Эффект доплера справедлив и для звуковых волн. смещение доплеровских частот, определяемое характером отражающей поверхности. Использование тригонометрического тождества и фильтрации высокой частоты составляющей постоянного тока дадут

  • Дата: 26.09.2019

Эффект Доплера – это физическое явление, состоящее в изменении частоты волн в зависимости от движения источника этих волн относительно наблюдателя. При приближении источника частота излучаемых им волн увеличивается, а длина уменьшается. При удалении источника волн от наблюдателя их частота уменьшается, а длина волны увеличивается.

Например, в случае звуковых волн при удалении источника высота звука понизится, а при приближении тон звука станет более высоким. Так, по изменению высоты тона можно определить, приближается или удаляется поезд, автомобиль со звуковым спецсигналом и т.д. Электромагнитные волны также демонстрируют эффект Доплера. Наблюдатель в случае удаления источника заметит смещение спектра в «красную» сторону, т.е. в сторону более длинных волн, а при приближении – в «фиолетовую», т.е. в сторону более коротких волн.

Эффект Доплера оказался крайне полезным открытием. Благодаря ему было обнаружено расширение Вселенной (спектры галактик смещены в красную сторону, следовательно, они от нас удаляются); разработан метод диагностики сердечно-сосудистой системы через определение скорости кровотока; созданы различные радары, в том числе и те, которые используются ГИБДД.

Самый популярный пример распространения эффекта Доплера: машина с сиреной. Когда она едет к тебе или от тебя, ты слышишь один звук, а когда проезжает мимо, то совершенной другой - более низкий. Эффект Доплера связан не только со звуковыми волнами, но и любыми другими. С помощью эффекта Доплера можно определить скорость чего-либо, будь это машина или небесные тела, при условии, что мы знаем параметры (частоту и длину волны). Все, что связано с телефонными сетями, вай-фаем, охранными сигнализациями - везде можно наблюдать эффект Доплера.

Или возьмем светофор - у него есть красный, желтый и зеленый цвета. В зависимости от того, с какой скоростью мы движемся, эти цвета могут меняться, но не между собой, а смещаться в сторону фиолетового: желтый будет уходить в зеленый, а зеленый в синий.

Ну почему же? Если мы движемся от источника света и смотрим назад (или светофор уезжает от нас), то цвета сдвинутся в сторону красного.

И, наверное, стоит уточнить, что скорость, на которой красный можно перепутать с зеленым, намного выше той, с которой можно ездить по дорогам.

Ответить

Прокомментировать

Суть эффекта Допплера заключается в том, что если источник звука приближается к наблюдателю или отдаляется от него, то частота звука, испускаемого им, с точки зрения наблюдателя изменяется. Так, например, изменяется звук двигателя машины, которая проезжает мимо вас. Он выше пока она приближается к вам и резко становится ниже, когда она пролетает мимо вас и начинает удаляться. Изменение частоты тем сильнее, чем выше скорость движения источника звука.

К слову, этот эффект справедлив не только для звука, но и, скажем, для света. Просто для звука он нагляднее - его можно наблюдать на относительно небольших скоростях. У видимого света настолько большая частота, что небольшие изменения за счёт эффекта Допплера невооружённым глазом незаметны. Однако, в некоторых случая эффект Допплера следует учитывать даже в радиосвязи.

Если не углубляться в строгие определения и попытаться объяснить эффект, что называется, на пальцах, то всё достаточно просто. Звук (как и свет или радиосигнал) - это волна. Для наглядности, давайте будем считать, что частота принимаемой волны зависит от того, как часто мы принимаем "гребни" схематической волны (). Если источник и приёмник будут неподвижны (да, относительно друг друга), то мы будем принимать "гребни" с той же частотой, с какой их излучает приёмник. Если же источник и приёмник начнут сближаться, то мы начнём принимать тем чаще, чем выше скорость сближения - скорости будут складываться. В итоге частота звука на приёмнике будет выше. Если же источник начнёт удаляться от приёмника, то каждому следующему "гребню" понадобится чуть больше времени, чтобы достигнуть приёмника - мы начнём принимать "гребни" чуть реже, чем их излучает источник. Частота звука на приёмнике будет ниже.

Это объяснение в известной степени схематично, но общий принцип оно отражает.

Если коротко - изменение наблюдаемой частоты и длины волны в том случае, если источник и приемник движутся относительно друг друга. Связан с конечностью скорости распространения волн. Если источник с приемником сближаются - частота растет (пик волны регистрируется чаще); удаляются друг от друга - частота падает (пик волны регистрируется реже). Оычная иллюстрация эффекта - сирена спецслужб. Если скорая к вам подъезжает - сирена визжит, отъезжает - басовито гудит. Отдельный случай - распространение электромагнитной волны в ваккууме - там добавяется еще релятивистская составляющая и допплеровский эффект проявляется и в том случае, когда приемник и источник неподвижны относительно друг друга, что объясняется свойствами времени.

Попробую ответить наиболее простым способом:
Представте, что вы стоите на месте и каждую секунду запускаете волну (например голосом), которая радиально распространяется от вас со скоростью 100 м/с.

Пусть в газе или жидкости на некотором расстоянии от источника волн располагается воспринимающее колебания среды устройство, которое мы будем называть приемником. Если источник и приемник волн неподвижны относительно среды, в которой распространяется волна, то частота колебаний, воспринимаемых приемником, будет равна частоте колебаний источника. Если же источник или приемник либо оба они движутся относительно среды, то частота v, воспринимаемая приемником, может оказаться отличной от Это явление называется эффектом Доплера.

Предположим, что источник и приемник движутся вдоль соединяющей их прямой. Скорость источника будем считать положительной, если источник движется по направлению к приемнику, и отрицательной, если источник движется в направлении от приемника. Аналогично скорость приемника будем считать положительной, если приемник движется по направлению к источнику, и отрицательной, если приемник движется в направлении от источника.

Если источник неподвижен и колеблется с частотой то к моменту, когда источник будет завершать колебание, порожденный первым колебанием «гребень» волны успеет пройти в среде путь v (v - скорость распространения волны относительно среды). Следовательно, порождаемые источником за секунду «гребней» и «впадин» волны уложатся на длине v. Если же источник движется относительно среды со скоростью то в момент, когда источник будет завершать колебание, «гребень», порожденный первым колебанием, будет находиться от источника на расстоянии (рис. 103.1). Следовательно, «гребней» и «впадин» волны уложатся на длине , так что длина волны будет равна

Мимо неподвижного приемника пройдут за секунду «гребни» и «впадины», укладывающиеся на длине v. Если приемник движется со скоростью то в конце длящегося 1 с промежутка времени он будет воспринимать «впадину», которая в начале этого промежутка отстояла от его теперешнего положения на расстояние, численно равное .

Таким образом, приемник воспримет за секунду колебания, отвечающие «гребням» и «впадинам», укладывающимся на длине, численно равной (рис. 103.2), и будет колебаться с частотой

Подставив в эту формулу выражение (103.1) для К, получим

(103.2)

Из формулы (103.2) вытекает, что при таком движении источника и приемника, при котором расстояние между ними уменьшается, воспринимаемая приемником частота v оказывается больше частоты источника

Если расстояние между источником и приемником увеличивается, v будет меньше, чем

Если направления скоростей не совпадают с проходящей через источник и приемник прямой, вместо в формуле (103.2) нужно брать проекции векторов на направление указанной прямой.

Из формулы (103.2) следует, что эффект Доплера для звуковых волн определяется скоростями движения источника и приемника относительно среды, в которой распространяется звук. Для световых волн также наблюдается эффект Доплера, однако формула для изменения частоты имеет иной вид, чем (103.2). Это обусловлено тем, что для световых волн не существует вещественной среды, колебания которой представляли бы собой «свет». Поэтому скорости источника и приемника света относительно «среды» не имеют смысла. В случае света можно говорить лишь об относительной скорости приемника и источника. Эффект Доплера для световых волн зависит от величины и направления этой скорости. Эффект Доплера для световых волн рассматривается в § 151.

Энциклопедичный YouTube

    1 / 5

    ✪ Эффект Доплера. Введение

    ✪ Урок 378. Эффект Доплера в акустике

    ✪ Выпуск 5 - Эффект Доплера, Красное смещение, Большой взрыв.

