатурация ДНК (расплетение двойной спирали). Протекает при 93-95°C в течение 30-40 сек.

Одна из цепей (+) используется в качестве основной матрицы. Ее пять штрих-концов фиксируются ферментом ДНК-полимеразой, что обеспечивает построение из отдельных нуклеотидов второй цепи ДНК, комплиментарной первой. То же самое, только в обратном направлении, происходит и на второй нити ДНК, однако, поскольку расплетение молекулы ДНК идет в обратном порядке, новая цепь строится небольшими фрагментами, которые затем сшиваются. Для того чтобы фермент ДНК-полимераза начал свою работу, требуется наличие затравки или праймера - небольшого одноцепочечного фрагмента ДНК, который, соединяясь с комплиментарным участком одной из цепей родительской ДНК, образует стартовый блок для наращивания дочерней нити.

2 этап: Присоединение праймеров (отжиг). Присоединение праймеров происходит комплиментарно к соответствующим последовательностям на противоположных цепях ДНК на границах специфического участка. Для каждой пары праймеров существует своя температура отжига, значения которой располагают в интервале 50-65°С. Точно рассчитанная и экспериментально проверенная температура отжига праймеров - одна из определяющих специфичность реакции характеристик, исключающих присоединение праймеров к не полностью комплиментарным последовательностям.

Поскольку наращивание дочерних нитей ДНК может идти одновременно на обеих цепях материнской ДНК, то для работы ДНК-полимеразы на второй цепи тоже требуется свой праймер. Таким образом, в реакционную смесь вносятся два праймера. Фактически праймеры, присоединившись к противоположным цепям молекулы ДНК, ограничивают собой тот ее участок, который будет в дальнейшем многократно удвоен или амплифицирован. Такие фрагменты ДНК называются ампликонами. Длина ампликона может составлять несколько сот нуклеотидов. Меняя пару праймеров, мы можем переходить от анализа одного возбудителя к анализу другого.

Время отжига -20-60 сек.

3 этап: Достраивание цепей ДНК (элонгация).

Механизм копирования таков, что комплементарное достраивание нитей может начаться не в любой точке последовательности ДНК, а только в определенных стартовых блоках (коротких двунитевых участках). Для создания стартовых блоков в заданных участках ДНК используют затравки, представляющие собой олигонуклеотиды длиной около 20 п.н., также называемые праймерами. Они комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что синтез ДНК, осуществляемый ДНК-полимеразой, протекает только между ними.

Комплементарное достраивание цепей ДНК идет в направлении от 5`-конца к 3`-концу цепи в противоположных направлениях, начиная с участков присоединения праймеров. Материалом для синтеза новых цепей ДНК служит вносимый дезоксирибонуклеотидфосфат. Этот процесс катализируется ферментом Tag-полимеразой. Образовавшиеся в первом цикле синтеза новые ДНК служат исходным материалом для второго цикла, в котором происходит образование искомого специфического фрагмента ДНК (ампликона) и т.д.

Рис.2 Принцип амплификации ДНК

В настоящее время применяется несколько способов подготовки образца для проведения ПЦР. Процедура подготовки пробы включает лизис микроба и экстракцию нуклеиновой кислоты. С целью разрушения микробной клетки используют простое кипячение, замораживание-оттаивание в присутствии лизоцима, а также специальные лизирующие буферы, содержащие детергенты и протеиназу. Выбор метода, как правило, диктуется природой микроба, точнее, природой его клеточной стенки. Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, описанная В.R.Marmionetal. (1993). Она включает ферментативный протеолиз с последующей депротеинизацией и осаждением ДНК спиртом. Этот метод позволяет получить чистый препарат ДНК, однако он довольно трудоемок и предполагает работу с такими агрессивными и имеющими резкий запах веществами, как фенол и хлороформ.

Одним из наиболее популярных является метод выделения ДНК, предложенный R.Boometal. (1990), основанный на использовании для лизиса клеток сильного лизирующего агента - гуанидинатиоционата (GuSCN) и последующей сорбции ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное «молоко» и т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен, технологичен и пригоден для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок. Особенно большое значение это имеет при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР, поэтому при использовании этого метода очень важен правильный выбор сорбента и тщательное соблюдение технологических нюансов. Следует отметить, что из-за большого числа стадий добавления и удаления растворов при работе с образцом требуется аккуратность, поскольку возможна перекрестная контаминация между пробами и образующимся аэрозолем ДНК.

При классической процедуре фенольно-хлороформной экстракции ДНК достигается хорошая очистка ДНК, в первую очередь от ингибиторов Tag-полимеразы, но неизбежны большие потери нуклеиновой кислоты, особенно заметные при работе с образцами небольшого объема с низкой концентрацией инфекционного агента.

Другая группа методов пробоподготовки основана на использовании ионообменников типа Chilex (США), которые, в отличие от стекла, сорбируют не ДНК, а примеси, мешающие реакции. Как правило, эта технология включает две стадии: кипячение образца и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом. К сожалению, иногда встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, некоторые микроорганизмы не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.

