Что такое средняя статистическая величина. Московский государственный университет печати

  • Дата: 11.10.2019

Средняя величина является наиболее ценной с аналитической точ­ки зрения и универсальной формой выражения статистических пока­зателей. Наиболее распространенная средняя - средняя арифметичес­кая - обладает рядом математических свойств, которые могут быть использованы при ее расчете. В то же время при исчислении конкрет­ной средней всегда целесообразно опираться на ее логическую фор­мулу, представляющую собой отношение объема признака к объему совокупности. Для каждой средней существует только одно истинное исходное соотношение, для реализации которого, в зависимости от имеющихся данных, могут потребоваться различные формы средних. Однако во всех случаях, когда характер осредняемой величины под­разумевает наличие весов, нельзя вместо взвешенных формул сред­них использовать их невзвешенные формулы.

Средняя величина - это наиболее характерное для совокупности значение признака и распределенный равными долями между единицами совокупности раз­мер признака совокупности.

Признак, для которого рассчитывается средняя величи­на, носит название осредняемый .

Средняя величина - показатель, рассчитываемый сопоставлением абсолютных или относительных величин. Среднюю величину обозначают

Средняя величина отражает влияние всех факторов, влия­ющих на исследуемое явление, и является для них равнодей­ствующей. Другими словами, погашая индивидуальные откло­нения и устраняя влияние случаев, средняя величина, отражая общую меру результатов этого действия, выступает общей закономерностью изучаемого явления.

Условия применения средних величин:

Ø однородность исследуемой совокупности. Если некоторые подверженные влиянию случайного фактора элементы совокупности имеют значитель­но отличающиеся от остальных величины изуча­емого признака, то данные элементы повлияют на размер средней для данной совокупности. В этом случае средняя не будет выражать наиболее ти­пичную для совокупности величину признака. Если исследуемое явление неоднородно, требуется его разбивка на содержащие однородные элементы группы. В данном случае рассчитывают средние по группам - груп­повые средние, выражающие наиболее характерную вели­чину явления в каждой группе, а затем рассчитывается об­щая средняя величина для всех элементов, характеризующая явление в целом. Она рассчитывается как средняя из группо­вых средних, взвешенных по числу включенных в каждую группу элементов совокупности;

Ø достаточное количество единиц в совокупности;

Ø максимальное и минимальное значения признака в изучаемой совокупности.

Средняя величина (показатель) – это обобщенная количественная характеристика признака в систематической совокупности в конкретных условиях места и времени .

В статистике применяется следующие формы (виды) средних величин, называемых степенными и структурными:

Ø средняя арифметическая (простая и взвешенная);

простая

Общая теория статистики: конспект лекции Коник Нина Владимировна

2. Виды средних величин

2. Виды средних величин

В статистике используют различные виды средних величин, которые делятся на два больших класса:

1) степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадратиче-ская, средняя кубическая);

2) структурные средние (мода, медиана). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Мода и медиана определяются лишь структурой распределения. Поэтому их именуют структурными, позиционными средними. Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Самый распространенный вид средней – средняя арифметическая. Средней арифметической называется такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. В общем случае ее вычисление сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй – 7, третий – 4, четвертый – 10, пятый – 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз для определения средней выработки одного рабочего, следует применить формулу простой средней арифметической:

т. е. в нашем примере средняя выработка одного рабочего

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек, возраст которых варьируется от 18 до 22 лет, где x i – варианты осредняемого признака, f – частота, которая показывает, сколько раз встречается i-е значение в совокупности.

Применяя формулу средней арифметической взвешенной, получаем:

Для выбора средней арифметической взвешенной существует определенное правило: если имеется ряд данных по двум взаимосвязанным показателям, для одного из которых надо вычислить среднюю величину, и при этом известны численные значения знаменателя ее логической формулы, а значения числителя не известны, но могут быть найдены как произведение этих показателей, то средняя величина должна высчитываться по формуле средней арифметической взвешенной.

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысла и единственным обобщающим показателем может служить только другой вид средней – средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя не известны, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Если при использовании средней гармонической веса всех вариантов (f ;) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

где х – отдельные варианты;

n – число вариантов осредняемого признака.

Например простую среднюю гармоническую можно применить к скорости, если равны отрезки пути, пройденные с разной скоростью.

Любая средняя величины должна вычисляться так, чтобы при замене ею каждого варианта осредняемого признака не изменялась величина некоторого итогового, обобщающего показателя, который связан с осредняемым показателем. Так, при замене фактических скоростей на отдельных отрезках пути их средней величиной средней скоростью) не должно измениться общее расстояние.

