Решить систему уравнений матричным методом гаусса. Почему слау можно представить в матричном виде. Применение метода Гаусса в теории игр

  • Дата: 20.09.2019

Еще с начала XVI-XVIII веков математики усиленно начали изучать функции, благодаря которым так много в нашей жизни изменилось. Компьютерная техника без этих знаний просто не существовала бы. Для решения сложных задач, линейных уравнений и функций были созданы различные концепции, теоремы и методики решения. Одним из таких универсальных и рациональных способов и методик решения линейных уравнений и их систем стал и метод Гаусса. Матрицы, их ранг, детерминант - все можно посчитать, не используя сложных операций.

Что представляет собой СЛАУ

В математике существует понятие СЛАУ - система линейных алгебраических уравнений. Что же она собой представляет? Это набор из m уравнений с искомыми n неизвестными величинами, обычно обозначающимися как x, y, z, или x 1 , x 2 … x n, или другими символами. Решить методом Гаусса данную систему - означает найти все искомые неизвестные. Если система имеет одинаковое число неизвестных и уравнений, тогда она называется системой n-го порядка.

Наиболее популярные методы решения СЛАУ

В учебных заведениях среднего образования изучают различные методики решения таких систем. Чаще всего это простые уравнения, состоящие из двух неизвестных, поэтому любой существующий метод для поиска ответа на них не займет много времени. Это может быть как метод подстановки, когда из одного уравнения выводится другое и подставляется в изначальное. Или метод почленного вычитания и сложения. Но наиболее легким и универсальным считается метод Гаусса. Он дает возможность решать уравнения с любым количеством неизвестных. Почему именно эта методика считается рациональной? Все просто. Матричный способ хорош тем, что здесь не требуется по несколько раз переписывать ненужные символы в виде неизвестных, достаточно проделать арифметические операции над коэффициентами - и получится достоверный результат.

Где используются СЛАУ на практике

Решением СЛАУ являются точки пересечения прямых на графиках функций. В наш высокотехнологический компьютерный век людям, которые тесно связаны с разработкой игр и прочих программ, необходимо знать, как решать такие системы, что они представляют и как проверить правильность получившегося результата. Наиболее часто программисты разрабатывают специальные программы-вычислители линейной алгебры, сюда входит и система линейных уравнений. Метод Гаусса позволяет высчитать все существующие решения. Также используются и другие упрощенные формулы и методики.

Критерий совместимости СЛАУ

Такую систему можно решить только в том случае, если она совместима. Для понятности представим СЛАУ в виде Ax=b. Она имеет решение, если rang(A) равняется rang(A,b). В этом случае (A,b) - это матрица расширенного вида, которую можно получить из матрицы А, переписав ее со свободными членами. Выходит, что решить линейные уравнения методом Гаусса достаточно легко.

Возможно, некоторые обозначения не совсем понятны, поэтому необходимо рассмотреть все на примере. Допустим, есть система: x+y=1; 2x-3y=6. Она состоит всего из двух уравнений, в которых 2 неизвестные. Система будет иметь решение только в том случае, если ранг ее матрицы будет равняться рангу расширенной матрицы. Что такое ранг? Это число независимых строк системы. В нашем случае ранг матрицы 2. Матрица А будет состоять из коэффициентов, находящихся возле неизвестных, а в расширенную матрицу вписываются и коэффициенты, находящиеся за знаком «=».

Почему СЛАУ можно представить в матричном виде

Исходя из критерия совместимости по доказанной теореме Кронекера-Капелли, систему линейных алгебраических уравнений можно представить в матричном виде. Применяя каскадный метод Гаусса, можно решить матрицу и получить единственный достоверный ответ на всю систему. Если ранг обычной матрицы равняется рангу ее расширенной матрицы, но при этом меньше количества неизвестных, тогда система имеет бесконечное количество ответов.

Преобразования матриц

Прежде чем переходить к решению матриц, необходимо знать, какие действия можно проводить над их элементами. Существует несколько элементарных преобразований:

  • Переписывая систему в матричный вид и осуществляя ее решение, можно умножать все элементы ряда на один и тот же коэффициент.
  • Для того чтобы преобразовать матрицу в канонический вид, можно менять местами два параллельных ряда. Канонический вид подразумевает, что все элементы матрицы, которые расположены по главной диагонали, становятся единицами, а оставшиеся - нулями.
  • Соответствующие элементы параллельных рядов матрицы можно прибавлять один к другому.

Метод Жордана-Гаусса

Суть решения систем линейных однородных и неоднородных уравнений методом Гаусса в том, чтобы постепенно исключить неизвестные. Допустим, у нас есть система из двух уравнений, в которых две неизвестные. Чтобы их найти, необходимо проверить систему на совместимость. Уравнение методом Гаусса решается очень просто. Необходимо выписать коэффициенты, находящиеся возле каждого неизвестного в матричный вид. Для решения системы понадобится выписать расширенную матрицу. Если одно из уравнений содержит меньшее количество неизвестных, тогда на место пропущенного элемента необходимо поставить «0». К матрице применяются все известные методы преобразования: умножение, деление на число, прибавление соответствующих элементов рядов друг к другу и другие. Получается, что в каждом ряду необходимо оставить одну переменную со значением «1», остальные привести к нулевому виду. Для более точного понимания необходимо рассмотреть метод Гаусса на примерах.

Простой пример решения системы 2х2

Для начала возьмем простенькую систему алгебраических уравнений, в которой будет 2 неизвестных.

Перепишем ее в расширенную матрицу.

Чтобы решить данную систему линейных уравнений, требуется проделать всего две операции. Нам необходимо привести матрицу к каноническому виду, чтобы по главной диагонали стояли единицы. Так, переводя с матричного вида обратно в систему, мы получим уравнения: 1x+0y=b1 и 0x+1y=b2, где b1 и b2 - получившиеся ответы в процессе решения.