При массовом скрининге, когда важно получить статистические данные, возможно использование простых способов с применением детергентов или обработки биологического материала щелочами с последующей их нейтрализацией. В то же время использование подобных методов для клинической диагностики может приводить к ложноотрицательным результатам вследствие применения в реакционной смеси некачественного препарата ДНК. Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов.

Во время следующей процедуры - амплификации - образец, содержащий ДНК возбудителя, вносится в небольшую пробирку с компонентами, обеспечивающими протекание полимеразной реакции, два вида праймеров, два энзима (Таg-полимераза и N-урацил-гликолаза) и четыре вида нуклеотида A, Г, Ц, У. Для проведения полимеразной реакции используется специальное устройство (термоциклер или ДНК-амплификатор), позволяющее автоматически, по определенной программе изменять температурный режим реакционной смеси. В первом цикле осуществления ПЦР образец нагревается до температуры 94°С для разделения двух комплиментарных нитей ДНК. Затем температура снижается до 40-60°С, при которой праймеры присоединяются к единичной цепи ДНК, после чего температура вновь поднимается до 72°С, когда наиболее выражена активность полимеразы. Весь цикл с изменением температуры продолжается менее 3 минут.

Для правильной оценки результатов ПЦР важно понимать, что данный метод не является количественным. Теоретически продукты амплификации единичных молекул ДНК-мишени могут быть обнаружены с помощью электрофореза уже после 30-35 циклов. Однако на практике это выполняется лишь в случаях, когда реакция проходит в условиях, близких к идеальным, что встречается нечасто. Особенно большое влияние на эффективность амплификации оказывает степень чистоты препарата ДНК, т.е. наличие в реакционной смеси тех или иных ингибиторов, от которых избавиться в некоторых случаях бывает крайне сложно. Иногда из-за их присутствия не удается амплифицировать даже десятки тысяч молекул ДНК-мишени. Таким образом, прямая связь между исходным количеством ДНК-мишени и конечным количеством продуктов амплификации часто отсутствует.

Для визуализации результатов амплификации используют различные методы. Наиболее распространенный на сегодняшний день - электрофорез, основанный на разделении молекул ДНК по размеру. Для этого готовят пластину агарозного геля, представляющего собой застывшую после расплавления в электрофорезном буфере агарозу в концентрации 1,5-2,5% с добавлением специального красителя ДНК, например бромистого этидия. Застывшая агароза образует пространственную решетку. При заливке с помощью гребенок в геле формируют специальные лунки, в которые в дальнейшем вносят продукты амплификации. Пластину геля помещают в аппарат для горизонтального гель-электрофореза и подключают источник постоянного напряжения. Отрицательно заряженная ДНК начинает двигаться в геле от минуса к плюсу. При этом более короткие молекулы ДНК движутся быстрее, чем длинные. На скорость движения ДНК в геле влияют концентрация агарозы, напряженность электрического поля, температура, состав электрофорезного буфера и, в меньшей степени, состав ДНК. Все молекулы одного размера движутся с одинаковой скоростью. Краситель встраивается (интеркалирует) плоскостными группами в молекулы ДНК. После окончания электрофореза, продолжающегося от 10 минут до 1 часа, гель помещают на фильтр трансиллюминатора, излучающего свет в ультрафиолетовом диапазоне (254 - 310 нм). Энергия ультрафиолета, поглощаемая ДНК в области 260 нм, передается на краситель, заставляя его флуоресцировать в оранжево-красной области видимого спектра (590 нм).

В качестве «положительного контроля» используют стандарт ДНК искомого микроорганизма. Размер неспецифических ампликонов может быть как больше, так и меньше по сравнению с «положительным контролем». В худшем случае эти размеры могут совпадать и читаются в электрофорезе как положительные.

«Положительный контроль» позволяет удостовериться, что все компоненты, входящие в состав реакционной смеси, обеспечивают нормальное прохождение реакции. В то же время препарат ДНК, подготовленный для ПЦР из биологического материала, может содержать примеси ингибиторов, заметно снижающих эффективность реакции, а в некоторых случаях приводящих к отсутствию специфических ампликонов даже при наличии искомого возбудителя. Необходимо контролировать ход амплификации в каждой пробирке с реакционной смесью, для чего используют дополнительный, так называемый «внутренний контроль», который представляет собой любой стандарт ДНК, несхожий с ДНК искомого микроорганизма.

Для инфекционных тест-систем иногда, например, используют р-глобиновый ген, к концам которого с помощью генно-инженерных манипуляций пришивают участки ДНК, гомологичные праймерам, входящим в состав тест-системы. Если «внутренний контроль» внести в реакционную смесь, то он станет такой же мишенью для отжига праймеров, как и хромосомальная ДНК искомого возбудителя инфекции. Размер продукта амплификации внутреннего контроля подбирают таким образом, чтобы он был в 2 и более раз больше, чем ампликоны, образуемые от амплификации искомой ДНК микроорганизма. В результате, если внести ДНК «внутреннего контроля» в реакционную смесь вместе с испытуемым образцом, то, независимо от наличия микроорганизма в биологическом образце, «внутренний контроль» станет причиной образования специфических ампликонов, но значительно более длинных (тяжелых), чем ампликон микроорганизма. Наличие тяжелых ампликонов в реакционной смеси свидетельствует о нормальном прохождении реакции амплификации и отсутствии ингибиторов. Если ампликоны нужного размера и «внутреннего контроля» не образовались, можно сделать вывод о наличии в анализируемом образце нежелательных примесей, от которых следует избавиться, но не об отсутствии искомой ДНК.

Несмотря на всю привлекательность такого подхода, у него есть существенный изъян. Так, если в реакционной смеси находится нужная ДНК, то эффективность ее амплификации резко снижается из-за конкуренции с «внутренним контролем» за праймеры. Это принципиально важно при низких концентрациях ДНК в исследуемом образце и может приводить к ложноотрицательным результатам. Тем не менее, при условии решения проблемы конкуренции за праймеры этот способ контроля эффективности амплификации, безусловно, будет весьма полезен.

Рис.3 Второй цикл амплификации ДНК

. Детекция продуктов амплификации

). Метод горизонтального электрофореза

Одним из методов визуализации результатов амплификации является метод электрофореза, основанный на разделении молекул ДНК по размеру. В большинстве методик на данном этапе проводится разделение смеси продуктов амплификации, полученной на 2-ой стадии, методом горизонтального электрофореза в агарозном геле. До проведения электрофоретического разделения, к амплификационной смеси добавляется раствор бромистого этидия, образующий с двухцепочечными фрагментами ДНК прочные соединения внедрения. Эти соединения под действием УФ-облучения способны флуоресцировать, что регистрируется в виде светящихся полос после электрофоретического разделения амплификационной смеси в агарозном геле. Яркость полос продуктов амплификации может быть различной. Поэтому часто в ПЦР-лабораториях принято оценивать результат по трех-, четырех- или пятибалльной системе. Однако нельзя связывать с начальным количеством ДНК-мишени в образце. Часто уменьшение яркости свечения полос связано со снижением эффективности амплификации под влиянием ингибиторов или других факторов.

Рис.4 Детекция продуктов амплификации методом горизонтального электрофореза

). Метод вертикального электрофореза

Метод вертикального электрофореза принципиально схож с горизонтальным электрофорезом. Их отличие заключается в том, что в данном случае вместо агарозы используют полиакриламид. Его проводят в специальной камере для вертикального электрофореза. Электрофорез в полиакриламидном геле имеет большую разрешающую способность по сравнению с агарозным электрофорезом и позволяет различать молекулы ДНК разных размеров с точностью до одного нуклеотида. Приготовление полиакриламидного геля несколько сложнее агарозного. Кроме того, акриламид является токсичным веществом. Поскольку необходимость определить размер продукта амплификации с точностью до 1 нуклеотида возникает редко, то в рутинной работе этот метод не используют.

3). Метод гибридизационных зондов

В качестве альтернативы электрофоретическому методу детекции, имеющему некоторые недостатки: субъективность чтения результатов, ограничения по определению ДНК различных микроорганизмов в одной реакции, могут быть предложены гибридизационные схемы детекции. В этих схемах образующийся в результате амплификации фрагмент ДНК гибридизуется (образует 2-х цепочечные комплексы - "гибриды") со специфическим олигонуклеотидным зондом. Регистрация таких комплексов может быть проведена колориметрически или флуориметрически.

3. МЕТОД ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ (Real-Time PCR)

Метод Real-Time PCR позволяет проводить детекцию продуктов амплификации в процессе реакции и вести мониторинг кинетики накопления ампликонов. Для детекции PCR-продукта используются флуоресцентные красители, обеспечивающие флуоресценцию, прямо пропорциональную количеству ПЦР-продукта - репортерную флуоресценцию. Механизмы ее генерации различаются в зависимости от конкретного типа Real-Time PCR.

Кинетическая кривая в координатах "Уровень репортерной флуоресценции - цикл амплификации" имеет S-образную форму.

В ней можно выделить три стадии:

1.Стадию инициации (когда ПЦР-продукты еще не детектируется флуоресцентной меткой).

2.Экспоненциальную стадию (в которой наблюдается экспоненциальная зависимость количества флуоресценции от цикла ПЦР).

.Плато (стадию насыщения).

Рис.5 График кинетической кривой флуоресценции методом Real-Time PCR

Регистрация флуоресцентного сигнала проводится в процессе амплификации на специальном приборе - амплификаторе для Real-Time PCR. По нарастанию интенсивности флуоресцентного сигнала с помощью программного обеспечения, прилагаемого к амплификатору, вычисляется концентрация исходной матрицы ДНК.

Преимущества метода ПЦР в режиме реального времени

nвозможность детекции накопления продуктов амплификации непосредственно во время проведения амплификации;

nпринципиальным преимуществом является возможность осуществления детекции накопления ампликонов без открытия пробирки, что минимизирует риск получения ложноположительных результатов из-за контаминации проб и реагентов продуктами амплификации;

nсущественное уменьшение количества манипуляций с исследуемым образцом сокращает затраты времени, упрощает анализ и позволяет снизить вероятность ошибок;

nподобный подход позволяет отказаться от стадии электрофореза, что ведет к резкому уменьшению вероятности контаминации исследуемых проб продуктами амплификации;

nснижение требований, предъявляемых к ПЦР лаборатории;

nувеличение объективность интерпретации результатов ПЦР-исследования, поскольку обработка ведется с помощью программного обеспечения прибора;

nзначительно, практически в два раза, сокращается общее время исследования позволяя получить результат уже через 1.5 - 2 часа после поступления клинического материала в лабораторию;

nданный метод впервые позволяет проводить количественную оценку содержания ДНК микроорганизма в клинической пробе;

nприменение наряду с праймерами гибридизационных зондов обеспечивает повышение специфичности анализа;

nвозможность независимой одновременной регистрации флуоресцентного сигнала от нескольких гибридизационных ДНК-зондов допускает выявление в одном исследовании нескольких различных участков одной или различных ДНК-мишеней.

. ПРЕИМУЩЕСТВА МЕТОДА ПЦР

nНепосредственное определение возбудителей инфекционных заболеваний

Метод ПЦР дает прямое указание на присутствие в забранном у пациента материале специфического фрагмента ДНК возбудителя.

nВысокая специфичность ПЦР

Методом ПЦР в исследуемом материале выделяется фрагмент ДНК присущий только конкретному возбудителю - бактерии или вирусу. Данный участок ДНК уникален и не характерен ни для одной инфекции на земле. Специфичность задается нуклеотидной последовательностью праймеров, что исключает возможность получения ложных результатов, в отличие от метода иммуноферментного анализа, где нередки ошибки в связи с перекрестно-реагирующими антигенами.

nВысокая чувствительность ПЦР

Метод ПЦР позволяет выявлять даже единичные клетки бактерий или вирусов. ПЦР-диагностика обнаруживает наличие возбудителей инфекционных заболеваний в тех случаях, когда другими методами (иммунологическими, бактериологическими, микроскопическими) это сделать невозможно. Чувствительность ПЦР-анализа составляет 10-1000 клеток в пробе (чувствительность иммунологических и микроскопических тестов - 103-105 клеток).

nУниверсальность ПЦР

Поскольку возбудитель может содержаться в любых биологических выделениях и тканях при ПЦР-исследовании может применяться практически любые материалы, в том числе недоступные для исследования другими методами - слизь, моча, кровь, сыворотка, мокрота, эякулят, соскоб эпителиальных клеток.

nВысокая скорость получения результата ПЦР-анализа

Для проведения ПЦР-анализа не требуется выделение и выращивание культуры возбудителя, что занимает большое количество времени. Унифицированный метод обработки биоматериала и детекции продуктов реакции, и автоматизация процесса амплификации дают возможность провести полный анализ за 4-4.5 часа.

nВозможность диагностики любого вида инфекции

Высокая чувствительность метода ПЦР позволяет диагностировать инфекцию не только на острой стадии заболевания, но и хронические инфекции и даже наличие единичных бактерий или вирусов.

В настоящее время преимущество ПЦР-анализа перед культуральным методом обнаружения микроорганизмов состоит в следующем:

Более высокая частота обнаружения микроба, превышающая аналогичный показатель при использовании культурального метода, на 6-7%. Эти различия объясняются возможной гибелью микроба при хранении и транспортировке, тогда как ПЦР способна обнаруживать и нежизнеспособные формы микроорганизма.

Время, необходимое для обнаружения возбудителя культуральным методом, составляет около 4 суток, тогда как использование ПЦР позволяет обнаружить микроб через 4-5 часов.

Использование технологии ПЦР позволяет проводить определение возбудителей, например хламидий, в образцах, взятых неинвазивным путем, например в порциях мочи.

Особенно эффективен метод ПЦР для диагностики трудно культивируемых, некультивируемых и персистирующих форм микроорганизмов, с которыми часто приходится сталкиваться при латентных и хронических инфекциях, поскольку этот метод позволяет избежать сложностей, связанных с выращиванием таких микроорганизмов в лабораторных условиях.

nВозможность проведения мониторинга и оценки эффективности терапии, особенно при вирусных заболеваниях.

nВозможность выявления отдельных субтипов и штаммов вирусов и бактерий.

nВозможность определения нескольких видов возбудителей (Chlamydiatrachomatis, Mycoplasmahominis, Mycoplasmagenitalium, Trichomonasvaginalis, Ureaplasmaurealyticum) из одной пробирки с биологическим материалом.

Данный метод сравним по трудоемкости с классическими методами (иммуноферментным, иммунофлуоресцентным и т.п.), но дает более достоверную диагностическую информацию, позволяя непосредственно обнаруживать ДНК или РНК инфекционного агента в клиническом материале. Поэтому метод ПЦР, наравне с культуральным методом, признается «золотым стандартом» для диагностики инфекционных заболеваний.

5. ОГРАНИЧЕНИЯ МЕТОДА ПЦР

·В ходе реакции амплифицируется ДНК как живого, так и погибшего микроорганизма

·Возможность перекрестной реакции

Подбор праймеров происходит на основе существующих знаний о геноме данного и сходных микроорганизмов. Теоретически существует возможность присутствия такого же фрагмента и у других микроорганизмов, геном которых в настоящее время не расшифрован, и которые не были протестированы на возможность перекрестной реакции. Присутствие в пробе таких микроорганизмов может привести к ложноположительному результату анализа.