    Субтитры

    В этом видео мы поговорим о двух источниках волн. Но один из них будет неподвижным, а другой - движущимся. Допустим, он двигается вправо со скоростью 5 метров в секунду. Давайте подумаем, где через 3-4 секунды будет находиться гребень волны? Допустим, оба источника испускают волны и скорость их распространения составляет 10 метров в секунду. Представьте, что это звуковые волны, хотя звук в воздухе движется гораздо, гораздо быстрее, чем 10 метров в секунду. Но это упростит наши расчёты, особенно для источника, движущегося вправо со скоростью 5 метров в секунду. Я хотел бы, чтобы вы поняли логику происходящего, так что упростим расчёты. Оба источника испускают волны, скорость распространения их - 10 метров в секунду. Период волны будет равен 1 секунде за цикл. Если период - 1 секунда за цикл, то частота волны, испускаемой источником, - это величина, обратная периоду. Итак, частота будет обратна периоду. Обратная величина 1 - 1. Но, 1 цикл в секунду. Если цикл проходится за секунду, то на 1 секунду проходится один цикл. Посмотрим, что здесь происходит. Допустим, источник испустил волну ровно 1 секунду назад. Где окажется гребень волны сейчас? Давайте рассмотрим неподвижный источник. Вот этот источник секунду назад испустил волну. Она удаляется от него. Волна распространяется в радиальном направлении от источника. Нужно указывать направление, если говорится о векторе. Скорость распространения - 10 метров в секунду. Так что, если волну испустили секунду назад, она должна пройти 10 метров в радиальном направлении от источника. Допустим, гребень волны здесь. Вот где будет гребень волны. Попробую нарисовать аккуратнее. Вот гребень. Где будет гребень волны, испущенной секунду назад? Вы могли бы решить, что нужно просто нарисовать круг радиусом 10 метров вокруг источника. Но секунду назад его здесь не было. Он был на 5 метров левее. Помните, он движется вправо со скоростью 5 метров в секунду. Так что секунду назад он был на 5 метров левее. Он мог быть примерно тут. И гребень волны, испущенной секунду назад, будет в 10 метрах не от этого источника. Он будет в 10 метрах от места, где располагался источник. Итак, копируем, вставляем. Вот так. Теперь источник находится здесь. А тут он был секунду назад, когда испустил волну, удалившуюся на 10 метров. Немного неточно, сейчас я передвину его. Это 5 метров. Это 10. Думаю, смысл вам понятен. Продолжаем. Давайте подумаем о гребне волны, испущенной обоими источниками 2 секунды назад. Вот этот всё время был неподвижен. Испущенная им волна расходится со скоростью 10 метров в секунду. Так что гребень располагается по кругу радиусом в 20 метров с центром на источнике. Это будет выглядеть примерно так. Вот таким образом. Я рисую только гребни волн. Представьте пруд, в который бросили камень. Это будут гребни волны, которая распространяется радиально от центра, то есть места, куда был брошен камень. А вокруг этого источника мы не можем просто нарисовать круг, потому что 2 секунды назад он здесь еще не находился. Он был не здесь, он был тут. Прямо здесь 2 секунды назад. Секунду назад он был на 5 метров левее. А за секунду до этого, он был ещё на 5 метров левее. Так что испущенная им волна будет в 20 метрах от этой точки. Теперь нужно скопировать и вставить. Вот это. Центр распространения будет не здесь и не здесь. Центр будет в этой точке, где источник был 2 секунды назад. Давайте повторим ещё разок. Что будет с гребнем волны, испущенной 3 секунды назад? Она должна располагаться по кругу радиусом 30 метров, так что это ещё 10 метров от предыдущего круга. Это будет вот здесь. Это источник по-прежнему неподвижный. А что с этим источником? Со вторым, давайте разберемся с ним. 3 секунды назад его здесь не было. Он был здесь. Так? Секунду назад - здесь. 2 секунды назад - здесь. 3 секунды - здесь. Так что нам нужен радиус 30 метров из этой точки. Опять копируем, вставляем вот сюда. Центр круга будет примерно вот тут. Теперь давайте подумаем, какова будет частота волны для восприятия наблюдателей. Разместим наблюдателя здесь, хотя можно разместить его где угодно вокруг источника. Другой наблюдатель будет вот тут. А третий - здесь. Что будет воспринимать этот наблюдатель? Каждую секунду он получает импульс - тут есть ещё пара моментов. Какова длина волны, например, вот здесь? Каждую секунду источник испускает импульс. Так что импульс, испущенный секунду назад, пройдёт 10 метров. А источник испускает следующий импульс. Импульсы разделяет 1 секунда, но, поскольку они проходят за нее 10 метров, их разделяет также 10 метров. Так что, длина волны в этом случае будет равна 10 метрам. Расстояние между этими гребнями равно 10 метрам. Теперь, что касается второго случая. Тут всё зависит от того, приближается источник звука к вам или удаляется от вас, как в случае с этим наблюдателем. Когда же он приближается к вам, он испускает импульсы. Например, он испустил импульс отсюда и продвинулся на 5 метров вправо до того, как испустить следующий импульс. Так что расстояние между гребнями будет уже не 10 метров, как здесь, потому что источник сократил дистанцию на 5 метров в этом направлении. Так что гребни будет разделять лишь 5 метров. И длина волны здесь будет только 5 метров. Вы сами можете это увидеть. Это расстояние наполовину меньше, чем это. Их разделяет лишь 5 метров. А с левой стороны, когда источник удаляется от вас, это расстояние должно быть 10 метров, но с каждой секундой источник удаляется от вас на 5 метров. Так что воспринимаемая длина волны здесь составит 15 метров. Можно убедиться в этом наглядно. Для этого я нарисовал всё именно таким образом. Какова будет частота волн, воспринимаемых наблюдателем? Этого наблюдателя как раз достиг один из гребней. До прихода следующего гребня пройдёт в точности 1 секунда, потому что он движется со скоростью 10 метров в секунду. Так что он воспринимает волны с частотой 1 гребень, или 1 цикл в секунду, или 1 Гц, что вполне логично. Источник неподвижен. Наблюдатель и источник неподвижны по отношению друг к другу. Мы говорим о классической механике, не затрагивая релятивистскую и все прочие. Но частота, воспринимаемая наблюдателем, в точности совпадает с частотой волны, испускаемой источником. А теперь, что касается этого случая. Для этого наблюдателя гребни разделяет 5 метров. Представьте, что к наблюдателю приближается поезд, Гребни разделяет 5 метров, но скорость распространения 10 метров в секунду. Так сколько гребней в секунду доходит до наблюдателя? Их будет 2. Вот этот достигнет наблюдателя за полсекунды, следом, ещё через полсекунды, появится второй. Или, можно сказать, что вот этому понадобится полсекунды, а этот достигнет вас через секунду. Наблюдателя достигает 2 гребня в секунду. Можно выразить это 2 способами. Можно сказать, что в этом случае период равен полсекунды за цикл. Или, можно сказать, что воспринимаемая наблюдателем частота составит 2 цикла в секунду. Заметьте, воспринимаемая этим наблюдателем частота выше, потому что волны, или гребни волн, проходят мимо него более часто. И связано это с тем, что источник приближается к наблюдателю, и они сближаются. А вот это противоположный случай. Допустим, этот гребень как раз достиг наблюдателя. Через какое время следующий гребень пройдёт эти 15 метров? Скорость распространения волн - 10 метров в секунду. Так период, воспринимаемый наблюдателем, составит 1,5 секунды за цикл. Находим обратную величину: 1,5 - это 3/2, то есть получается 2/3, или, можно сказать, 2/3 цикла в секунду. Итак, если источник удаляется от наблюдателя, частота, или воспринимаемая частота, ниже, чем истинная частота волны, испускаемой источником. При приближении источника частота повышается. Это может показаться необычным, но это наверняка знакомо вам по опыту. Это называется эффект Доплера, о котором вы, вероятно, слышали. Это именно то, что можно наблюдать, стоя около железной дороги. Но не стойте слишком близко. Допустим, к вам приближается поезд, включив сирену. Издаваемый сиреной звук будет очень высоким. Затем, когда поезд проходит мимо и начинает удаляться, звук значительно понижается. Это воспринимаемый диапазон, это способ вашего мозга и ушей ощущать частоту звука. Когда поезд приближается к вам, это высокий диапазон, высокая частота. При удалении от вас - низкий диапазон, низкая частота. Надеюсь, изображённая мной схема даёт вам визуальное понимание того, как всё устроено, почему эти точки на гребнях сближаются друг с другом при приближении к вам и отдаляются, когда источник отдаляется от вас. Далее выведем обобщённые формулы соотношения частоты, воспринимаемой наблюдателем и испускаемой источником. Subtitles by the Amara.org community