  1. Первое действие при решении расширенной матрицы будет таким: первый ряд необходимо умножить на -7 и прибавить соответственно отвечающие элементы ко второй строке, чтобы избавиться от одного неизвестного во втором уравнении.
  2. Так как решение уравнений методом Гаусса подразумевает приведение матрицы к каноническому виду, тогда необходимо и с первым уравнением проделать те же операции и убрать вторую переменную. Для этого вторую строку отнимаем от первой и получаем необходимый ответ - решение СЛАУ. Или, как показано на рисунке, вторую строку умножаем на коэффициент -1 и прибавляем к первой строке элементы второго ряда. Это одно и то же.

Как видим, наша система решена методом Жордана-Гаусса. Переписываем ее в необходимую форму: x=-5, y=7.

Пример решения СЛАУ 3х3

Предположим, что у нас есть более сложная система линейных уравнений. Метод Гаусса дает возможность высчитать ответ даже для самой, казалось бы, запутанной системы. Поэтому, чтобы более глубоко вникнуть в методику расчета, можно переходить к более сложному примеру с тремя неизвестными.

Как и в прежнем примере, переписываем систему в вид расширенной матрицы и начинаем приводить ее к каноническому виду.

Для решения этой системы понадобится произвести гораздо больше действий, чем в предыдущем примере.

  1. Сначала необходимо сделать в первом столбце один единичный элемент и остальные нули. Для этого умножаем первое уравнение на -1 и прибавляем к нему второе уравнение. Важно запомнить, что первую строку мы переписываем в изначальном виде, а вторую - уже в измененном.
  2. Далее убираем эту же первую неизвестную из третьего уравнения. Для этого элементы первой строки умножаем на -2 и прибавляем их к третьему ряду. Теперь первая и вторая строки переписываются в изначальном виде, а третья - уже с изменениями. Как видно по результату, мы получили первую единицу в начале главной диагонали матрицы и остальные нули. Еще несколько действий, и система уравнений методом Гаусса будет достоверно решена.
  3. Теперь необходимо проделать операции и над другими элементами рядов. Третье и четвертое действие можно объединить в одно. Нужно разделить вторую и третью строку на -1, чтобы избавиться от минусовых единиц по диагонали. Третью строку мы уже привели к необходимому виду.
  4. Дальше приведем к каноническому виду вторую строку. Для этого элементы третьего ряда умножаем на -3 и прибавляем их ко второй строчке матрицы. Из результата видно, что вторая строка тоже приведена к необходимой нам форме. Осталось проделать еще несколько операций и убрать коэффициенты неизвестных из первой строки.
  5. Чтобы из второго элемента строки сделать 0, необходимо умножить третью строку на -3 и прибавить ее к первому ряду.
  6. Следующим решающим этапом будет прибавление к первой строке необходимые элементы второго ряда. Так мы получаем канонический вид матрицы, а, соответственно, и ответ.

Как видно, решение уравнений методом Гаусса довольно простое.

Пример решения системы уравнений 4х4

Некоторые более сложные системы уравнений можно решить методом Гаусса посредством компьютерных программ. Необходимо вбить в существующие пустые ячейки коэффициенты при неизвестных, и программа сама пошагово рассчитает необходимый результат, подробно описывая каждое действие.

Ниже описана пошаговая инструкция решения такого примера.

В первом действии в пустые ячейки вписываются свободные коэффициенты и числа при неизвестных. Таким образом, получается такая же расширенная матрица, которую мы пишем вручную.

И производятся все необходимые арифметические операции, чтобы привести расширенную матрицу к каноническому виду. Необходимо понимать, что не всегда ответ на систему уравнений - это целые числа. Иногда решение может быть из дробных чисел.

Проверка правильности решения

Метод Жордана-Гаусса предусматривает проверку правильности результата. Для того чтобы узнать, правильно ли посчитаны коэффициенты, необходимо всего-навсего подставить результат в изначальную систему уравнений. Левая сторона уравнения должна соответствовать правой стороне, находящейся за знаком "равно". Если ответы не совпадают, тогда необходимо пересчитывать заново систему или попробовать применить к ней другой известный вам метод решения СЛАУ, такой как подстановка или почленное вычитание и сложение. Ведь математика - это наука, которая имеет огромное количество различных методик решения. Но помните: результат должен быть всегда один и тот же, независимо от того, какой метод решения вы использовали.

Метод Гаусса: наиболее часто встречающиеся ошибки при решении СЛАУ

Во время решения линейных систем уравнений чаще всего возникают такие ошибки, как неправильный перенос коэффициентов в матричный вид. Бывают системы, в которых отсутствуют в одном из уравнений некоторые неизвестные, тогда, перенося данные в расширенную матрицу, их можно потерять. В результате при решении данной системы результат может не соответствовать действительному.

Еще одной из главных ошибок может быть неправильное выписывание конечного результата. Нужно четко понимать, что первый коэффициент будет соответствовать первому неизвестному из системы, второй - второму, и так далее.

Метод Гаусса подробно описывает решение линейных уравнений. Благодаря ему легко произвести необходимые операции и найти верный результат. Кроме того, это универсальное средство для поиска достоверного ответа на уравнения любой сложности. Может быть, поэтому его так часто используют при решении СЛАУ.

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Гаусса. Дается подробное решение. Для вычисления выбирайте количество переменных и количество уравнений. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить."

x 1

+x 2

+x 3

x 1

+x 2

+x 3

x 1

+x 2

+x 3

=

=

=

Представление чисел:

Целые числа и (или) Обыкновенные дроби
Целые числа и (или) