Органические кислоты. Что такое органические кислоты? Для чего нужны органические кислоты

  • Дата: 20.06.2020

Поскольку по профессии я медик, то о роли кислот в жизни человека знаю достаточно много. Расскажу о тех кислотах, что встречаются в природе, а также о тех, что являются наиболее важными с медицинской точки зрения.

Где кислоты встречаются в природе

С ними мы сталкиваемся каждый день, например, дождевые капли лишь при первом взгляде кажутся чистыми. В действительности они содержат немало веществ в растворенном виде. Например, присутствует раствор угольной кислоты - углекислый газ, ну или серная кислота , что является последствием выброса выхлопных газов. Наша пища также богата кислотами, например, молочнокислая в кефире или угольная кислота в газировке. Благодаря соляной кислоте в нашем организме возможно пищеварение, в ходе которого происходит расщепление белков для синтеза особо важных элементов - аминокислот .

Органические кислоты

Однако наибольшую важность для жизни на нашей планете представляют органические кислоты , что играют особо важную роль в жизненном цикле. Основой человека являются клетки, состоящие из протеина и белков, поэтому нам необходимо питаться для восполнения запаса этих веществ. Однако для питания важны лишь те белки, что содержат аминокислоты . Но что такое аминокислоты? Существует свыше 165 видов, однако ценность для организма представляют лишь 20, что выступают в качестве основной структурной единицы каждой клетки.


Наше тело способно синтезировать всего 12 , естественно, при условии хорошего питания. Остальные 8 невозможно синтезировать, а только получить извне:

  • валин - поддерживает обмен соединений азота. Молочные продукты, а также грибы;
  • лизин - главное предназначение - усвоение, распределение кальция в организме. Мясо, а также хлебобулочные изделия;
  • фенилаланин - поддерживает деятельность мозга и циркуляцию крови. Присутствует в говядине, сое и твороге;
  • триптофан - один из ключевых компонентов сосудистой системы. Овес, бананы и финики;
  • треонин - играет роль в иммунной системе, регулирует работу печени. Молочные продукты, куриные яйца;
  • метионин - укрепление сердечной мышцы. Присутствует в бобах, яйцах;
  • лейцин - способствует восстановление костей и мышц. В достатке содержится в орехах и рыбе;
  • изолейцин - определяет уровень сахара в крови. Семена, печень, курица.

При дефиците одной кислоты организм не в состоянии синтезировать необходимый белок, а значит, вынужден отбирать необходимые элементы из других белков. Это приводит к общему дисбалансу , что перерастает в заболевание, а в детском возрасте вызывает умственные и физические недостатки.

Карбоновая кислота - представитель предельных одноосновных кислот.

Карбоновыми кислотами называются органические вещества, в состав которых входит карбоксильная группа или в упрощенной записи - СООН. Карбоксильная группа состоит из соединенных карбонильной и гидроксильной групп, что определило ее название.

В карбоновых кислотах карбоксильная группа соединена с углеводородным радикалом R, поэтому в общем виде формулу карбоновой кислоты можно записать так: R-СООН.

В карбоновых кислотах карбоксильная группа может быть соединена с различными углеводородными радикалами ~- предельными, непредельными, ароматическими. В связи с этим выделяют предельные, непредельные и ароматические карбоновые кислоты, например:

В зависимости от числа карбоксильных групп, содержащихся в молекулах карбоновых кислот, различают одноосновные и двухосновные кислоты, например:

атом углерод кислота спирт липиды

Одноосновные кислоты называют также монокарбоновыми, а двухосновные - дикарбоновыми кислотами.

Общая формула членов гомологического ряда предельных одноосновных карболовых кислот СnН2n-1СООН, где п = 0, 1, 2, 3..

Номенклатура.

Названия карбоновых кислот по заместительной номенклатуре строят из названия соответствующего алкана с добавлением окончания -овая и слова «кислота». Если углеродная цепь разветвленная, то в начале названия кислоты записывают заместитель с указанием его положения в цепи Нумерацию атомов углерода в цепи начинают с углерода карбоксильной группы.

Некоторые предельные одноосновные кислоты:

Для некоторых членов гомологического ряда предельных карбоновых кислот применяют тривиальные названия, приведены формулы некоторых предельных одноосновных кислот и их названия по заместительной номенклатуре и тривиальные названия.

Изомеры. Начиная с бутановой кислоты С3Н7СООН9 члены гомологического ряда предельных одноосновных кислот имеют изомеры. Их изомерия обусловлена разветвленностыо углеродной цепи углеводородных радикалов. Так, бутановая кислота имеет следующие два изомера (в скобках записано тривиальное название).

Формуле С 4 Н 9 СООН соответствуют четыре изомерные карбоновые кислоты:

Свойства, Кислоты гомологического ряда с нормальным -v строением от муравьиной до> С 8 Н 17 СООН (нонановой кислоты) при обычных условиях ~ бесцветные жидкости, имеющие резкий запах. Высшие члены ряда, начиная с С. 9 Н 19 СООН, - твердые вещества. Муравьиная, уксусная и продионовая кислоты хорошо растворимы в воде, смешиваются с ней в любых отношениях. Другие жидкие кислоты ограниченно растворимы в воде. Твердые кислоты в воде практически нерастворимы.

Особенности химических свойств карбоновых кислот обусловлены сильным взаимным влиянием карбонильной С-О и гидроксильной О-Н групп.

В карбоксильной группе связь между углеродом и карбонильным кислородом сильнополярна.. Однако положительный заряд на атоме углерода частично уменьшается в результате притяжения электронов атома кислорода гидроксильной группы. Поэтому в карбоновых кислотах карбонильный углерод менее склонён к взаимодействию с нуклеофильными частицами чем в альдегидах и кетонах.

С другой стороны, под влиянием карбонильной группы усиливается полярность связи О-Н за счет смещения электронной плотности от кислорода к атому углерода. Все указанные особенности* карбоксильной группы -можно проиллюстрировать следующей схемой:

Рассмотренный характер электронного строения карбоксильной группы обусловливает относительную легкость отрыва водорода этой группы. Поэтому у карбоновых кислот хорошо выражены кислотные свойства. F безводном" состоянии и особенно в водных растворах карбоновые кислоты диссоциируют на ионы;

Кислый характер растворов карбоновых кислот можно установить с помощью индикаторов. Карбоновые кислоты являются слабыми электролитами, причем сила карбоновых кислот уменьшается с увеличением молекулярной массы кислоты.

Наиболее часто встречающиеся жирные кислоты:

· пальмитиновая CH 3 (CH 2)14COOH,

· стеариновая СН 3 (СН 2)16СООН,

· олеиновая СН 3 (СН 2) 7 СН=СН(СН 2)7СООН,

· линолевая СНз(СН2) 4 (СН=СНСН2)2(СН2) 6 СООН,

· линоленовая СН 3 СН 2 (СН=СНСН 2)3(СН2)6СООН,

· арахидоноваяСН 3 (СН 2)4(СН=СНСН 2)4(СН2)2СООН,

· арахиновая СН 3 (СН 2)18СООН и некоторые другие кислоты.

Муравьиная кислота. Это легкоподвижная, бесцветная жидкость с исключительно резким запахом, которая смешивается с водой в любых пропорциях, очень едкая, вызывающая волдыри на коже. Она применяется в качестве консерванта. Уксусная кислота. Обладает теми же свойствами, что и муравьиная. Концентрированная уксусная кислота затвердевает при 17°С, превращаясь в массу, похожую на лед. Ее используют при изготовлении уксусно-кислого глинозема, в качестве добавки в лосьон для бритья, а также при производстве ароматических веществ и растворителей (смывка для лака - амилацетат). Бензойная кислота. Имеет кристаллические иголочки без цвета и запаха. Она плохо растворяется в воде и легко - в этаноле и эфире. Это известное средство для консервации. Обычно применяется в виде натриевой соли как противомикробное и фунгицидное средство.

Молочная кислота. В концентрированном виде обладает кератолитическим действием. В увлажняющих кремах используют натриевую соль молочной кислоты, которая благодаря своим гигроскопическим свойствам оказывает хорошее увлажняющее воздействие, а также отбеливает кожу. Винная кислота. Состоит из бесцветных прозрачных кристаллов или представляет собой кристаллический порошок с приятным кислым вкусом. Она легко растворяется в воде и этаноле. Ее используют в соли для ванн, а также в ополаскивателях для волос после применения лака.

Тиомолочная кислота. Это молочная кислота, в которой один атом кислорода замещен атомом серы.

Масляная кислота. Это жидкость без цвета и запаха, растворимая только в органических растворителях (бензине, бензоле, тетрахлоруглероде). В свободном виде масляная кислота в косметике не употребляется, она является составляющим элементом мыла и шампуней.

Сорбиновая кислота. Эта твердая, белая, многократно ненасыщенная жирная кислота, трудно растворимая в холодной воде и легка растворимая в спирте или эфире. Ее соли и эфиры абсолютно нетоксичны, они используются как консерванты в продуктах питания и косметических средствах. Линолевая, линоленовая, арахидоновая кислаты. Эссенциальные (незаменимые) ненасыщенные жирные кислоты, которые не синтезируются в организме. Комплекс этих кислот называют витамином Г. Их физиалогическая роль заключается в следующем: - нормализация уровня холестерина в крови; - участие в синтезе простангландинов; - оптимизация функций биологических мембран; - участие в липидном обмене кожи. Они входят в состав эпидермальных липидов, образуя строго организованные липидные структуры (пласты) в роговом слое эпидермиса, которые обеспечивают его барьерные функции. При недостатке незаменимых жирных кислот происходит их замена на насыщенные. Например, замена линолевой кислоты на пальмитинавую приводит к дезорганизаци липидных пластов, в эпидермисе образуются участки, лишенные липидов и, следовательно, проницаемые для микраарганизмов и химических агентов. Эссенциальные жирные кислоты содержатся в масле семян кукурузы, пщеницы, сои, льна, кунжуга, арахиса, миндаля, подсолнечника.

Органические кислоты относятся к обязательным компонентам химического состава растительного сырья. Они содержатся во всех тканях и органах растений: для запасающих органов – плодов, корневищ и др. – характерно преобладание свободных органических кислот, в вегетативных органах – траве, почках, листьях – они встречаются, как правило, в виде кислых солей.

В обмене веществ растительной клетки кислотам принадлежит исключительно важная роль: будучи в основном продуктами превращения сахаров, они участвуют в синтезе аминокислот, алкалоидов и многих других соединений. Ряд растений обладает способностью к синтезу и накоплению органических кислот и может служить сырьем для их промышленного получения.

Перечень органических кислот, входящих в состав растительного сырья, достаточно широк, при этом наиболее распространёнными являются уксусная кислота, участвующая в обмене веществ всех без исключения растений в виде ацетил-КоА , а также яблочная, лимонная, щавелевая и янтарная кислоты, относящиеся к первичным продуктам фотосинтеза и принимающие участие в метаболизме растительной клетки.

Яблочная кислота (COOH–CH 2 –CH(OH)–COOH)) является наиболее лабильной, она участвует в процессах фотосинтеза, подвергаясь быстрым изменениям и являясь промежуточным продуктом при биосинтезе многих соединений. Эта кислота известна в трёх стереоизомерных формах, но в растениях встречается только L-изомер.

Яблочная кислота является преобладающей в яблоках (0,4…0,7 г/100 г продукта), большинстве видов косточковых; ею богаты красноплодная рябина, садовая земляника (1,2 г/100 г), клюква и крыжовник (1,0 г/100 г), малина (1,4 г/100 г) и облепиха (2,0 г/100 г), зеленые ягоды винограда (0,7…1,5 г/100 г), достаточно высокое содержание отмечается в сливе (3,5 % от а.с.в.) и ягодах барбариса (до
6 % от а.с.в.), выявлено присутствие яблочной кислоты в составе кислот айвы (0,5 г/100 г) и персиков (0,2 г/100 г), плодов цитрусовых, шиповника, ягод лимонника и черники, цветков календулы.

В виде малатов яблочная кислота накапливается в листьях мать-и-мачехи, чёрной смородины и подорожника (в последнем 0,2…0,5 %), траве хвоща и других видах сырья; особенно значительно в листьях сем. Толстянковых. Свободная кислота и её соли входят и в состав сопутствующих веществ ФАВ большинства видов сырья, заготавливаемого корневищами и корнями.

На примере винограда показано, что растения, произрастающие в северных районах, накапливают бóльшие количества яблочной кислоты, чем те же культуры, выращиваемые южнее. Данный факт находит объяснение в том, что при более высоких среднесуточных температурах яблочная кислота в плодах и зелёной массе растений расходуется на окисление быстрее винной, вследствие чего её доля в составе кислот снижается.

Лимонная кислота и ее соли цитраты :

Встречаются в растительном сырье не менее часто. Ими наиболее богаты плоды цитрусовых (лимон – 5,5…5,7 г/100 г), из которых преимущественно лимонную кислоту выделяли в промышленных масштабах до 1922 г.; гранаты, ягоды смородины (2,0…10,0 г/100 г), лимонника, малины, клюквы (1,1…3,0 г/100 г), в меньшем количестве лимонная кислота содержится в ягодах крыжовника (0,3 г/100 г) и земляники (0,1 г/100 г), айве (0,3 г/100 г), персиках (0,1…0,2 г/100 г) и яблоках (0,1 г/100 г), плодах шиповника, красноплодной рябины и боярышника; из травянистого сырья лимонная кислота идентифицирована в листьях черники, чёрной смородины, чистотела, подорожника (1,2…1,5 %) и некоторых других.

Щавелевая кислота (HOOC–COOH) является одним из побочных продуктов жизнедеятельности растительной клетки, поэтому химически наименее активна и накапливается в растительном сырье в основном в виде кальциевой соли (оксалаты – кристаллы различной, специфичной для вида растения, формы; этот признак используется при идентификации лекарственно-технического сырья), накапливаясь преимущественно в сочном травянистом сырье: листьях щавеля (оксалата кальция 0,56…0,93 г/100 г) и ревеня (2,37 г/100 г), траве хвоща, сочных чешуях луковичных растений, коре деревьев и т.п. Плодово-ягодная продукция щавелевой кислотой не богата (до 0,01…0,02 г/100 г), незначительные количества обнаружены в ягодах лимонника (0,06 г/100 г) и ягодах сем. Брусничных.

Физиологически значимое содержание янтарной кислоты (HOOC–CH 2 –CH 2 –COOH) является характерным для ягод крыжовника, лимонника, красной смородины, черники и куманики, черешков ревеня. В достаточно высоких количествах (0,01…0,02 г/100 г) эта кислота и её соли сукцинаты содержатся в незрелых плодах и ягодах, например, вишне, черешне, сливе, яблоках, винограде. В числе других видов сырья, в кислотном комплексе которых выделены свободная янтарная кислота и её соли, можно отметить ягоды боярышника, корневища и корни родиолы, листья подорожника (0,2…0,5 %), горькой полыни, беладонны, мака, кукурузы.



Реже в растительном сырье встречается винная кислота (COOH–CH(OH)–CH(OH)–COOH, D-изомер): в ягодах (зелёные – 0,8…1,3 г/100 г, вызревшие – от 0,2 до 1,0 г/100 г), стеблях и листьях винограда (до 3,7 % на сухую массу), красноплодной рябине, плодах боярышника, сливы и граната; ягодах малины, крыжовника, смородины, лимонника и брусники. В винограде наряду с D-кислотой содержатся пировиноградная кислота (следы) и неактивный DL-изомер винной кислоты – виноградная кислота. Кроме названных видов сырья, винная кислота входит в состав кислот листьев брусники, мать-и-мачехи, подорожника и т.д.

От содержания и состава органических кислот зависит не только вкус растительного сырья, но в какой-то степени и его ароматические свойства, что определяется наличием в летучей фракции свободных муравьиной, уксусной, пропионовой, масляной, каприловой и валериановой кислот и их эфиров. Названные кислоты обуславливают специфические оттенки аромата лекарственно-технического сырья, преимущественно растений-эфироносов, все они обладают резким, острым запахом. Так, муравьиная кислота (HCOOH) входит в состав органических кислот яблок, толокнянки, калины, шишкоягод можжевельника, ягод малины (1,76 мг/100 г), стеблей и листьев крапивы, травы тысячелистника и многих других видов сырья; в свободном состоянии она чаще встречается в зелёных листьях, считается, что она относится к промежуточным продуктам фотосинтеза. Уксусная кислота (CH 3 –COOH) как в свободном состоянии, так и в составе сложных эфиров со спиртами, участвует в формировании вкусоароматических характеристик тех же калины и можжевельника, ягод брусники
(следы), листьев мяты перечной, травы полыни и лесной земля-
ники, тысячелистника, корневищ и корней валерианы, девясила и
дягиля и т.д. Наличие валериановой и/или изовалериановой кислот ((CH 3) 2 CH–CH 2 –COOH) установлено для листьев мяты и лавра благородного, травы иссопа, полыни и тысячелистника, лесной земляники, плодов калины, персиков и плодов какао, корневищ и корней валерианы и дягиля. В химический состав валерианы, кроме уже упомянутых органических кислот, входит масляная (CH 3 –CH 2 –CH 2 –COOH); масляная кислота входит также в состав цветков ромашки аптечной.

Каприловая кислота обуславливает аромат персиков:

Пропионовая кислота (CH 3 –CH 2 –COOH) из всего многообразия растительного сырья найдена только в цветочных корзинках тысячелистника. Как видно из вышесказанного, для многих видов растительного сырья – источников эфирных масел – является характерным присутствие сразу всех летучих кислот.

Сложные эфиры органических кислот обуславливают характерный аромат растительного сырья: октилацетат – апельсина, метилбутират – абрикоса, изоамиловый эфир изовалериановой кислоты – яблок, себацинацетат – шишкоягод можжевельника обыкновенного, эфир борнеола с валериановой кислотой – корневищ и корней валерианы лекарственной и т.д.

Некоторые из органических кислот встречаются в заготавливаемом сырье значительно реже, в ряде случаев представляя определённый интерес как идентификационный признак. К таким кислотам следует отнести ангеликовую – корневища и корни дягеля; аконитовую (COOH–CH=C(COOH)–CH 2 –COOH) – трава хвоща, дельфиниума, горицвета и тысячелистника; малоновую (COOH–СH 2 –COOH) – лист подорожника, сок клёна, ткани растений сем. Бобовых; фумаровую (COOH–CH=CH–COOH), считающуюся генетически связанной с янтарной и яблочной кислотами и из числа высших растений вы-явленную только в составе растений сем. Макоцветных, в ягодах
барбариса, клюквы и эрики сизой, плодах айвы; сорбиновую
(CH 3 –CH=CH–CH=CH–COOH), несомненно связанную со спиртом, сорбитом и обнаруженную в ягодах красноплодной рябины, брусничных; DL-молочную (CH 3 –CH(OH)–COOH) – листья малины и агавы, ягоды черники и куманики; глиоксалевую (CHO–COOH) – зелёные листья и невызревшие ягоды винограда, ягоды клюквы, плоды кизила
и т.д.

Особо необходимо сказать о кетокислотах, являющихся связующим звеном в обмене углеводов и белков и обладающих высокой физиологической активностью. Для растений является не характерным накопление кетокислот в значительных количествах, суммарное содержание пировиноградной (CH 3 –CO–OOH), α-кетоглутаровой (COOH–CH 2 –CH 2 –CO–COOH), щавелевоуксусной (COOH–CH 2 –CO–COOH) и щавелевоянтарной (COOH–CH 2 –CH(COOH)–CO–COOH) кислот обычно не превышает нескольких мг на 100 г сырья. Максимальное содержание кетокислот обнаружено в листьях и ягодах брусники (0,13 мг/100 г пировиноградной; 0,22 мг/100 г α-кетоглутаровой; 0,025 мг/100 г щавелевоуксусной), листьях земляники (0,87 мг/100 г пировиноградной; 28,4 мг/100 г α-кетоглутаровой; 0,65 мг/100 г
щавелевоуксусной) и листьях мяты (0,11 мг/100 г пировиноградной и 1,9 мг/100 г кетоглутаровой).

Кислоты ряда циклогексана – хинная (кофе, плоды айвы, ирги, сливы и персиков, ягоды актинидии, клюквы и черники, листья брусники и т.д.) и шикимовая , обнаруженная в плодах аниса звёздчатого и ягодах клюквы, не только являются специфичными, но и их принято выделять в отдельную подгруппу ФАВ, как играющие особо важную роль в биосинтезе ароматических аминокислот (шикимовая – предшественник фенилаланина и тирозина), коричных кислот и некоторых других веществ.

Кислоты участвуют в формировании индивидуального вкуса отдельных видов растительного сырья. Каждая кислота имеет свой специфический вкус и порог ощущения: у яблочной и лимонной кислот вкус чистый, невяжущий; для винной кислоты характерен кислый вяжущий вкус; у янтарной кислоты вкус неприятный и т.д. Интенсивность кислого вкуса сырья определяется составом и количественным соотношением индивидуальных кислот, соотношением свободных и связанных кислот, составом сопутствующих веществ (сахара маскируют кислый вкус, дубильные вещества усиливают и делают вяжущим).

Для объективной оценки вкуса растительного сырья принят так называемый сахарокислотный коэффициент, расчет которого основан на соотношении кислот и сахаров (с учетом сладости последних):

,

где – содержание глюкозы, %;

– содержание фруктозы, %;

– содержание сахарозы, %;

– содержание кислоты, %.

Кислотность выражают в процентах на доминирующую кислоту.

Физиологически органические кислоты благоприятно влияют на процессы пищеварения, снижая рН среды и способствуя созданию определенного состава микрофлоры, тормозя процессы гниения в желудочно-кишечном тракте. Кислоты фенольной природы обладают бактерицидным действием. Усвояемые органические кислоты принимают участие и в формировании энергетической ценности продуктов питания и напитков с их участием: яблочная кислота – 2,4 ккал/г, лимонная – 2,5 ккал/г, молочная – 3,6 ккал/г и т.д. Винная кислота организмом человека не усваивается.

Некоторые органические кислоты участвуют в механизмах обменных процессов, отвечающих за контроль массы тела (например, гидроксилимонная кислота, ингибирующая цитрат лиазу в ферментной системе синтеза жирных кислот) – на этом свойстве базируется разработка БАД из лекарственно-технического растительного сырья, действие которых основано на угнетении синтеза жирных кислот из углеводов de novo . Янтарная кислота способствует улучшению энергетического обеспечения клеток головного мозга, миокарда, печени, почек; оказывает антиоксидантное и антигипоксическое действие (механизм действия связан с увеличением синтеза АТФ, торможением гликолиза и активацией аэробных процессов в клетках, усилением глюконеогенеза). Кроме того, янтарная кислота способствует стабилизации клеточных мембран, что предотвращает потерю ферментов и обеспечивает функционирование механизмов дезинтоксикации в клетках. На фоне флавоноидов и сапонинов (солодки, например) янтарная кислота проявляет противовоспалительное, дезинтоксикационное и спазмолитическое действие.

С гигиенических и токсикологических позиций отмечается способность органических кислот влиять на минеральный обмен. Так, щавелевая кислота интенсивно связывает кальций, а лимонная – напротив, способствует его усвоению организмом человека. Названные свойства органических кислот необходимо учитывать при составлении рецептур продуктов питания и напитков с ориентацией последних на определенные категории потребителей.

На основании обобщённых данных, полученных с помощью эпидемиологических методов, органические кислоты введены в перечень обязательных компонентов оптимального рациона питания. Адекватный уровень потребления суммы органических кислот (ангеликовой, винной, гликолевой, глиоксалевой, лимонной, изолимонной, яблочной, фумаровой, коричной и пара -кумаровой) для современного человека, жизнедеятельность которого характеризуется пониженными энергозатратами (на уровне 2300 ккал в сутки), составляет 500 мг/сут; верхний допустимый уровень потребления – 1500 мг/сут. Особо оговаривается адекватный уровень потребления валериановой кислоты –
2 мг/сут – и янтарной кислоты – 200 мг/сут (верхние допустимые уровни потребления 5 мг и 500 мг соответственно).

Основное пищевое применение находят лимонная, винная и молочная кислоты, преимущественно в производстве кондитерских изделий, безалкогольных напитков, консервов и пищевых концентратов. Свободные органические кислоты и их соли находят и медицинское применение: уксусная кислота широко применяется в производстве фармацевтической продукции (многие препараты являются более растворимыми, а соответственно, и более усвояемыми в виде ацетатов); янтарная кислота находит самостоятельное применение в качестве фармпрепарата; соли яблочной кислоты (например, яблочнокислое железо) используются в лечении малокровия; натриевая соль лимонной кислоты находит применение в качестве консерванта при переливании крови, лимоннокислая медь иногда используется в лечении заболеваний глаз; отходы производства виноградных вин – кислый виннокислый калий, «винный камень» (кремотартар) – находят применение в медицине и пищевой промышленности для получения кристаллической винной кислоты.

Список литературы к разделу 3

1. Гребинский, С. Биохимия растений / С. Гребинский. – Львов: Изд-во Львовского ун-та, 1967. – 272 с.

2. Щербаков, В.Г. Биохимия: учебник / В.Г. Щербаков, В.Г. Лобанов, Т.Н. Прудникова, А.Д. Минакова. – СПб.: ГИОРД, 2003. – 440 с.

3. Марх, А.Т. Биохимия консервирования плодов и овощей / А.Т. Марх. – М.: Пищевая промышленность, 1973. – 372 с.

4. Цапалова, И.Э. Экспертиза дикорастущих плодов, ягод и травянистых растений: учебно-справочное пособие / И.Э. Цапалова, М.Д. Губина, В.М. Позняковский. – Новосибирск: Изд-во Новосибирского ун-та, 2000. – 180 с.

5. Плотникова, Т.В. Экспертиза свежих плодов и овощей / Т.В. Плотникова, В.М. Позняковский, Т.В. Ларина. – Новосибирск: Сиб. универ. изд-во, 2001. – 302 с.

6. Химический состав пищевых продуктов / под ред. И.М. Скурихина и М.Н. Волгарева. – М.: Агропромиздат, 1987. – 223 с.

7. Муравьёва, Д.А. Фармакогнозия / Д.А. Муравьёва. – М.: Медицина, 1981. – 656 с.

8. Родопуло, А.К. Биохимия виноделия / А.К. Родопуло. – М.: Пищевая промышленность, 1971. – 374 с.

9. Карклиньш, Р.Л. Биосинтез органических кислот / Р.Л. Карклиньш, А.К. Пробок. – Рига: Зинатне, 1972. – 200 с.

10. Домарецкий, В.А. Производство концентратов, экстрактов и безалкогольных напитков: справочник / В.А. Домарецкий. – Киев: Урожай, 1990. – 245 с.

11. Челнакова, Н.Г. Пищевые продукты для коррекции массы тела: новые технологии, оценка качества и эффективности: монография / Н.Г. Челнакова, Е.О. Ермолаева. – М.; Кемерово: ИО «Российские университеты»; Кузбассвузиздат – АСТИ, 2006. – 214 с.

12. Позняковский, В.М. Гигиенические основы питания, качество и безопасность пищевых продуктов: учебник / В.М. Поз-няковский. – Нсб.: Сиб. унив. изд-во, 2004. – 556 с.

13. Производство пищевых кислот / под общ. ред. Е.И. Жу-равлевой. – М.: Пищепромиздат, 1953. – 236 с.

14. Смирнов, В.А. Пищевые кислоты / В.А. Смирнов. – М.: Легкая и пищевая промышленность, 1983. – 264 с.

Органические кислоты – это продукты распада веществ, в процессе реакций обмена, в молекулу которых входит карбоксильная группа.

Соединения выступают промежуточными элементами и основными компонентами метаболического преобразования энергии, основанного на производстве аденозинтрифосфата, цикле Кребса.

Концентрация органических кислот в организме человека отображает уровень функционирования митохондрий, окисления жирных кислот и обмена углеводов. Помимо этого, соединения способствуют самопроизвольному восстановлению кислотно-щелочного баланса крови. Дефекты митохондриального метаболизма вызывают отклонения в обменных реакциях, развитие нервно-мышечных патологий и изменение концентрации глюкозы. Более того, они могут повлечь гибель клетки, что связано с процессами старения и появлением бокового амиотрофического склероза, болезнями Паркинсона, Альцгеймера.

Классификация

Наибольшее содержание органических кислот в продуктах растительного происхождения, из-за этого их часто называют «фруктовыми». Они придают характерные вкус плодам: кислый, терпкий, вяжущий, поэтому часто используются в пищевой промышленности в качестве консервантов, влагоудерживающих агентов, регуляторов кислотности, антиокислителей. Рассмотрим распространенные органические кислоты, и под каким номером пищевой добавки они зафиксированы: муравьиная (Е236); яблочная (Е296); винная (Е335 – 337, Е354); молочная (Е326 – 327); щавелевая; бензойная (Е210); сорбиновая (Е200); лимонная (Е331 – 333, Е380); уксусная (Е261 – 262); пропионовая (Е280); фумаровая (Е297); аскорбиновая (Е301, Е304); янтарная (Е363).
Органические кислоты человеческий организм «добывает» не только из продуктов питания в процессе переваривания пищи, но и вырабатывает самостоятельно. Такие соединения растворимы в спирте, воде, выполняют обеззараживающую функцию, улучшая самочувствие, здоровье человека.

Роль органических кислот

Главная функция карбоновых соединений – поддержание кислотно – щелочного равновесия организма человека.
Органические вещества увеличивают уровень рh среды, что улучшает поглощение питательных веществ внутренними органами и выведение шлаков. Дело в том, что иммунная система, полезные бактерии в кишечнике, химические реакции, клетки лучше работают в щелочной среде. Закисление организма, наоборот, – это идеальные условия для процветания болезней, в основе которых лежат следующие причины: агрессия кислоты, деминерализация, ферментативная слабость. В результате человек испытывает недомогание, постоянную усталость, повышенную эмоциональность, появляется кислая слюна, отрыжка, спазмы, гастрит, трещины на эмали, гипотония, бессонница, неврит. В итоге ткани пытаются за счет внутренних резервов нейтрализовать лишнюю кислоту. Человек теряет мышечную массу, ощущает нехватку жизненных сил. Органические кислоты участвуют в следующих процессах пищеварения, ощелачивая организм:

  • активизируют перистальтику кишечника;
  • нормализуют ежедневный стул;
  • замедляют рост гнилостных бактерий, брожение в толстом кишечнике;
  • стимулируют выделение желудочного сока.

Функции некоторых органических соединений:

Винная кислота. Применяется в аналитической химии, медицине, пищевой промышленности для обнаружения сахаров, альдегидов, при изготовлении безалкогольных напитков, соков. Выступает антиоксидантом. В наибольшем количестве содержится в винограде.

Молочная кислота. Обладает бактерицидным действием, используется в пищевой промышленности для подкисления кондитерских изделий и безалкогольных напитков. Образуется при молочнокислом брожении, накапливается в кисломолочных продуктах, квашеных, соленых, моченых плодах и овощах.

Щавелевая кислота. Стимулирует работу мышц, нервов, улучшает усвоение кальция. Однако, помните, если щавелевая кислота в процессе обработки становится неорганической, образуемые ее соли (оксалаты) вызывают образование камней, разрушают костную ткань. В результате у человека развиваются артрит, артроз, импотенция. Помимо этого, щавелевая кислота используется в химической промышленности (для производства чернил, пластмасс), металлургии (для очистки котлов от оксидов, ржавчины, накипи), в сельском хозяйстве (в качестве инсектицида), косметологии (для отбеливания кожи). В природе содержится в бобах, орехах, ревене, щавеле, шпинате, свекле, бананах, батате, спарже.

Лимонная кислота. Активирует цикл Кребса, ускоряет метаболизм, проявляет дезинтоксикационные свойства. Применяется в медицине для улучшения энергетического обмена, в косметологии – для регулирования рН средства, отшелушивания «мертвых» клеток эпидермиса, разглаживает морщины и консервирует продукт. В пищевой промышленности (в хлебопечении, для производства шипучих напитков, ликероводочных, кондитерских изделий, желе, кетчупа, майонеза, джема, плавленого сыра, холодного тонизирующего чая, рыбных консервов) используется как регулятор кислотности для защиты от протекания деструктивных процессов, придания характерного кисловатого вкуса продукции. Источники соединения: китайский лимонник, незрелые апельсины, лимоны, грейпфруты, свити.

Бензойная кислота. Обладает антисептическими свойствами, поэтому ее применяют как противогрибковое, противомикробное средство при кожных заболеваниях. Соль бензойной кислоты (натриевая) – отхаркивающее средство. Помимо этого, органическое соединение используют для консервации пищевых продуктов, синтеза красителей, создания парфюмерной воды. Для продления срока годности, Е210 входит в состав жевательной резинки, варенья, джема, повидла, конфет, пива, ликера, мороженого, фруктовых пюре, маргарина, молочной продукции. Природные источники: клюква, брусника, черника, йогурт, простокваша, мед, гвоздичное масло.

Сорбиновая кислота. Является природным консервантом, обладает антимикробным действием, поэтому используется в пищевой промышленности для обеззараживания продуктов. Кроме того, на предотвращает потемнение сгущеного молока, плесневение безалкогольных напитков, хлебопекарских, кондитерских изделий, плодовоягодных соков, полукопченых колбас, зернистой икры. Помните, полезные свойства сорбиновая кислота проявляет исключительно в кислой среде (при рН ниже 6,5). Наибольшее количество органического соединения обнаружено в плодах рябины.

Уксусная кислота. Участвует в обмене веществ, используется для приготовления маринада, консервации. Она содержится в соленых/квашеных овощах, пиве, вине, соках.

Урсоловая, олеиновая кислоты расширяют венозные сосуды сердца, препятствуют атрофии скелетных мышц, снижают количество глюкозы в крови. Тартроновая замедляет превращение углеводов в триглицериды, предупреждая атеросклероз и ожирение, уроновая выводит из организма радионуклиды, соли тяжелых металлов, а галловая оказывает противовирусный, противогрибковый эффект. Органические кислоты – вкусовые компоненты, которые в свободном состоянии или в виде солей входят в состав пищевых продуктов, определяя их вкус. Данные вещества улучшают усваиваемость и переваривание пищи. Энергетическая ценность органических кислот – три килокалории энергии на грамм. Карбоновые и сульфоновые соединения могут образовываться во время производства продуктов переработки или быть природной частью сырья. Для улучшения вкуса, запаха органические кислоты добавляют в блюда, в процессе их приготовления (в выпечку, джемы). Помимо этого, они снижают pH среды, тормозят процессы гниения в ЖКТ, активизируют перистальтику кишечника, стимулируют сокоотделение в желудке, оказывают противовоспалительное, антимикробное действия.

Суточная норма, источники

Для сохранения кислотно – щелочного баланса в пределах нормы (рН 7,36 – 7,42) важно ежедневно употреблять продукты, содержащие органические кислоты.

Для большинства овощей (огурцы, болгарский перец, капуста, лук репчатый) количество соединения на 100 грамм съедобной части составляет 0,1 – 0,3 грамма. Повышенное содержание полезных кислот в ревене (1 грамм), грунтовых томатах (0,8 грамма), щавеле (0,7 грамма), фруктовых соках, квасе, творожной сыворотке, кумысе, кислых сортах вин (до 0,6 грамм). Лидерами по уровню органических веществ выступают ягоды и фрукты:

  • лимон – 5,7 грамма на 100 грамм продукта;
  • клюква – 3,1 грамма;
  • красная смородина – 2,5 грамма;
  • черная смородина – 2,3 грамма;
  • рябина садовая – 2,2 грамма;
  • вишня, гранат, мандарины, грейпфрут, земляника, рябина черноплодная – до 1,9 грамма;
  • ананас, персики, виноград, айва, алыча – до 1,0 грамма.

До 0,5 грамм органических кислот содержат молоко, кисломолочные продукты. Их количество зависит от свежести и вида изделия. При длительном хранении происходит закисление такой продукции, в результате она становится непригодной к употреблению в диетическом питании. Учитывая, что каждый вид органической кислоты обладает особым действием, суточная надобность организма во многих из них варьируется в пределах от 0,3 до 70 грамм. При хронической усталости, пониженной секреции желудочного сока, авитаминозах потребность возрастает. При заболеваниях печени, почек, повышенной кислотности желудочного сока, наоборот, снижается. Показания к дополнительному приему природных органических кислот: низкая выносливость организма, хроническое недомогание, снижение тонуса скелетной мускулатуры, головные боли, фибромиалгия, спазмы в мышцах.

Вывод

Органические кислоты – группа соединений, которая ощелачивает организм, участвует в энергетическом обмене и содержится в растительных продуктах (корнеплодах, лиственной зелени, ягодах, фруктах, овощах). Недостаток данных веществ в организме приводит к серьезным заболеваниям. Повышается кислотность, снижается усвоение жизненно необходимых минералов (кальция, натрия, калия, магния). Возникают болезненные ощущения в мышцах, суставах, развиваются остеопороз, болезни мочевого пузыря, сердечнососудистой системы, падает иммунитет, нарушается обмен веществ. При повышенной кислотности (ацидозе) в мышечной ткани накаливается молочная кислота, возрастает риск наступления сахарного диабета, образования злокачественной опухоли. Избыток фруктовых соединений приводит к появлению проблем с суставами, пищеварением, нарушает работу почек. Помните, органические кислоты нормализуют кислотно – щелочное равновесие организма, сохраняют здоровье и красоту человека, оказывая благотворное влияние на кожу, волосы, ногти, внутренние органы. Поэтому, в природном виде, они должны ежедневно присутствовать в вашем рационе!