Формула средней определяется характером (механизмом) взаимосвязи этого итогового показателя с осредняемым. Поэтому итоговый показатель, величина которого не должна изменяться при замене вариантов их средней величиной, называется определяющим показателем. Для вывода формулы средней нужно составить и решить уравнение, используя взаимосвязь осредняемого показателя с определяющим. Это уравнение строится путем замены вариантов осредняемого признака (показателя) их средней величиной.

Кроме средней арифметической и средней гармонической, в статистике используются и другие виды (формы) средней. Все они являются частными случаями степенной средней. Если рассчитывать все виды степенных средних величин для одних и тех же данных, то значения их окажутся одинаковыми, здесь действует правило мажорантности средних. С увеличением показателя степени средних увеличивается и сама средняя величина.

Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле:

Формула средней геометрической взвешенной имеет следующий вид:

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая – при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и исчисляется по формуле:

Средняя квадратическая взвешенная рассчитывается по другой формуле:

Средняя кубическая применяется при расчете с величинами кубических функций и исчисляется по формуле:

а средняя кубическая взвешенная:

Все рассмотренные выше средние величины могут быть представлены в виде общей формулы:

где x – средняя величина;

х – индивидуальное значение;

n – число единиц изучаемой совокупности;

k – показатель степени, определяющий вид средней.

При использовании одних и тех же исходных данных, чем больше k в общей формуле степенной средней, тем больше средняя величина. Из этого следует, что между величинами степенных средних существует закономерное соотношение:

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности, и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов. Поэтому, кроме рассмотренных средних, в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные (или описательные) средние – мода (Мо) и медиана (Ме).

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда, т. е. вариант, обладающий наибольшей частотой. Мода может применяться при определении магазинов, которые чаще посещаются, наиболее распространенной цены на какой-либо товар. Она показывает размер признака, свойственный значительной части совокупности, и определяется по формуле:

где х 0 – нижняя граница интервала;

h – величина интервала;

f m – частота интервала;

f m1 – частота предшествующего интервала;

f m+1 – частота следующего интервала.

Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака меньше медианы, у другой – больше ее. Медиана используется при изучении элемента, значение которого больше или равно или одновременно меньше или равно половине элементов ряда распределения. Медиана дает общее представление о том, где сосредоточены значения признака, иными словами, где находится их центр.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми обладает половина единиц совокупности. Задача нахождения медианы для дискретного вариационного ряда решается просто. Если всем единицам ряда придать порядковые номера, то порядковый номер медианного варианта определяется как (n+1) /2с нечетным числом членов п. Если же количество членов ряда является четным числом, то медианой будет являться среднее значение двух вариантов, имеющих порядковые номера n / 2 и n / 2 + 1.

При определении медианы в интервальных вариационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех частот ряда. Расчет медианы интервального вариационного ряда производится по формуле:

где х 0 – нижняя граница интервала;

h – величина интервала;

f m – частота интервала;

f– число членов ряда;

? m -1 – сумма накопленных членов ряда, предшествующих данному.

Наряду с медианой для более полной характеристики структуры изучаемой совокупности применяют и другие значения вариантов, занимающих в ранжированном ряду вполне определенное положение. К ним относятся квартили и децили. Квартили делят ряд по сумме частот на четыре равные части, а децили – на десять равных частей. Квартилей насчитывается три, а децилей – девять.

Медиана и мода в отличие от средней арифметической не погашают индивидуальных различий в значениях варьирующего признака и поэтому являются дополнительными и очень важными характеристиками статистической совокупности. На практике они часто используются вместо средней либо наряду с ней. Особенно целесообразно вычислять медиану и моду в тех случаях, когда изучаемая совокупность содержит некоторое количество единиц с очень большим или очень малым значением варьирующего признака. Эти не очень характерные для совокупности значения вариантов, влияя на величину средней арифметической, не влияют на значения медианы и моды, что делает последние очень ценными для экономико-статистического анализа показателями.

Из книги Золотой стандарт: теория, история, политика автора Коллектив авторов

И. М. Кулишер Краткая история денежного обращения от средних веков до нового времени Печатается по изданию: Кулишер И. М. История экономического быта Западной Европы. Челябинск: Социум, 2004. Т. I, с. 368-90; т. II, с.

