Обратный транспорт холестерина. Хороший, плохой, злой холестерин. Чем может помочь фармакология

  • Дата: 04.07.2020

СИНТЕЗ ХОЛЕСТЕРИНА

Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин - эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина - ГМГ-редуктаза (бета-гидрокси, бета-метил, глутарил-КоА редуктаза). Этот фермент ингибируется по принципу отрицательной обратной связи конечным продуктом - холестерином.

ТРАНСПОРТ ХОЛЕСТЕРИНА.

Пищевой холестерин транспортируется хиломикронами и попадает в печень. Поэтому печень является для тканей источником и пищевого холестерина (попавшего туда в составе хиломикронов), и эндогенного холестерина.

В печени синтезируются и затем попадают в кровь ЛОНП - липопротеины очень низкой плотности (состоят на 75% из холестерина), а также ЛНП - липопротеины низкой плотности(в их составе есть апобелок апоВ 100 .

Почти во всех клетках имеются рецепторы для апоВ 100 . Поэтому ЛНП фиксируются на поверхности клеток. При этом наблюдается переход холестерина в клеточные мембраны. Поэтому ЛНП способны снабжать холестерином клетки тканей.

Помимо этого, происходит и освобождение холестерина из тканей и транспорт его в печень. Транспортируют холестерин из тканей в печень липопротеины высокой плотности (ЛВП). Они содержат очень мало липидов и много белка. Синтез ЛВП протекает в печени. Частицы ЛВП имеют форму диска, и в их составе находятся апобелки апоА, апоС и апоЕ . В кровеносном русле к ЛНП присоединяется белок-фермент лецитинхолестеринацилтрансфераза (ЛХАТ) (смотрите рисунок).

АпоС и апоЕ могут переходить от ЛВП на хиломикроны или ЛОНП. Поэтому ЛВП являются донорами апоЕ и апоС. АпоА является активатором ЛХАТ.

ЛХАТ катализирует следующую реакцию:

Это реакция переноса жирной кислоты из положения R 2 на холестерин.

Реакция является очень важной, потому что образующийся эфир холестерина является очень гидрофобным веществом и сразу переходит в ядро ЛВП - так при контакте с мембранами клеток ЛВП удаляют из них избыток холестерина. Дальше ЛВП идут в печень, там разрушаются, и избыток холестерина удаляется из организма.

Нарушение соотношения между количеством ЛНП, ЛОНП и ЛВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозу. Поэтому ЛНП называют атерогенными липопротеинами, а ЛВП - антиатерогенными липопротеинами. При наследственном дефиците ЛВП наблюдаются ранние формы атеросклероза.



82 Холестерин может быть синтезирован в каждой эукариотической клетке, но преимущественно в печени. Протекает из ацетил-КоА,с участием ферментов ЭПР и гиалоплазмы. Состоит из 3 этапов:1)образование мемалоновой к-ты из ацетил КоА 2)синтез из мимолоновой к-ты активного изопрена с конденсацией его в скволен 3) превращение скволена в холестерин. ЛПВП собирают излишек холестерина из ткани, этерифицирует его и передает его ЛПОНП и хиломикронам (ХМ). Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь выводимый холест. поступает в печень и экскретируется с желчью в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи реабсорбируется из кишечно-печеночной регуляции. Клеточные рецепторы ЛПНП взаимодействуют с лигандом, после чего он захватывается клетку путем эндоцитоза и в лизосомах распадается, эфиры холестерина при этом гидролизуются. Свободный холестерин ингибирует ГМГ-КоА-редуктазу, синтез холестерина деново способствует образованию эфиров холестерина. При повышении концентрации холестерина уменьшается кол-во рецепторов ЛПНП. Концентрация холестерина в крови сильно зависит от наследственных и негативных факторов. Повышение уровня свободных и жирных кислот в плазме крови приводит к усилению секреции печени ЛПОНП и соответственно поступлению дополнительного кол-ва ТАГ и холестерина в кровоток. Факторы изм-я свободных жирных кислот: эмоциональный стресс, никотин, злоупотребление кофе, прием пищи с большими перерывами и в больших кол.