Органические кислоты это - важные детали биологических машин. Они действуют в процессах, которые связаны с использованием энергии пищевых веществ; с участием кислот в системах ферментов протекают стадии постепенной перестройки и окисления молекул углеводов, жиров и аминокислот. Некоторые из карбоновых кислот получаются и расходуются в процессах обмена веществ (метаболизм) в очень внушительных количествах. Так, в течение суток в организме человека образуется 400 г уксусной кислоты. Этого количества хватило бы для изготовления 8 л обычного уксуса. Возникновение и распад любого в столь больших масштабах, конечно, означает, что это вещество необходимо для выполнения каких-то ответственных функций. Анализ обнаруживает в клетках организмов и целый ряд других кислот, причем большинство из них является соединениями со смешанной функцией, т. е., помимо группы СООН, эти кислоты содержат другие группы, например СО, ОН и т. п.

Разнообразие неорганических кислот не так велико: лишь фосфорная, угольная и соляная кислоты (и отчасти кремниевая) встречаются в большинстве организмов как в виде солей, так и в свободном состоянии (например, желудочного сока).

Карбоновые кислоты важны прежде всего потому, что, действуя совместно со специальными ферментами, они образуют замкнутую систему реакций (цикл Кребса), осуществляющую окисление пировиноградной кислоты. Пировиноградная кислота сама по себе является продуктом перестройки молекул пищевых веществ, например углеводов.

При изучении цикла Кребса встретятся следующие кислоты: пировиноградная, уксусная, лимонная, цис -аконитовая, изолимонная, щавелевоянтарная, α-кетоглутаровая, янтарная, фумаровая, яблочная, щавелевоуксусная.

В клетках различных микроорганизмов (плесневые грибы) наблюдались ферментные реакции, показывающие, как легко эти кислоты превращаются друг в друга. Так, из оксида углерода (IV) и пировиноградной кислоты образуется щавелевоуксусная кислота:

СН 3 -СО-СООН + СО 2 → НООС-СН 2 -СО-СООН

Из уксусной кислоты путем отнятия водорода может получиться янтарная и фумаровая кислоты.

Из уксусной кислоты образуется также гликолевая кислота СН 2 ОНСООН, глиоксиловая кислота СНО-СООН и щавелевая кислота СООН-СООН. Фумаровая кислота может быть превращена и яблочную, в щавелевоуксусную и т. д.

Благодаря такой химической гибкости - способности под влиянием ферментов превращаться друг в друга, присоединяя или отдавая низкомолекулярные (СО 2 , Н 2 О, Н), органические кислоты (особенно ди- и трикарбоновые) стали биологически ценными соединениями - постоянными деталями биологических машин.

Есть еще одна группа органических кислот, без которых нельзя обойтись в создании биологических структур - это жирные кислоты. Молекулы жирных кислот представляют собой относительно длинные цепи, на одном конце которых находится полярная группа - карбоксил СООН. В природе встречаются чаще всего жирные кислоты с неразветвленной цепью и четным числом углеродных атомов; в растениях обнаружены жирные кислоты, содержащие циклы (в частности, хаульмугровая кислота имеет в молекуле циклопентеновое кольцо).

К насыщенным жирным кислотам относятся: масляная, капроновая, каприловая, пальмитиновая, стеариновая и др. К ненасыщенным - кротоновая, олеиновая, линолевая, линоленовая.

Ненасыщенные кислоты, по-видимому, необходимы для нормальной жизнедеятельности организма, хотя их специфические функции не вполне ясны. Обычно в пищевых веществах жирные кислоты присутствуют в виде эфиров глицерина (жиры и масла), называемых триглицеридами. В этих эфирах три гидроксила глицерина образуют эфирные связи с тремя остатками кислот R 1 , R 2 , R3.

Некоторые жиры связаны с белками клетки; большая часть жиров образует отложения, являющиеся топливным запасом организма. Жиры (триглицериды) содержатся и в крови, куда они попадают из слизистой оболочки кишечника через лимфатические пути. В крови жиры с небольшой примесью белка и некоторых липидов образуют мелкие частицы (хиломикроны), размер которых около 50 мк. При окислении жиров выделяется много теплоты (вдвое больше, чем при окислении такого же количества углеводов), так что жир - энергетическое вещество.

Окисление жиров происходит главным образом в почках, печени и , по может протекать и в тканях других органов.

В процессе окисления, катализируемом рядом ферментов, от длинной молекулы жирной кислоты последовательно отщепляются «фрагменты», содержащие всего два атома углерода. Для того чтобы эта реакция началась, повторилась нужное число раз и превратила бы жирную кислоту в воду, оксид углерода (IV), ацетоуксусную кислоту, оказалось необходимым участие особого - кофермента А (КоА) и аденозин-трифосфорной кислоты (АТФ). В дальнейшем мы еще вернемся к этому вопросу.

Жиры нерастворимы в воде, но могут быть получены в виде тонких эмульсий. Эмульгирование жира облегчается солями желчных кислот (гликохолевой и таурохолевой).

Статья на тему Органические кислоты