История открытия

Исходя из собственных наблюдений за волнами на воде, Доплер предположил, что подобные явления происходят в воздухе с другими волнами. На основании волновой теории он в 1842 году вывел, что приближение источника света к наблюдателю увеличивает наблюдаемую частоту, отдаление уменьшает её (статья «О цветном свете двойных звезд и некоторых других звезд на небесах (англ.) русск. »). Доплер теоретически обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга. Это явление впоследствии было названо его именем.

Доплер использовал этот принцип в астрономии и провел параллель между акустическим и оптическим явлениями. Он полагал, что все звёзды излучают белый свет, однако цвет меняется из-за их движения к или от Земли (этот эффект для рассматриваемых Доплером двойных звёзд очень мал). Хотя изменения в цвете невозможно было наблюдать с оборудованием того времени, теория о звуке была проверена уже в 1845 году . Только открытие спектрального анализа дало возможность экспериментальной проверки эффекта в оптике.

Критика публикации Доплера

Главным основанием для критики являлось то, что статья не имела экспериментальных подтверждений и была исключительно теоретической. Хотя общее объяснение его теории и вспомогательные иллюстрации, которые он привел для звука, и были верны, объяснения и девять поддерживающих аргументов об изменении цвета звёзд верны не были. Ошибка произошла из-за заблуждения, что все звёзды излучают белый свет, и Доплер, видимо, не знал об открытиях инфракрасного (У. Гершель , 1800 год) и ультрафиолетового излучения (И. Риттер , 1801 год) .

Хотя к 1850 году эффект Доплера был подтверждён экспериментально для звука, его теоретическая основа вызвала острые дебаты, которые спровоцировал Йозеф Пецваль . Основные возражения Пецваля были основаны на преувеличении роли высшей математики. Он ответил на теорию Доплера своей работой «Об основных принципах волнового движения: закон сохранения длины волны», представленной на встрече Академии Наук 15 января 1852 года. В ней он утверждал, что теория не может представлять ценности, если она опубликована всего на 8 страницах и использует только простые уравнения. В своих возражениях Пецваль смешал два абсолютно разных случая движения наблюдателя и источника и движения среды. В последнем случае, согласно теории Доплера, частота не меняется .

Экспериментальная проверка

В 1845 году голландский метеоролог из Утрехта , Христофор Хенрик Дидерик Бёйс-Баллот , подтвердил эффект Доплера для звука на железной дороге между Утрехтом и Амстердамом . Локомотив, достигший невероятной на то время скорости 40 миль/ч (64 км/ч), тянул открытый вагон с группой трубачей. Баллот слушал изменения тона во время движения вагона при приближении и удалении. В тот же год Доплер провел эксперимент, используя две группы трубачей, одна из которых двигалась от станции, а вторая оставалась неподвижной. Он подтвердил, что, когда оркестры играют одну ноту, они находятся в диссонансе . В 1846 году он опубликовал пересмотренную версию своей теории, в которой он рассматривал как движение источника, так и движение наблюдателя. Позднее в 1848 году французский физик Арман Физо обобщил работы Доплера, распространив его теорию и на свет (рассчитал смещение линий в спектрах небесных светил) . В 1860 году Эрнст Мах предсказал, что линии поглощения в спектрах звёзд, связанные с самой звездой, должны обнаруживать эффект Доплера, также в этих спектрах существуют линии поглощения земного происхождения, не обнаруживающие эффект Доплера. Первое соответствующее наблюдение удалось провести в 1868 году Уильяму Хаггинсу .

Прямое подтверждение формул Доплера для световых волн было получено Г. Фогелем в 1871 году путём сравнения положений линий Фраунгофера в спектрах , полученных от противоположных краёв солнечного экватора. Относительная скорость краёв, рассчитанная по значениям измеренных Г. Фогелем спектральных интервалов, оказалась близка к скорости, рассчитанной по смещению солнечных пятен .

Сущность явления

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание явления

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны λ) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

где - угловая частота , с которой источник испускает волны, c {\displaystyle c} - скорость распространения волн в среде, v {\displaystyle v} - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

ω = ω 0 (1 + u c) , {\displaystyle \omega =\omega _{0}\left(1+{\frac {u}{c}}\right),} (2)

где u {\displaystyle u} - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо ω 0 {\displaystyle \omega _{0}} в формуле (2) значение частоты ω {\displaystyle \omega } из формулы (1), получим формулу для общего случая:

ω = ω 0 (1 + u c) (1 − v c) . {\displaystyle \omega =\omega _{0}{\frac {\left(1+{\frac {u}{c}}\right)}{\left(1-{\frac {v}{c}}\right)}}.} (3)

Релятивистский эффект Доплера

ω = ω 0 ⋅ 1 − v 2 c 2 1 + v c ⋅ cos ⁡ θ {\displaystyle \omega =\omega _{0}\cdot {\frac {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}{1+{\frac {v}{c}}\cdot \cos \theta }}}

где c {\displaystyle c} - скорость света , v {\displaystyle v} - скорость источника относительно приёмника (наблюдателя), θ {\displaystyle \theta } - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то θ = 0 {\displaystyle \theta =0} , если приближается, то θ = π {\displaystyle \theta =\pi } .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера , когда угол между волновым вектором и скоростью источника равен θ = π 2 {\displaystyle \theta ={\frac {\pi }{2}}} . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Звук может восприниматься человеком по-разному, если источник звука и слушатель движутся относительно друг друга. Он может казаться более высоким или более низким, чем есть на самом деле.

Если источник звуковых волн и приёмник находятся в движении, то частота звука, которую воспринимает приёмник, отличается от частоты источника звука. При их сближении частота увеличивается, а при удалении уменьшается. Это явление называется эффектом Доплера , по имени учёного, его открывшего.

Эффект Доплера в акустике

Многим из нас приходилось наблюдать, как изменяется тон гудка поезда, двигающегося с большой скоростью. Он зависит от частоты звуковой волны, которую улавливает наше ухо. При приближении поезда эта частота увеличивается, и сигнал становится более высоким. При удалении от наблюдателя частота уменьшается, и мы слышим более низкий звук.

Такой же эффект наблюдается, когда движется приёмник звука, а источник неподвижен, или когда в движении находятся оба.

Почему изменяется частота звуковой волны, объяснил австрийский физик Кристиан Доплер. В 1842 г. он впервые описал эффект изменения частоты, названный эффектом Доплера .

Когда приёмник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своём пути больше волн, чем если бы он находился в неподвижном состоянии. То есть он воспринимает более высокую частоту и слышит более высокий тон. Когда же он удаляется, число пересечённых в единицу времени волн уменьшается. И звук кажется более низким.

При движении источника звука к приёмнику он словно догоняет волну, созданную им же. Её длина уменьшается, следовательно, увеличивается частота. Если же он удаляется, то длина волны становится больше, а частота меньше.

Как вычислить частоту принимаемой волны

Звуковая волна способна распространяться только в среде. Её длина λ зависит от скорости и направления её движения.

где ω 0 - круговая частота, с которой источник испускает волны;

с - скорость распространения волн в среде;

v - скорость, с которой движется источник волн относительно среды. Её значение положительно, если источник движется навстречу приёмнику, и отрицательно, если он удаляется.

Неподвижный приёмник воспринимает частоту

Если же источник звука неподвижен, а приёмник движется, то частота, которую он будет воспринимать, равна

где u - скорость приёмника относительно среды. Она имеет положительное значение, если приёмник движется навстречу источнику, и отрицательное, если он удаляется.

В общем случае формула частоты, воспринимаемой приёмником, имеет вид:

Эффект Доплера наблюдается для волн любой частоты, а также электромагнитного излучения.

Где применяется эффект Доплера

Эффект Доплера используют везде, где нужно измерить скорость объектов, которые способны излучать или отражать волны. Главное условие для появления этого эффекта - движение источника волн и приёмника относительно друг друга.

Радар Доплера - это прибор, испускающий радиоволну, а затем измеряющий частоту отражённой от движущегося объекта волны. По изменению частоты сигнала он определяет скорость объекта. Такие радары используют сотрудники ГИБДД, чтобы выявить нарушителей, превышающих допустимую скорость. Применяют эффект Доплера в морской и воздушной навигации, в детекторах движения в охранных системах, для измерения скорости ветра и облаков в метеорологии и др.

Мы часто слышим о таком исследовании в кардиологии, как доплеровская эхокардиография. Эффект Доплера используют в этом случае для определения скорости движения клапанов сердца, скорости кровотока.