№83 Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь холестерин, кот.выводится из организма поступает в печень и экскретируется с желчью либо в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи. реабсорбируется из кишечно-печеночной регуляции. Желч. к-ты синтезир в печени из холестерола.



Первая реакция синтеза – образ. 7-а-гидроксилаза, ингибируется конечным продуктом желчн к-тами.и Послед р-ии синтеза приводят к формированию 2 видов желчн. к-т: холевой и хенодезоксихолевой. Коньюгирование – присоединение ионизированных молекул глицина или таурина к карбоксильной группе желчн. к-т. Коньюгеция происходит в Кл печени и начинается с образования активнформыцжелчн. к-т – производных КоА. затем рписоединяется таурин или глицин, в рез-те образ. 4 варианта коньюгатов: таурохолевая или гликохенодезоксихолевая, гликохолевая к-ты. Желчнокаменная болезнь – паталогический процесс при котором в желчном пузыре образуются камни, основу которых составляет холестерол. У большенства больных желчнокаменной болезнью активность ГМГ-КоА-редуктазы повышена, следовательно увеличен синтез холестерола, а активность 7-альфа-гидроксилазы снижены. В результате синтез холестерола увеличен, а синтез желчных к-т из него замедлен.если эти пропорции нарушены, то холестерол начинает осаждаться в желчном пузыре. образуя в начале вязкий осадок, кот. постеп-но становится более твердым.

Лечение желчнокаменной болезни . В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолиевую кислоту. Попадая в желчный пузырь, эта желчная к-та постепенно растворяет осадок холестерола

Билет 28

1.Особенности микросомального окисления, его биологическая роль. ЦитохромР 450

Микросомальное окисление. В мембран гладких ЭПС а также в митохондриях мембран некоторых органов есть окислительная система которая катализирует гидроксилирование большого числа разных субстратов. Эта окислительная система состоит из 2 цепей окислен НАДФ зависимого и НАД зависимого,НАДФ зависимая монооксидазная цепь состоит из вос-ого НАДФ,флавопротеида с коферментом ФАД и цитохрома Р450. НАД Н зависим цепь окисления содержит флавопротеид и цитохром В5. обе цепи могут обмениваться и при выделении эндоплазматического ретикулума из Кл мембран распад-ся на части, каждая из которых образует замкнутый пузырёк-микросому. ЦР450,как и все цитохромы относится к гемопротеидам,а белковая часть представлен одной полипептидной цепью,М=50тыс.способен образовывать комплекс с СО2 –имеет максимальное поглащение при 450нм.окисление ксенобиотиковосуществл с различ скоростью извест индукции и ингибиторы микросомальных систем окисления. Скорость окисления тех или иных в-в может ограничев-сяконкуренц за фермент комплекс микросом фракции. Так одновременное назначение 2 конкурирующ лек приводит к тому,что удаление одного из них может замед-ся и это приведёт к накоплению его в организме.Вдрслуч лек может индуцировать активацию сис-мы микросом оксидаз-ускорен устранение одновремен назначенных дрпр-ов.Индукторы микросом можно использовать и как лек ср-ва при необходимости активировать процессы обезвреживания эндоген метаболитов. Помимо реакций детоксикац ксенобиотиков система микросомального окисления может вызывать токсификацию исходно инертных в-в.

Цитохром Р450 – гемопротеин, содержит простетичесую группу – гем, и имеет участки связывания для О2 и субстрата (ксенобиотика). Молекулярный О2 в триплетном состоянии инертен и не способен взаимодействовать с орган соединениями. Чтобы сделать О2реакционоспособным необходимо его превратить в синглетный, используя ферментные системы его восстановления (моноксигеназная система).

2.Судьба холестерина в организме. .

ЛПВП собирают излишек холестерина из ткани, этерифицирует его и передает его ЛПОНП и хиломикронам (ХМ). Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь холестерин, кот.выводится из организма поступает в печень и экскретируется с желчью либо в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи. реабсорбируется из кишечно-печеночной регуляции. Желч. к-ты синтезир в печени из холестерола. В орг-ме за сутки синтезируется200-600 мг желчн. к-т. Первая реакция синтеза – образ. 7-а-гидроксилаза, ингибируется конечным продуктом желчн к-тами.и Послед р-ии синтеза приводят к формированию 2 видов желчн. к-т: холевой и хенодезоксихолевой. Коньюгирование – присоединение ионизированных молекул глицина или таурина к карбоксильной группе желчн. к-т. Коньюгеция происходит в Кл печени и начинается с образования активнформыцжелчн. к-т – производных КоА. затем рписоединяется таурин или глицин, в рез-те образ. 4 варианта коньюгатов: таурохолевая или гликохенодезоксихолевая, гликохолевая к-ты. Желчнокаменная болезнь – паталогический процесс при котором в желчном пузыре образуются камни, основу которых составляет холестерол. У большенства больных желчнокаменной болезнью активность ГМГ-КоА-редуктазы повышена, следовательно увеличен синтез холестерола, а активность 7-альфа-гидроксилазы снижены. В результате синтез холестерола увеличен, а синтез желчных к-т из него замедлен.если эти пропорции нарушены, то холестерол начинает осаждаться в желчном пузыре. образуя в начале вязкий осадок, кот. постеп-но становится более твердым. Холестериновые камини обычно белого цвета, а смешанные камни – коричневого цвета разных оттенков. Лечение желчнокаменной болезни. В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолиевую кислоту. Попадая в желчный пузырь, эта желчная к-та постепенно растворяет осадок холестерола, однако это медленный процесс, требующий несколько месяцев.структурная основа холестерола не может быть расщеплена до СО2 и воды, поэтому осн. кол-во выводится только в виде желч. к-т. Некоторое кол-во желч. к-т выделяется в неизменном виде, я часть подвергается действию ферментов бактерий в кишечнике. Часть молекул холестерола в кишечнике под действием ферментов бактерий восстанавливается по двойной связи, образуя два типа молекул – холестанол, копростанол, выводимые с фекалиями. В сутки из организма выводится от 1 до 1,3 г холостерола. основная часть удаляется с фекалиями

(рис.10). Основ-ное место синтеза - печень (до 80%), меньше синтезируется в кишечнике, коже и других тканях. С пищей поступает около 0,4 г холестерина, его источником является только пища животного происхождения. Холестерин необходим для построения всех мембран, в печени из него синтезируются желчные кислоты , в эндокринных железах - стероидные гормоны , в коже - витамин Д .

Рис.10 Холестерин

Сложный путь синтеза холестерина можно поделить на 3 этапа (рис.11). Первый этап заканчивается об-разованием мевалоновой кислоты. Источником для синтеза холестерина служит ацетил-КоА. Сна-чала из 3 молекул ацетил-КоА образуется ГМГ-КоА - общий предшественник в синтезе холесте-рина и кетоновых тел (однако реакции синтеза кетоновых тел происходят в митохондриях печени, а реакции синтеза холестерина - в цитозоле клеток). Затем ГМГ-КоА под действием ГМГ-КоА-редуктазы восстанавливается до мевалоновой кислоты с использованием 2 молекул НАДФН. Эта реакция является регуляторной в синтезе холестерина. Синтез холестерина тормозит сам холестерин, желчные кислоты и гормон голода глюкагон . Усиливается синтез холестерина при стрессе катехоламинами.

На втором этапе синтеза из 6 молекул мевалоновой кислоты образуется углеводород сквален, имеющий линейную структуру и состоящий из 30 атомов углерода.

На третьем этапе синтеза происходит циклизация углеводородной цепи и отщепление 3 атомов углерода, поэтому холестерин содержит 27 углеродных атомов. Холестерин является гидрофобной молекулой, поэтому транспортируется кровью только в составе разных липопротеинов .

Рис. 11 Синтез холестерина

Липопротеины - липид-белковые комплексы, предназначенные для транспорта нерастворимых в водных средах липидов по крови (рис.12). Снаружи липопротеины (ЛП) имеют гидрофильную оболочку, которая состоит из молекул белков и гидрофильных групп фосфолипидов. Внутри ЛП находятся гидрофобные части фосфолипидов, нерастворимые молекулы холестерина, его эфиров, молекулы жиров. ЛП делятся (по плотности и подвижности в электрическом поле) на 4 класса. Плотность ЛП определяется соотношением белков и липидов. Чем больше белка, тем больше плотность и тем меньше размер.

Рис.12. Строение липопротеидов

· 1 класс - хиломикроны (ХМ). Содержат 2% белка и 98% липидов , среди липидов преобладают экзогенные жиры, переносят экзогенные жиры от кишечника к органам и тканям, синтезируются в кишечнике, в крови присутствуют непостоянно - только после переваривания и всасывания жирной пищи.

· 2 класс - ЛП очень низкой плотности (ЛПОНП) или пре-b-ЛП. Белка в них 10%, липидов - 90%, среди липидов преобладают эндогенные жиры, транспортируют эндогенные жиры из печени в жировую ткань. Основное место синтеза - печень, небольшой вклад вносит тонкий кишечник.


· 3 класс - ЛП низкой плотности (ЛПНП) или b-ЛП. Белка в них 22% , липидов - 78%, среди липидов преобладает холестерин. Нагружают клетки холестерином, поэтому их на-зывают атерогенными, т.е. способствующими развитию атеросклероза (АС). Образуются непосредственно в плазме крови из ЛПОНП под действием фермента ЛП-липазы.

· 4 класс ЛП высокой плотности (ЛПВП) или a-ЛП. Белка и липидов содержат по 50%, среди липидов преобладают фосфолипиды и холестерин. Разгружают клетки от избытка холестерина, поэтому являются антиатерогенными, т.е. препятствующими развитию АС. Основное место их синтеза - печень, небольшой вклад вносит тонкий кишечник.

Транспорт холестерина липопротеинами.

Печень является основнымместом синтеза холестерина. Холестерин, синтезированный в печени, упаковывается в ЛПОНП и в их составе секрети-руется в кровь. В крови на них действует ЛП-липаза, под влиянием которой ЛПОНП переходят в ЛПНП. Таким образом, ЛПНП становятся основной транспортной формой холестерина, в которой он доставляется к тканям. ЛПНП могут попадать в клетки двумя путями: рецепторным и нерецепторным захватом. Большинство клеток на своей поверхности имеют рецепторы к ЛПНП. Образовавшийся комплекс рецептор-ЛПНП эндоцитозом попадает внутрь клетки, где распадается на рецептор и ЛПНП. Из ЛПНП при участии лизосомальных ферментов освобождается холестерин. Этот холестерин используется для обновления мембран, тормозит синтез холестерина данной клеткой, а также, если количество холестерина, поступающего в клетку, превышает ее потребность, то подавляется и синтез рецепторов к ЛПНП.

Это уменьшает поток холестерина из крови в клетки, таким образом, клетки, для которых характерен рецепторный захват ЛПНП, имеют механизм, который ограждает их от избытка холестерина. Для гладкомышечных клеток сосудов и макрофагов характерен нерецепторный захват ЛПНП из крови. В эти клетки ЛПНП, а значит, и холестерин попадают диффузно, то есть, чем их больше в крови, тем больше их попадает в эти клетки. Эти разновидности клеток не имеют механизма, который ограждал бы их от избытка холестерина. В «обратном транспорте холестерина» от клеток участвуют ЛПВП. Они забирают избыток холестерина из клеток и возвращают его обратно в печень. Холестерин выводится с калом в виде желчных кислот, часть холестерина в составе желчи попадает в кишечник и также выводится с калом.