·Изменчивость микроорганизмов

Хотя при конструировании тест-системы фрагмент генома, используемый для амплификации, выбирается из высоко консервативной области, изменчивость микроорганизмов может приводить к тому, что некоторые генотипы или штаммы исследуемого возбудителя могут приобретать мутации в амплифицируемом участке генома, и, таким образом, становиться неуловимыми данной тест-системой.

Последние два пункта важны для разработчиков ПЦР-диагностикумов. В настоящее время разработаны стандарты, регламентирующие объем испытаний (включая проверку на перекрестные реакции, а также тестирование известных штаммов определяемого возбудителя), которые должна выдержать тест-система, прежде чем она попадет на рынок.

6. ПРИМЕНЕНИЕ МЕТОДА ПЦР

полимеразный диагностика инфекционный заболевание

ПЦР используется во многих областях для проведения анализов и в научных экспериментах:

1. криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью электрофореза ДНК. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев.

2. установление отцовства

При анализе результатов электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР отец-ребенок-мать обнаруживается, что ребенок унаследует некоторые особенности генетического отпечатка обоих родителей, что дает уникальный отпечаток. Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков. Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

3. медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

4. клонирование генов

Клонирование генов - это процесс выделения генов и, в результате генно-инженерных манипуляций, получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

5. секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

6. мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза (внесения изменений в нуклеотидную последовательность ДНК). Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

7. диагностика инфекционных заболеваний

Использование метода ПЦР для диагностики инфекционных заболеваний как бактериальной, так и вирусной природы имеет колоссальное значение для решения многих проблем микробиологии и эпидемиологии. Применение этого метода также способствует развитию фундаментальных исследований в области изучения хронических и малоизученных инфекционных заболеваний.

8. диагностика вирусных заболеваний

Наиболее всесторонние преимущества ПЦР при диагностике вирусных заболеваний можно продемонстрировать, рассматривая инфекционный процесс, обусловленный вирусом гепатита С (ВГС). Особую диагностическую ценность ПЦР для обнаружения этого вируса представляет по следующим причинам:

) отсутствие способа культивирования ВГС; 2) наборы для антигенной диагностики не существуют; 3) реакция образования антител к ВГС настолько замедлена, что диагноз во время острой фазы инфекции, как правило, поставить невозможно.

Поэтому в настоящее время становится общепризнанным использование технологии ПЦР для диагностики, контроля качества лечения и эпидемиологического анализа заболеваемости, обусловленной ВГС.

При этом только технология ПЦР позволяет решать следующие задачи: 1) проводить диагностику острой инфекции при позднем выявлении антител к ВГС; 2) осуществлять этиологическую диагностику хронического гепатита С у иммуносупрессированных пациентов; 3) оценивать эффективность противовирусной терапии; 4) выявлять виремию у доноров крови с нормальным уровнем аминотрансфераз; 5) определять возможную контаминацию препаратов крови; 6) оценивать широту распространения ВГС.

9. применение ПЦР в пульмонологии и фтизиатрии

Частой причиной атипичных пневмоний, рецидивирующих хронических бронхитов являются микоплазмы и хламидии. Диагностика этих возбудителей традиционными методами микроскопии и бакпосева неэффективна. ПЦР позволяет не только диагностировать хламидиозы и микоплазмозы, но и проводить видовую идентификацию возбудителя (С. pneumoniae, C. trachomatis, M. hominis, M. pneumoniae). Использование метода ПЦР позволяет значительно улучшить раннюю диагностику туберкулеза. В настоящее время разработаны и появились на рынке ПЦР-наборы для определения устойчивости микобактерий к антибиотикам.

10. применение ПЦР в практике службы крови

Обследование донорской крови на гепатиты, сифилис, ВИЧ серологическим методами не исключает опасности использования инфицированной крови из-за наличия у этих заболеваний определенного серонегативного периода, который может составлять до нескольких недель с момента появления возбудителя в крови. Наиболее эффективным методом анализа крови на присутствие этих возбудителей является метод ПЦР.

11. применение ПЦР в неонатологии

Целый ряд микроорганизмов способны поражать плод во время беременности. Это цитомегаловирус, токсоплазмы, вирус герпеса, вирус краснухи, микоплазмы, хламидии и др. Использование серологических тестов для определения этих инфекций у новорожденных неэффективно, поскольку формирование иммунной системы у ребенка происходит в течение нескольких месяцев, и наличие инфекционного агента может не сопровождаться выработкой специфических антител. С другой стороны, в крови новорожденного длительное время могут присутствовать материнские антитела класса IgG, способные проникать через плацентарный барьер. Таким образом, наличие специфических IgG у ребенка в первые месяцы жизни не свидетельствует о присутствии возбудителя. Применение ПЦР-анализа значительно увеличивает возможности диагностики неонатальных инфекций, в том числе и на внутриутробном этапе.

12. применение ПЦР в урогинекологической практике

Среди инфекционных агентов, поражающих урогенитальный тракт в последнее время большое внимание уделяется возбудителям латентных и хронических инфекций - хламидиям, микоплазмам. Для заболеваний, вызываемых этими возбудителями, характерна стертость клинической симптоматики, хроническое течение, часто приводящее к поражению репродуктивных функций - невынашиванию беременности, бесплодию. Многочисленные исследования по изучению применения метода ПЦР для выявления Сhlamydiatrachomatis, Mycoplasmahominis, Mycoplasmagenitalium, Ureaplasmaurealiticum, проведенные в крупных клиниках разных странах, показали высокую эффективность данного метода. Признано, что по показателям чувствительности и оперативности ПЦР превосходит культуральный метод, принятый в качестве "золотого стандарта".

ЗАКЛЮЧЕНИЕ

Таким образом, технология ПЦР - мощный инструмент, обеспечивающий возможность изучения и диагностики хронических инфекционных процессов, экологии возбудителей инфекционных заболеваний. Метод ПЦР-диагностики дополняет уже существующие приемы микробиологической диагностики, качественно меняет методологию решения прикладных проблем медицинской микробиологии и эпидемиологии.

Учитывая вышесказанное, сформулируем направления исследований в инфекционной патологии, в решении которых ПЦР начинает играть ведущую роль.

Диагностика хронических инфекционных состояний, обусловленных персистенцией бактерий или вирусов. Это наиболее очевидная область применения ПЦР в диагностических целях.

ПЦР - наиболее эффективный метод для выявления и изучения возбудителей, которые, находясь в «некультивируемом» состоянии, способны там сохраняться, переживая неблагоприятные внешние условия.

ПЦР позволяет проводить определение антибиотикорезистентности у медленно растущих и труднокультивируемых бактерий.

Перспективными направлениями практического использования ПЦР-диагностики являются:

· диагностика онкологических заболеваний;

· диагностика лейкемий и лимфом;

· диагностика рака молочной железы;

· диагностика других злокачественных заболеваний;

ДНК-диагностика доброкачественных и злокачественных новообразований ограничивается небольшим, но все возрастающим числом сведений о генах, ассоциированных с этими заболеваниями;

· диагностика генетических заболеваний.

Диагностика генетических заболеваний может развиваться только вслед за проведением широких научных исследований генома человека. Однако медицинское сообщество уже осознало важность изучения генетической основы заболеваний, а также возможность диагностирования и начала лечения болезни до появления ее симптомов;

· идентификация личности: судебная медицина, криминалистика; трансплантация органов и тканей; определение отцовства. Эксперты оценивают это направление на рынке ДНК-диагностикумов как одно из наиболее крупных и быстрорастущих;

Однако в то время эта идея осталась невостребованной. Полимеразная цепная реакция была вновь открыта в 1983 году Кэри Маллисом. Его целью было создание метода, который бы позволил амплифицировать ДНК в ходе многократных последовательных удвоений исходной молекулы ДНК с помощью фермента ДНК-полимеразы . Через 7 лет после опубликования этой идеи, в 1993 г., Маллис получил за неё Нобелевскую премию .

В начале использования метода после каждого цикла нагревания - охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу , так как она быстро инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. она была существенно улучшена. Было предложено использовать ДНК-полимеразы из термофильных бактерий . Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3"→5" экзонуклеазная активность). Полимеразы Pfu и Pwo , выделенные из архей , обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq . Сейчас применяют смеси Taq и Pfu , чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.

В момент изобретения метода Маллис работал в компании Цетус (en:Cetus Corporation), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq -полимеразы компании Хофман-Ла Рош (en:Hoffmann-La Roche) за 300 млн долларов. Однако оказалось, что Taq -полимераза была охарактеризована русским биохимиком Алексеем Калединым в 1980 году , в связи с чем компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент . Американский патент на метод ПЦР истёк в марте 2005 г.

Проведение ПЦР

Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro ). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК . В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp ). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20-40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований .

Компоненты реакции

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица , содержащая тот участок ДНК, который требуется амплифицировать .
  • Два праймера , комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.
  • Термостабильная ДНК-полимераза - фермент , который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.
  • Дезоксинуклеозидтрифосфаты (dATP, dGTP, dCTP, dTTP).
  • Ионы Mg 2+ , необходимые для работы полимеразы.
  • Буферный раствор , обеспечивающий необходимые условия реакции - рН , ионную силу раствора . Содержит соли, бычий сывороточный альбумин.

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата , побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата . Пирофосфат может ингибировать ПЦР-реакцию .

Праймеры

Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами , короткими синтетическими олигонуклеотидами длиной 18-30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы и ограничивает начало и конец амплифицируемого участка.

После гибридизации матрицы с праймером (отжиг ), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ).

Важнейшая характеристика праймеров - температура плавления (T m) комплекса праймер-матрица. T m это температура, при которой половина ДНК-матриц образует комплекс с олигонуклеотидным праймером. Температуру плавления можно приблизительно определить по формуле , где n X - количество нуклеотидов Х в праймере. В случае неверного выбора длины и нуклеотидного состава праймера или температуры отжига возможно образование частично комплементарных комплексов с другими участками матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.