И даже скорость движения звёзд, галактик и других небесных тел научились определять по смещению спектральных линий с помощью эффекта Доплера.

Вы могли заметить, что высота звука сирены пожарной машины, движущейся с большой скоростью, резко падает после того, как эта машина пронесется мимо вас. Возможно, вы замечали также изменение высоты сигнала автомобиля, проезжающего на большой скорости мимо вас.
 Высота звука двигателя гоночного автомобиля тоже изменяется, когда он проезжает мимо наблюдателя. Если источник звука приближается к наблюдателю, высота звука возрастает по сравнению с тем, когда источник звука покоился. Если же источник звука удаляется от наблюдателя, то высота звука понижается. Это явление называется эффектом Доплера и имеет место для всех типов волн. Рассмотрим теперь причины его возникновения и вычислим изменение частоты звуковых волн, обусловленное этим эффектом.

Рис. 1
 Рассмотрим для конкретности пожарный автомобиль, сирена которого, когда автомобиль стоит на месте, испускает звук определенной частоты во всех направлениях, как показано на рис. 1. Пусть теперь пожарный автомобиль начал двигаться, а сирена продолжает испускать звуковые волны на той же частоте. Однако во время движения звуковые волны, испускаемые сиреной вперед, будут располагаться ближе друг к другу, чем в случае, когда автомобиль не двигался, что и показано на рис. 2.


рис. 2
 Это происходит потому, что в процессе своего движения пожарный автомобиль «догоняет» испущенные ранее волны. Таким образом, наблюдатель у дороги заметит большее число волновых гребней, проходящих мимо него в единицу времени, и, следовательно, для него частота звука будет выше. С другой стороны, волны, распространяющиеся позади автомобиля, будут дальше отстоять друг от друга, поскольку автомобиль как бы «отрывается» от них. Следовательно, за единицу времени мимо наблюдателя, находящегося позади автомобиля, пройдет меньшее количество волновых гребней, и высота звука будет ниже.
 Чтобы вычислить изменение частоты, воспользуемся рис. 3 и 4. Будем считать, что в нашей системе отсчета воздух (или другая среда) покоится. На рис. 3 источник звука (например, сирена) находится в покое.


 Показаны два последовательных гребня волны, причем один из них только что испущен источником звука. Расстояние между этими гребнями равно длине волны λ . Если частота колебаний источника звука равна f , то время, прошедшее между испусканиями волновых гребней, равно Т = 1/f .
 На рис. 4 источник звука движется со скоростью v ист . За время Т (оно только что было определено) первый гребень волны пройдет расстояние d = vT , где v − скорость звуковой волны в воздухе (которая, конечно, будет одна и та же независимо от того, движется источник или нет). За это же время источник звука переместится на расстояние d ист = v ист Т . Тогда расстояние между последовательными гребнями волны, равное новой длине волны λ / , запишется в виде
λ / = d − d ист = (v − v ист)T = (v − v ист)/f,
поскольку Т= 1/f .
 Частота f / волны дается выражением
f / = v/λ / = vf/(v − v ист),
или

Источник звука приближается к покоящемуся наблюдателю.
 Поскольку знаменатель дроби меньше единицы, мы имеем f / > f . Например, если источник создает звук на частоте 400 Гц , когда он находится в покое, то, когда источник начинает двигаться в направлении к наблюдателю, стоящему на месте, со скоростью 30 м/с , последний услышит звук на частоте (при температуре 0 °С ) 440 Гц .
 Новая длина волны для источника, удаляющегося от наблюдателя со скоростью v ист , будет равна
λ / = d + d ист.
При этом частота f / дается выражением

Источник звука удаляется от покоящегося наблюдателя.
 Эффект Доплера возникает также в том случае, когда источник звука покоится (относительно среды, в которой распространяются звуковые волны), а наблюдатель движется. Если наблюдатель приближается к источнику звука, то он слышит звук большей высоты, нежели испускаемый источником. Если же наблюдатель удаляется от источника, то звук кажется ему ниже. Количественно изменение частоты здесь мало отличается от случая, когда движется источник, а наблюдатель покоится. В этом случае расстояние между гребнями волны (длина волны λ ) не изменяется, а изменяется скорость движения гребней относительно наблюдателя. Если наблюдатель приближается к источнику звука, то скорость волн относительно наблюдателя будет равна v / = v + v набл , где v − скорость распространения звука в воздухе (мы предполагаем, что воздух покоится), а v набл − скорость наблюдателя. Следовательно, новая частота будет равна
f / = v / /λ = (v + v набл)/λ,
или, поскольку λ = v/f ,

Наблюдатель приближается к покоящемуся источнику звука.
 В случае же, когда наблюдатель удаляется от источника звука, относительная скорость будет равна v / = v − v набл , и мы имеем

Наблюдатель удаляется от покоящегося источника звука.