В крови циркулирует 4 типа липопротеинов, различающихся содержанием в них холестерина, триглицеридов и апобелков. Они имеют разную относительную плотность и размеры. В зависимости от плотности и размеров различают следующие типы липопротеинов:

Хиломикроны - представляют собой богатые жиром частицы, поступающие в кровь из лимфы и транспортирующие пищевые триглецириды.

Они содержат около 2% апобелка, около 5% ХО, около 3% фосфолипидов и 90% триглицеридов. Хиломикроны являются самыми крупными липопротеиновыми частицами.

Хиломикроны синтезируются в эпителиальных клетках тонкой кишки, а их основная функция состоит в транспорте поступивших с пищей триглицеридов Триглецириды доставляются в жировую ткань, где они депонируются, и в мышцы, где используются в качестве источ н и ка э н ерги и.

Плазма крови здоровых людей, не принимавших пищу в течение 12-14 ч, хиломикронов не содержит или содержит ничтожное коли­чество.

Липопротеины низкой плотности (ЛПНП) - содержат около 25% апобелка, около 55% холестерина, около 10% фосфолипи­дов и 8-10% триглицеридов. ЛПНП - это ЛПОПН после того, как они доставят триглицериды в жировые и мышечные клетки. Они являются основными переносчиками синтезированного в организме холестерина ко всем тканям (рис. 5-7). Основной белок ЛПНП - апопротеин В (апоВ). Так как ЛПНП поставляют холес­терин, синтезированный в печени, в ткани и органы и тем самым способствуют развитию атеросклероза, то их называют атероген- ными липопротеинами.

гощаютея холестерином (рис. 5-8). Основной белок ЛПВГТ - апоп- ротеин А (апоА). Основная функция ЛПВП состоит в связывании и транспортировке излишка холестерина из всех непеченочных клеток обратно в печено для дальнейшего выделения в составе желчи. В связи со способностью связывать и удалять холестерин ЛПВП назы­вают антиатерогенными (препятствуют развитию атеросклероза).

Липопротеины низкой плотности (ЛПНП)

Фосфолипид ■ Холестериновый

Триглицерид

Незстерифи-

цированный

холестерин

Апопротеин В

Рис. 5-7. Строение ЛПНП

Апопротеин А

Рис. 5-8. Строение ЛПВП

Атерогенность холестерина в первую очередь определяется его принадлежностью к тому или иному классу липопротеинов. В этой связи особо следует выделить ЛПНП, которые наиболее атерогенны в силу следующих причин.

ЛПНП транспортируют около 70% всего холестерина плазмы и являются частицами, наиболее богатыми холестерином, содержание которого в них может достигать до 45-50%. Размеры частиц (диаметр 21-25 нм) позволяет ЛПНП наряду с ЛНВП проникать в стенку сосуда через эндотелиальный барьер, но, в отличие от ЛПВП, которые легко выводятся из стенки, способствуя выведению избытка холестерина, ЛПНП задерживаются в ней, поскольку обладают избирательным сродством к ее структурным компонентам. Последнее объясняется, с одной стороны, наличием в составе ЛПНП апоВ, а с другой - сущес­твованием на поверхности клеток стенки сосуда рецепторов к этому апопротеину. В силу указанных причин ЛППП являются основной транспортной формой холестерина для н\жд клеток сосудистой стен­ки, а при патологических условиях - источником накопления его в стенке сосуда. Именно поэтому при гиперлипопротеинемии, характе­ризующейся высоким уровнем холестерина ЛПНП, часто наблюдают­ся относительно ранний и резко выраженный атеросклероз и ИБС