При выборе праймеров желательно придерживаться следующих критериев:

Амплификатор

Рис. 1 : Амплификатор для проведения ПЦР

ПЦР проводят в амплификаторе - приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Ход реакции

Фотография геля, содержащего маркерную ДНК (1) и продукты ПЦР-реакции (2,3). Цифрами показана длина фрагментов ДНК в парах нуклеотидов

Обычно при проведении ПЦР выполняется 20-35 циклов, каждый из которых состоит из трех стадий (рис. 2).

Денатурация

Двухцепочечную ДНК-матрицу нагревают до 94-96°C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5-2 мин., чтобы цепи ДНК разошлись. Эта стадия называется денатурацией , так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2-5 мин. для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

Отжиг

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом . Температура отжига зависит от состава праймеров и обычно выбирается на 4-5°С ниже их температуры плавления. Время стадии - 0,5-2 мин. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре).

Элонгация

Разновидности ПЦР

  • «Вложенная» ПЦР (Nested PCR(англ.) ) - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
  • «Инвертированная» ПЦР (Inverse PCR(англ.) ) - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов (лигирование). В результате известные фрагменты оказываются на обоих концах неизвестного участка, после чего можно проводить ПЦР как обычно.
  • ПЦР с обратной транскрипцией (Reverse Transcription PCR, RT-PCR (англ.) ) - используется для амплификации, выделения или идентификации известной последовательности из библиотеки РНК. Перед обычной ПЦР проводят на матрице мРНК синтез одноцепочечной молекулы ДНК с помощью ревертазы и получают одноцепочечную кДНК , которая используется в качестве матрицы для ПЦР. Этим методом часто определяют, где и когда экспрессируются данные гены.
  • Асимметричная ПЦР (англ. Asymmetric PCR ) - проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке.
  • Количественная ПЦР (Quantitative PCR, Q-PCR(англ.) ) - используется для быстрого измерения количества определенной ДНК, кДНК или РНК в пробе.
  • Количественная ПЦР в реальном времени (Quantitative real-time PCR) - в этом методе используют флуоресцентно меченые реагенты для точного измерения количества продукта реакции по мере его накопления.
  • Touchdown (Stepdown) ПЦР (Touchdown PCR(англ.) ) - с помощью этого метода уменьшают влияние неспецифического связывания праймеров на образование продукта. Первые циклы проводят при температуре выше температуры отжига, затем каждые несколько циклов температуру снижают. При определённой температуре система пройдёт через полосу оптимальной специфичности праймеров к ДНК.
  • Метод молекулярных колоний (ПЦР в геле, англ. Polony - PCR Colony ) - акриламидный гель полимеризуют со всеми компонентами ПЦР на поверхности и проводят ПЦР. В точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
  • ПЦР с быстрой амплификацией концов кДНК (англ. Rapid amplification of cDNA ends, RACE-PCR )
  • ПЦР длинных фрагментов (англ. Long-range PCR ) - модификация ПЦР для амплификации протяженных участков ДНК (10 тысяч оснований и больше). Используют две полимеразы, одна из которых - Taq-полимераза с высокой процессивностью (то есть, способная за один проход синтезировать длинную цепь ДНК), а вторая - ДНК полимераза с 3"-5" эндонуклеазной активностью. Вторая полимераза необходима для того, чтобы корректировать ошибки, внесенные первой.
  • RAPD PCR (англ. Random Amplification of Polymorphic DNA PCR , ПЦР со случайной амплификацией полиморфной ДНК - используется тогда, когда нужно различить близкие по генетической последовательности организмы, например, разные сорта культурных растений, породы собак или близкородственные микроорганизмы. В этом методе обычно используют один праймер небольшого размера (20 - 25 п.н.). Этот праймер будет частично комплементарен случайным участкам ДНК исследуемых организмов. Подбирая условия (длину праймера, его состав, температуру и пр.), удается добиться удовлетворительного отличия картины ПЦР для двух организмов.

Если нуклеотидная последовательность матрицы известна частично или неизвестна вовсе, можно использовать вырожденные праймеры , последовательность которых содержит вырожденные позиции, в которых могут располагаться любые основания. Например, последовательность праймера может быть такой: …ATH… , где Н - А, Т или С.

Применение ПЦР

ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью ДНК электрофореза . Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев (англ. genetic fingerprint ).

Установление отцовства

Рис. 3 : Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. (1) Отец. (2) Ребенок. (3) Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций . Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Известно, что большинство лекарств действуют не на всех пациентов, для которых они предназначены, а лишь на 30-70 % их числа. Кроме того, многие лекарства оказываются токсичными или аллергенными для части пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием (англ. prospective genotyping ).

Клонирование генов

Клонирование генов (не путать с клонированием организмов) - это процесс выделения генов и, в результате генноинженерных манипуляций , получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Рис. 4 : Клонирование гена с использованием плазмиды. .
(1) Хромосомная ДНК организма A. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В.

Секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

Проведение ПЦР-анализа (PCR diagnostics) начинается с забора материала для исследования врачом-гинекологом, урологом или дерматовенерологом. Качество, достоверность полученных впоследствии результатов обеспечивается высочайшей квалификацией и огромным опытом работы врачей медицинского центра «Евромедпрестиж» , соблюдающих все необходимые правила проведения ПЦР-анализа: полная стерильность, использование исключительно одноразовых материалов.

Забранный материал со щеточки помещают в контейнер с физраствором. После забора пробы как можно скорее должны быть доставлены в ПЦР — лабораторию.

Проведение в лаборатории ПЦР-анализа происходит в три этапа:

  1. Выделение ДНК
  2. Амплификация ДНК-фрагментов
  3. Детекция ДНК-продуктов амплификации

Выделение ДНК — это первоначальный этап проведения ПЦР-диагностики, суть которого заключается в следующем: врач забирает у пациента материал для исследования и подвергает его специальной обработке. В процессе обработки происходит расщепление двойной спирали ДНК на отдельные нити. В материал пациента добавляется специальная жидкость, растворяющая органические вещества, мешающие «чистоте» проведения реакции. Таким образом удаляются липиды, аминокислоты, пептиды, углеводы, белки и полисахариды. В результате образуется ДНК или РНК.

Принцип метода ПЦР заключается в «строительстве» новых ДНК или РНК инфекций. Без удаления клеточного материала осуществить это невозможно.

Количество времени, затраченного на выделение ДНК, зависит от возбудителя инфекции и от вида используемого для исследования методом ПЦР материала. Например, для подготовки крови к следующему этапу требуется 1,5-2 часа.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Амплификация ДНК

Для осуществления следующего этапа ДНК-диагностики — амплификации ДНК — врачи используют так называемые ДНК-матрицы — молекулы ДНК инфекций, на которые впоследствии будет происходить «клонирование» ДНК. Уже упоминалось, что наличие полной ДНК инфекции необязательно, для проведения этого этапа достаточно небольшого кусочка молекулы ДНК, который присущ только данному микробу (инфекции).

В основе амплификации ДНК и соответственно в основе всего принципа ПЦР-реакции лежит естественный для всего живого процесс достраивания ДНК — репликации ДНК, который осуществляется путем удвоения единичной цепочки ДНК.

Начав с одного-единственного фрагмента ДНК, врач-лаборант копирует его и увеличивает количество копий в режиме цепной реакции: после первого цикла у вас уже есть 2 фрагмента, после второго цикла — 4, после третьего — 8, после четвертого — 16, затем 32, 64, 128, 256... С каждым циклом происходит удвоение числа копий, и после двадцати циклов счет уже идет на миллионы, а после тридцати — на миллиарды. Цикл длится считанные минуты и сводится к определенному изменению температурного режима в очень небольшом химическом реакторе. Здесь в растворе в достаточном количестве находятся все нужные компоненты синтеза, прежде всего, нуклеотиды А, Г, Т и Ц, а также проведены тонкие подготовительные химические операции для того, чтобы с каждого готового отрезка ДНК тут же снималась точная копия, затем с этой копии — снова копия, в этом и состоит разветвленная цепная реакция.

Путем присоединения к цепи ДНК праймеров — искусственно синтезированных «кусочков» ДНК (нуклеотидных пар), аналогичных ДНК микробов (инфекции) — образуются две короткие, состоящие из двух цепей участков ДНК, спирали, необходимые для синтеза будущей ДНК.

Синтез новой цепи происходит путем достраивания каждой из двух нитей ДНК. Процесс амплификации происходит с помощью специфического участка — ДНК-полимеразы, давшему название лабораторному методу. Полимераза выступает в роли катализатора реакции и следит за последовательным прикреплением нуклеотидных оснований к растущей новой цепи ДНК.

Таким образом, амплификация ДНК представляет собой многократное увеличение числа копий ДНК, которые специфичны, т. е. присущи только определенному организму. Нет необходимости достраивать всю цепь ДНК, чтобы увидеть возбудителя инфекции. Нужен только тот участок, который характерен для данной бактерии как для индивидуальности.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Все многочисленно повторяющиеся этапы амплификации происходят при различных температурах. Для проведения ПЦР-анализа используется специально программируемое оборудование — ПЦР — термостат или амплификатор, которое автоматически осуществляет смену температур. Амплификация проводится по заданной программе, соответствующей виду определяемой инфекции. В зависимости от программы и вида определяемой инфекции процесс автоматизированной ПЦР занимает от 2 до 3 часов.

Важное значение в ПЦР-диагностике играет квалификация врача-лаборанта, проводящего анализ, от него зависит правильность настройки ПЦР-оборудования и интерпретация полученных результатов. Врачи медицинского центра «Евромедпрестиж» имеют большой опыт в проведении ДНК-диагностики, что обеспечивает достоверность полученных результатов исследования и гарантирует положительный успех в лечении инфекционных заболеваний. Чтобы сдать анализы методом ПЦР и провести полную диагностику и лечение инфекционных заболеваний в нашем медицинском центре «Евромедпрестиж».

В процессе детекции продуктов амплификации проходит разделение полученной смеси продуктов амплификации. К смеси добавляется специальные растворы, которые наделяют фрагменты ДНК способностью флуоресцировать — отражаться оранжево-красными светящимися полосами. Образующееся свечение выдает присутствие ДНК вирусов, микробов или бактерий в забранном у пациента на ПЦР-анализ материале.