Из книги Теория бухгалтерского учета: конспект лекций автора Дараева Юлия Анатольевна

1. Виды инвентаризации Инвентаризация – это проверка фактического наличия имущества предприятия. К имуществу предприятия, как правило, относятся: основные средства; нематериальные активы, прочие запасы, денежные средства, финансовые обязательства, отраженных в

Из книги Торговая система трейдера: фактор успеха автора Сафин Вениамин Ильтузарович

Глава 5 Создание торговых систем на основе скользящих средних 5.1. Введение О торговых системах, основанных на скользящих средних, написано почти в каждой книге по техническому анализу. И многие начинающие трейдеры пытаются работать на бирже, используя эти системы. Однако

Из книги Forex – это просто автора Каверина Ирина

Схождение-расхождение скользящих средних Схождение-расхождение скользящих средних (Moving Averages Convergence Divergence, MACD) представляет собой простой осциллятор от двух экспоненциально сглаженных скользящих средних. Изображается в виде линии (см. рис. 9.1).Чтобы четко обозначить

автора Щербина Лидия Владимировна

20. Назначение и виды статистических показателей и величин Различают два вида показателей экономиче–ского и социального развития общества: плановые и отчетные. Плановые показатели представляют со–бой определенные конкретные значения показате–лей. Отчетные

Из книги Общая теория статистики автора Щербина Лидия Владимировна

24. Виды средних величин В статистике используют различные виды сред–них величин, которые делятся на два больших класса:1) степенные средние (средняя гармоническая, сред–няя геометрическая, средняя арифметическая, средняя квадратическая, средняя кубическая);2)

Из книги Экономика предприятия: конспект лекций автора

4. Виды цен Ценовая система – единая упорядоченная совокупность различных видов цен, обслуживающих и регулирующих экономические отношения между различными участниками национального и мирового рынков.Дифференциация цен по отраслям и сферам обслуживания экономики

Из книги Экономика предприятия автора Душенькина Елена Алексеевна

31. Виды цен Ценовая система – совокупность различных видов цен, обслуживающих и регулирующих экономические отношения между различными участниками национального и мирового рынков.Дифференциация цен по отраслям и сферам обслуживания экономики строится на основе учета

автора Коник Нина Владимировна

1. Назначение и виды статистических показателей и величин Природа и содержание статистических показателей соответствуют тем экономическим и социальным явлениям и процессам, которые их отражают. Все экономические и социальные категории или понятия носят абстрактный

Из книги Общая теория статистики: конспект лекции автора Коник Нина Владимировна

2. Виды средних величин В статистике используют различные виды средних величин, которые делятся на два больших класса:1) степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадратиче-ская, средняя кубическая);2) структурные

автора

28. Виды относительных величин Рассмотрим следующие виды относительных величин.1. Относительная величина выполнения договорных обязательств – это показатель, характеризующий уровень выполнения предприятием своих обязательств, предусмотренных в договорах. Расчет

Из книги Теория статистики автора Бурханова Инесса Викторовна

29. Общая характеристика средних величин Средняя величина – это обобщающая характеристика единиц совокупности по какому-либо варьирующему признаку.Средняя величина – это один из распространенных приемов обобщений.Средние величины позволяют сравнивать уровни одного и

Из книги Теория статистики автора Бурханова Инесса Викторовна

30. Виды средних величин Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.В изучении средних величин применяются следующие показатели и

Из книги Теория статистики автора Бурханова Инесса Викторовна

44. Другие агрегатные индексы: индекс выполнения плана, среднеарифметический и среднегармонический индекс, индексысредних величин 1. Индекс выполнения плана. При его вычислении фактические данные сопоставляются с плановыми, причем весами индекса могут быть показатели

Из книги Недвижимость. Как ее рекламировать автора Назайкин Александр

Из книги Ключевые стратегические инструменты автора Эванс Воган

18. Сглаживание с помощью скользящих средних Инструмент«Жизнь похожа на американские горки, и поэтому просто катайся в ней», – напевал Ронан Китинг. Это утверждение относится, скорее всего, не только к жизни, но и к рынку. Там тоже надо иногда просто кататься.Когда

Тема 4

Основные вопросы: 1. Абсолютные статистические величины.

2. Виды абсолютных статистических величин.

3. Относительные величины.

4. Виды относительных величин.

5. Средняя величина. Виды средних величин.

6. Средняя арифметическая.

7. Средняя гармоническая.

8. Средняя геометрическая.

9. Средняя квадратическая и средняя кубическая.

10. Структурные средние.

11. Соотношения между средней арифметической, медианой и модой в статистических распределениях.

1. Абсолютные статистические величины. Чтобы отразить размер, объем явлений в статистике применяются абсолютные величины. Абсолютная величина (А.В.) получается в результате сводки статистического материала. А.В. выражаются в различных единицах измерения – натуральных, стоимостных (денежных), условных, трудовых.

1) Натуральные единицы измерения характеризуют величину и размер изучаемых явлений. Они выражаются в метрах, тоннах, литрах и т.д. Натуральные единицы можно суммировать только по однородным продуктам, нельзя сложить тонны стали с метрами ткани.

2) Стоимостные единицы применяются для оценки в стоимостном выражении многих статистических показателей: размер розничного товарооборота, ВВП, доходы населения и т.д.

3) Условные. В ряде случаев не все виды однородной продукции можно суммировать. Нельзя суммировать мыло (т.к. оно имеет различный процент жирности), топливо (различную калорийность) и т.д. У.е.и. применяют для учета однородной продукции различных разновидностей. Например, консервы выпускают в банках разной емкости. Поэтому их считают в тысячах условных банок. За одну условную банку принят вес продукции нетто 400 гр.

4) Трудовые единицы измерения – человеко-часы, человеко-дни и т.п. Используются для измерения трудовых ресурсов, затрат труда.

2. Виды абсолютных статистических величин. По способу выражения:

1) Индивидуальные – А.В., характеризующие размеры признака у отдельных единиц совокупности (например, зарплата отдельного работника, размер посевной площади конкретного фермерского хозяйства). Они получаются непосредственно в процессе статистического наблюдения и фиксируются в первичных учетных документах.

2) Суммарные А.В. – выражают величину того или иного признака всех единиц изучаемой совокупности или отдельных ее групп и получаются в результате суммирования индивидуальных А.В. (зарплата по предприятию).

А.В. всегда являются именованными числами. Они выражаются в определенных единицах измерения (кг, шт., тонны, га, м и т.п.).

В практической деятельности при отсутствии необходимой информации абсолютные величины получают расчетным путем, например на основе балансовой увязки:


где – запас на начало периода; – поступление за период; – расход за период; – запас на конец периода.

Отсюда .

Абсолютные статистические величины широко используют в анализе и прогнозировании состояния и развития явлений общественной жизни.

На основе А.В. исчисляют относительные величины.

3. Относительные величины (О.В.). Получаются в результате деления одной величины на другую. Числитель отношения – сравниваемая величина, ее называют текущей или отчетной величиной, знаменатель отношения называют базой сравнения или основанием сравнения.

Если база сравнения равна 100, то О.В. выражена в (%), если база сравнения 1 000 – промилле (‰), 10 000 – в продецимилле (‰0).

Сопоставляемые величины могут быть одноименными и разноименными. Если сравнивают одноименные величины, то их выражают в коэффициентах, процентах, промилле. При сопоставлении разноименных величин наименования относительных величин образуется от наименований сравниваемых величин: плотность населения – чел./км 2 , урожайность – ц/га и т.д.

4. Виды относительных величин (показателей).

1) планового задания – ОППЗ;

2) выполнения плана – ОПВП;

3) динамики (ОПД);

4) структуры (d);

5) интенсивности и уровня развития;

6) координации (ОПК);

7) сравнения (ОПС).

1) ОППЗ – служит для планирования. Вычисляется отношением уровня, запланированного на предстоящий период (П), к уровню показателя, достигнутому в предыдущем периоде ():

2) ОПВП – служит для сравнения реально достигнутых результатов с намеченными ранее.

,

– достигнутый уровень в текущем периоде; – план на этот же период.

3) ОПД – характеризует изменение уровня какого-либо экономического явления во времени и получается делением уровня признака за определенный период или момент времени на уровень этого же показателя в предыдущий период или момент времени. По другому, их называют – темпом роста. Вычисляются в коэффициентах или %.

4) d – характеризуют состав изучаемой совокупности, доли, удельный вес элементов совокупности в общем итоге и представляют собой отношение части единиц совокупности () ко всей численности единиц совокупности ():

5) Интенсивности и уровня развития – характеризуют степень насыщенности или развития данного явления в определенной среде, являются именованными и могут выражаться в кратных отношениях, %, ‰ и др. формах.

6) ОПК – характеризует отношение частей изучаемой совокупности к одной из них, принятой за базу сравнения. Они показывают, во сколько раз одна часть совокупности больше другой, или сколько единиц одной части приходится на 1, 10, 100, 1000 единиц другой части. Эти относительные величины могут быть исчислены как по абсолютным показателям, так и по показателям структуры.

7) ОПС – характеризуют отношения одноименных абсолютных или относительных показателей, соответствующих одному и тому же периоду или моменту времени, но относящиеся к различным объектам или территориям.

5. Средняя величина. Виды средних величин.

Определение : Средней величиной в статистике называется обобщающий показатель, характеризующий типичный уровень явления в конкретных условиях места и времени, отражающий величину варьирующего признака в расчете на единицу качественно однородной совокупности.

Виды средних величин: 1) арифметическая;

2) гармоническая;

3) геометрическая;

4) квадратическая;

5) кубическая.

Все эти средние относятся к классу степенных средних и объединяются общей формулой (при различных значениях m ):

,

где – среднее значение исследуемого явления;

– показатель степени средней;

– текущее значение осредняемого признака;

– число признаков.

В зависимости от значения показателя степени m различают следующие виды степенных средних:

при – средняя гармоническая ;

при – средняя геометрическая ;

при – средняя арифметическая ;

при – средняя квадратическая ;

при – средняя кубическая .

При использовании одних и тех же данных, чем больше m, тем больше значение средней величины:

– правило мажорантности средних.

Вид средней выбирается в каждом случае путем конкретного анализа изучаемой совокупности, он определяется материальным содержанием изучаемого явления.

6. Средняя арифметическая.

а) Средняя арифметическая простая применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц (наиболее распространенная).

Часто приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним), т.е. среднюю из средних. Так, например, средняя продолжительность жизни граждан страны представляет собой среднее из средних продолжительностей жизни по отдельным регионам данной страны.

Среднее из средних величин вычисляется по следующей формуле, считая :

,

где – число единиц в каждой группе.

Свойства средних величин:

1. Если все индивидуальные значения признака уменьшить (увеличить) в раз, тогда среднее значение нового признака соответственно уменьшится (увеличится) в раз.

;

2. Если варианты осредняемого признака уменьшить (увеличить) на , то средняя арифметическая соответственно уменьшится (увеличится) на то же число .

3. Если веса всех усредняемых вариантов уменьшится (увеличится) в раз, то средняя арифметическая не изменится.

4. Сумма отклонений от средней равна нулю.

7. Средняя гармоническая. Применяется в тех случаях, когда не известны частоты по отдельным вариантам x совокупности, а представлено их произведение . Обозначим это произведение через , тогда получим формулу средней гармонической взвешенной:

.

является преобразованной формой и тождественна ей. Вместо всегда можно рассчитать , но для этого нужно определить веса отдельных значений признака, скрытые в весах средней гармонической.

В тех случаях, когда вес каждого варианта равен единице, применяется средняя гармоническая простая :

,

где – отдельные варианты обратного признака, встречающиеся по одному разу,

– число вариантов.

Если по двум частям совокупности (численности и ) даны средние гармонические, то общую среднюю гармоническую по всей совокупности можно представить как взвешенную гармоническую среднюю из групповых средних:

.

8. Средняя геометрическая. Применяется, когда индивидуальные значения признака характеризует средний коэффициент роста (представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики). Вычисляется по формуле:

– число вариантов; – знак произведения.

Наиболее широко применяется для определения средних темпов изменения в рядах динамики, а также в рядах распределения (рассмотрим ее применение позднее).

9. Средняя квадратическая и средняя кубическая.

– применяется для вычисления средней величины стороны n квадратных участков, диаметров труб и т.п.

Определение: Мода ()– значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – вариант, имеющий наибольшую частоту.

Широко используется при изучении покупательского спроса, регистрации цен и т.п.

Формула для вычисления:

,

где – нижняя граница модального интервала;

– частоты в модальном, предыдущем и следующем за модальным интервалом (соответственно).

Модальный интервал определяется по наибольшей частоте.

Определение: Медиана – варианта, которая находится в середине вариационного ряда.

Делит ряд на две равные (по числу единиц) части – со значениями признака меньше медианы и со значением признака больше медианы.

Мода и медиана, как правило, отличаются от значения средней, совпадая с ней только в случае симметричного распределения частот вариационного ряда. Поэтому соотношение моды, медианы и средней арифметической позволяет оценить асимметрию ряда распределения.

Мода и медиана, как правило, являются дополнительными к средней характеристиками совокупности и используются в математической статистике для анализа формы рядов распределения.

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные (по числу единиц) части – квартили, на пять – квинтили, на десять – децили, на сто – перцентили.

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623-1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648-1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796-1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX-XX вв.

Известный русский статистик Ю. Э. Янсон (1835-1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837-1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу

с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890-1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.

В 30-е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.

Виднейшие представители итальянской школы Р. Бенини (1862-1956 гг.) и К. Джини (1884-1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.

В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.

К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».

Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.

Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.

Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.

Средняя величина абстрактна, так как характеризует значение абстрактной единицы.

От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.

Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.

Средняя отображает что–то общее, которое складывается в определенном единичном объекте.

Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.

Отклонение индивидуального от общего – проявление процесса развития.

В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.

Объективное свойство статистического процесса или явления отражает средняя величина.

Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.

Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.

Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.

В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.

Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

2. Виды средних величин

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как x 1 , х 2 , x 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.


Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом:


гдех i – варианты,

f i – частоты или веса.

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если х i = y i +z i , то


Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:


Это правило демонстрирует, что средняя является равнодействующей.

3) если все варианты ряда увеличить или уменьшить на одно и тоже число?, то средняя увеличится или уменьшится на это же число?:


4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:


5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.

Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.


Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.

Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:



Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.

Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f , а известно произведение = z

Когда произведения одинаковы или равны единицы (m = 1) применяется средняя гармоническая простая, вычисляемая по формуле:


где х – отдельные варианты;

n – число.

Средняя геометрическая

Если имеется n коэффициентов роста, то формула среднего коэффициента:


Это формула средней геометрической.

Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.

Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.


Средняя квадратическая взвешенная равна:

3. Структурные средние величины. Мода и медиана

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (М о ) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.


где х о – нижняя граница модального интервала;

h – величина модального интервала;

f m – частота модального интервала;

f т -1 – частота интервала, предшествующего модальному;

f m +1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (M e – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:


где х ме – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f/2 – полусумма частот ряда;

S Me -1 – сумма накопленных частот, предшествующих медианному интервалу;

f Me – частота медианного интервала.

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.

Признаки единиц статистических совокупностей различны по своему значению, например, заработная плата рабочих одной профессии какого-либо предприятия не одинакова за один и тот же период времени, различны цены на рынке на одинаковую продукцию, урожайность сельскохозяйственных культур в хозяйствах района и т.д. Поэтому, чтобы определить значение признака, характерное для всей изучаемой совокупности единиц, рассчитывают средние величины.
Средняя величина это обобщающая характеристика множества индивидуальных значений некоторого количественного признака.

Совокупность, изучаемая по количественному признаку, состоит из индивидуальных значений; на них оказывают влияние, как общие причины, так и индивидуальные условия. В среднем значении отклонения, характерные для индивидуальных значений, погашаются. Средняя, являясь функцией множества индивидуальных значений, представляет одним значением всю совокупность и отражает то общее, что присуще всем ее единицам.

Средняя, рассчитываемая для совокупностей, состоящих из качественно однородных единиц, называется типической средней . Например, можно рассчитать среднемесячную заработную плату работника той или иной профессиональной группы (шахтера, врача библиотекаря). Разумеется, уровни месячной заработной платы шахтеров в силу различия их квалификации, стажа работы, отработанного за месяц времени и многих других факторов отличаются друг от друга, так и от уровня средней заработной платы. Однако в среднем уровне отражены основные факторы, которые влияют на уровень заработной платы, и взаимно погашаются различия, которые возникают вследствие индивидуальных особенностей работника. Средняя заработная плата отражает типичный уровень оплаты труда для данного вида работников. Получению типической средней должен предшествовать анализ того, насколько данная совокупность качественно однородна. Если совокупность состоит их отдельных частей, следует разбить ее на типические группы (средняя температура по больнице).

Средние величины, используемые в качестве характеристик для неоднородных совокупностей, называются системными средними . Например, средняя величина валового внутреннего продукта (ВВП) на душу населения, средняя величина потребления различных групп товаров на человека и другие подобные величины, представляющие обобщающие характеристики государства как единой экономической системы.

Средняя должна вычисляться для совокупностей, состоящих из достаточно большого числа единиц. Соблюдение этого условия необходимо для того, чтобы вошел в силу закон больших чисел, в результате действия которого случайные отклонения индивидуальных величин от общей тенденции взаимно погашаются.

Виды средних и способы их вычисления

Выбор вида средней определяется экономическим содержанием определенного показателя и исходных данных. Однако любая средняя величина должна вычисляться так, чтобы при замене ею каждой варианты осредняемого признака не изменился итоговый, обобщающий, или, как его принято называть, определяющий показатель , который связан с осредняемым показателем. Например, при замене фактических скоростей на отдельных отрезках пути их средней скоростью не должно измениться общее расстояние, пройденное транспортным средством за одно и тоже время; при замене фактических заработных плат отдельных работников предприятия средней заработной платой не должен измениться фонд заработной платы. Следовательно, в каждом конкретном случае в зависимости от характера имеющихся данных, существует только одно истинное среднее значение показателя, адекватное свойствам и сущности изучаемого социально-экономического явления.
Наиболее часто применяются средняя арифметическая, средняя гармоническая, средняя геометрическая, средняя квадратическая и средняя кубическая.
Перечисленные средние относятся к классу степенных средних и объединяются общей формулой:
,
где – среднее значение исследуемого признака;
m – показатель степени средней;
– текущее значение (варианта) осредняемого признака;
n – число признаков.
В зависимости от значения показателя степени m различают следующие виды степенных средних:
при m = -1 – средняя гармоническая ;
при m = 0 – средняя геометрическая ;
при m = 1 – средняя арифметическая ;
при m = 2 – средняя квадратическая ;
при m = 3 – средняя кубическая .
При использовании одних и тех же исходных данных, чем больше показатель степени m в вышеприведенной формуле, тем больше значение средней величины:
.
Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется правилом мажорантности средних .
Каждая из отмеченных средних может приобретать две формы: простую и взвешенную .
Простая форма средней применяется, когда средняя вычисляется по первичным (несгруппированными) данным. Взвешенная форма – при расчете средней по вторичным (сгруппированным) данным.

Средняя арифметическая

Средняя арифметическая применяется, когда объем совокупности представляет собой сумму всех индивидуальных значений варьирующего признака. Следует отметить, что если вид средней величины не указывается, подразумевается средняя арифметическая. Ее логическая формула имеет вид:

Средняя арифметическая простая рассчитывается по несгруппированным данным по формуле:
или ,
где – отдельные значения признака;
j – порядковый номер единицы наблюдения, которая характеризуется значением ;
N – число единиц наблюдения (объем совокупности).
Пример. В лекции «Сводка и группировка статистических данных» рассматривались результаты наблюдения стажа работы бригады из 10 человек. Рассчитаем средний стаж работы рабочих бригады. 5, 3, 5, 4, 3, 4, 5, 4, 2, 4.

По формуле средней арифметической простой вычисляются также средние в хронологическом ряду , если интервалы времени, за которое представлены значения признака, равны.
Пример. Объем реализованной продукции за первый квартал составил 47 ден. ед., за второй 54, за третий 65 и за четвертый 58 ден. ед. Среднеквартальный оборот составляет (47+54+65+58)/4 = 56 ден. ед.
Если в хронологическом ряду приведены моментные показатели, то при вычислении средней они заменяются полусуммами значений на начало и конец периода.
Если моментов больше двух и интервалы между ними равны, то средняя вычисляется по формуле средней хронологической

,
где n- число моментов времени
В случае, когда данные сгруппированы по значениям признака (т. е. построен дискретный вариационный ряд распределения) средняя арифметическая взвешенная рассчитывается с использовании либо частот , либо частостей наблюдения конкретных значений признака , число которых (k) значительно меньше числа наблюдений (N) .
,
,
где k – количество групп вариационного ряда,
i – номер группы вариационного ряда.
Поскольку , а , получаем формулы, используемые для практических расчетов:
и
Пример. Рассчитаем средний стаж рабочих бригад по сгруппированному ряду.
а) с использованием частот:

б) с использованием частостей:

В случае, когда данные сгруппированы по интервалам , т.е. представлены в виде интервальных рядов распределения, при расчете средней арифметической в качестве значения признака принимают середину интервала, исходя из предположения о равномерном распределении единиц совокупности на данном интервале. Расчет ведется по формулам:
и
где - середина интервала: ,
где и – нижняя и верхняя границы интервалов (при условии, что верхняя граница данного интервала совпадает с нижней границей следующего интервала).

Пример. Рассчитаем среднюю арифметическую интервального вариационного ряда, построенного по результатам исследования годовой заработной платы 30 рабочих (см. лекцию «Сводка и группировка статистических данных»).
Таблица 1 – Интервальный вариационный ряд распределения.

Интервалы, грн.

Частота, чел.

Частость,

Середина интервала,

600-700
700-800
800-900
900-1000
1000-1100
1100-1200

3
6
8
9
3
1

0,10
0,20
0,267
0,30
0,10
0,033

(600+700):2=650
(700+800):2=750
850
950
1050
1150

1950
4500
6800
8550
3150
1150

65
150
226,95
285
105
37,95

грн. или грн.
Средние арифметические, вычисленные на основе исходных данных и интервальных вариационных рядов, могут не совпадать из-за неравномерности распределения значений признака внутри интервалов. В этом случае для более точного вычисления средней арифметической взвешенной следует использовать не средины интервалов, а средние арифметические простые, рассчитанные для каждой группы (групповые средние ). Средняя, вычисленная по групповым средним с использованием взвешенной формулы расчета, называется общей средней .
Средняя арифметическая обладает рядом свойств.
1. Сумма отклонений вариант от средней равна нулю:
.
2. Если все значения вариант увеличиваются или уменьшаются на величину А, то и средняя величина увеличивается или уменьшается на ту же величину А:

3. Если каждую варианту увеличить или уменьшить в В раз, то средняя величина также увеличится или уменьшатся в то же количество раз:
или
4. Сумма произведений вариант на частоты равна произведению средней величины на сумму частот:

5. Если все частоты разделить или умножить на какое-либо число, то средняя арифметическая не изменится:

6) если во всех интервалах частоты равны друг другу, то средняя арифметическая взвешенная равна простой средней арифметической:
,
где k – количество групп вариационного ряда.

Использование свойств средней позволяет упростить ее вычисление.
Допустим, что все варианты (х) сначала уменьшены на одно и то же число А, а затем уменьшены в В раз. Наибольшее упрощение достигается, когда в качестве А выбирается значение середины интервала, обладающего наибольшей частотой, а в качестве В – величина интервала (для рядов с одинаковыми интервалами). Величина А называется началом отсчета, поэтому этот метод вычисления средней называется спосо бом отсчета от условного нуля или способом моментов .
После такого преобразования получим новый вариационный ряд распределения, варианты которого равны . Их средняя арифметическая, называемая моментом первого порядка, выражаетсяформулой и согласно второго и третьего свойств средней арифметической равна средней из первоначальных вариант, уменьшенной сначала на А, а потом в В раз, т. е. .
Для получения действительной средней (средней первоначального ряда)нужно момент первого порядка умножить на В и прибавить А:

Расчет средней арифметической по способу моментов иллюстрируется данными табл. 2.
Таблица 2 – Распределение работников цеха предприятия по стажу работы


Стаж работников, лет

Количество работников

Середина интервала

0 – 5
5 – 10
10 – 15
15 – 20
20 – 25
25 – 30

12
16
23
28
17
14

2,5
7,5
12,7
17,5
22,5
27,5

15
-10
-5
0
5
10

3
-2
-1
0
1
2

36
-32
-23
0
17
28

Находим момент первого порядка . Затем, зная, что А=17,5, а В=5, вычисляем средний стаж работы работников цеха:
лет

Средняя гармоническая
Как было показано выше, средняя арифметическая применяется для расчета среднего значения признака в тех случаях, когда известны его варианты x и их частоты f.
Если статистическая информация не содержит частот f по отдельным вариантам x совокупности, а представлена как их произведение , применяется формула средней гармонической взвешенной . Чтобы вычислить среднюю, обозначим , откуда . Подставив эти выражения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:
,
где - объем (вес) значений признака показателя в интервале с номером i (i=1,2, …, k).

Таким образом, средняя гармоническая применяется в тех случаях, когда суммированию подлежат не сами варианты, а обратные им величины: .
В тех случаях, когда вес каждой варианты равен единице, т.е. индивидуальные значения обратного признака встречаются по одному разу, применяется средняя гармоническая простая :
,
где – отдельные варианты обратного признака, встречающиеся по одному разу;
N – число вариант.
Если по двум частям совокупности численностью и имеются средние гармонические, то общая средняя по всей совокупности рассчитывается по формуле:

и называется взвешенной гармонической средней из групповых средних .

Пример. В ходе торгов на валютной бирже за первый час работы заключены три сделки. Данные о сумме продажи гривны и курсе гривны по отношению к доллару США приведены в табл. 3 (графы 2 и 3). Определить средний курс гривны по отношению к доллару США за первый час торгов.
Таблица 3 – Данные о ходе торгов на валютной бирже

Средний курс доллара определяется отношением суммы проданных в ходе всех сделок гривен к сумме приобретенных в результате этих же сделок долларов. Итоговая сумма продажи гривны известна из графы 2 таблицы, а количество купленных в каждой сделке долларов определяется делением суммы продажи гривны к ее курсу (графа 4). Всего в ходе трех сделок куплено 22 млн. дол. Значит, средний курс гривны за один доллар составил
.
Полученное значение является реальным, т.к. замена им фактических курсов гривны в сделках не изменит итоговой суммы продаж гривны, выступающей в качестве определяющего показателя : млн. грн.
Если бы для расчета была использована средняя арифметическая, т.е. гривны, то по обменному курсу на покупку 22 млн. дол. нужно было бы затратить 110,66 млн. грн., что не соответствует действительности.

Средняя геометрическая
Средняя геометрическая используется для анализа динамики явлений и позволяет определить средний коэффициент роста. При расчете средней геометрической индивидуальные значения признака представляют собой относительные показатели динамики, построенные в виде цепных величин, как отношения каждого уровня к предыдущему.
Средняя геометрическая простая рассчитывается по формуле:
,
где – знак произведения,
N – число осредняемых величин.
Пример. Количество зарегистрированных преступлений за 4 года возросло в 1,57 раза, в т. ч. за 1-й – в 1,08 раза, за 2-й – в 1,1 раза, за 3-й – в 1,18 и за 4-й – в 1,12 раза. Тогда среднегодовой темп роста количества преступлений составляет: , т.е. число зарегистрированных преступлений ежегодно росло в среднем на 12%.

1,8
-0,8
0,2
1,0
1,4

1
3
4
1
1

3,24
0,64
0,04
1
1,96

3,24
1,92
0,16
1
1,96

Для расчета средней квадратической взвешенной определяем и заносим в таблицу и . Тогда средняя величина отклонений длины изделий от заданной нормы равна:

Средняя арифметическая в данном случае была бы непригодна, т.к. в результате мы получили бы нулевое отклонение.
Применение средней квадратической будет рассмотрено далее в показателях вариации.