Если звуковая волна отражается от движущегося препятствия, то частота отраженной волны из-за эффекта Доплера будет отличаться от частоты падающей волны.

Рассмотрим это на следующем примере .

Пример . Звуковая волна с частотой 5000 Гц испускается в направлении к телу, которое приближается к источнику звука со скоростью 3,30 м/с . Чему равна частота отраженной волны?

Решение .
 В этом случае эффект Доплеpa проявляется два раза.
 Во-первых, тело, к которому направлена звуковая волна, ведет себя как движущийся наблюдатель и «peгистрирует» звуковую волну на частоте

 Во-вторых, тело затем действует как вторичный источник звука (отраженного), который движется, так что частота отраженной звуковой волны будет равна


 Таким образом, доплеровский сдвиг частоты равен 100 Гц .

Если падающую и отраженную звуковые волны наложить одна на другую, то возникнет суперпозиция, а это приведет к биениям. Частота биений равна разности частот двух волн, и в рассмотренном выше примере она равнялась бы 100 Гц . Такое проявление эффекта Доплера широко используется в различных медицинских приборах, использующих, как правило, ультразвуковые волны в мегагерцевом диапазоне частот. Например, отраженные от красных кровяных телец ультразвуковые волны можно использовать для определения скорости кровотока. Аналогичным образом этот метод можно применять для обнаружения движения грудной клетки зародыша, а также для дистанционного контроля за сердцебиениями.
 Следует заметить, что эффект Доплера лежит также в основе метода обнаружения с помощью радара автомобилей, которые превышают предписываемую скорость движения, но в этом случае используются электромагнитные (радио) волны, а не звуковые.
 Точность соотношений (1 − 2) и (3 − 4) снижается, если v ист или v набл приближаются к скорости звука. Это связано с тем, что смещение частиц среды уже не будет пропорционально возвращающей силе, т.е. возникнут отклонения от закона Гука, так что большинство наших теоретических рассуждений потеряет силу.

Решите следующие задачи .
Задача 1 . Выведите общую формулу для изменения частоты звука f / за счет эффекта Доплера в случае, когда как источник, так и наблюдатель движутся.

Задача 2 . В нормальных условиях скорость потока крови в аорте приблизительно равна 0,28 м/с . Вдоль потока направляются ультразвуковые волны с частотой 4,20 МГц . Эти волны отражаются от красных кровяных телец. Какова будет частота наблюдаемых при этом биений? Считайте, что скорость этих волн равна 1,5 × 10 3 м/с , т.е. близка к скорости звука в воде.

Задача 3 . Эффект Доплера для ультразвуковых волн на частоте 1,8 МГц используется для контроля частоты сердцебиений зародыша. Наблюдаемая частота биений (максимальная) равна 600 Гц . Считая, что скорость распространения звука в ткани равна 1,5 × 10 3 м/с , вычислите максимальную скорость поверхности бьющегося сердца.

Задача 4 . Звук заводского гудка имеет частоту 650 Гц . Если дует северный ветер со скоростью 12,0 м/с , то звук какой частоты будет слышать покоящийся наблюдатель, находящийся а) к северу, б) к югу, в) к востоку и г) к западу от гудка? Звук какой частоты будет слышать велосипедист, приближающийся со скоростью 15 м/с к гудку д) с севера или е) с запада? Температура воздуха равна 20 °С .

Задача 5 . Свисток, совершающий колебания на частоте 500 Гц , движется по окружности радиусом 1 м , делая 3 оборота в секунду. Определите наибольшую и наименьшую частоту, воспринимаемую неподвижным наблюдателем, находящимся на расстоянии 5 м от центра окружности. Скорость звука в воздухе принять равной 340 м/с .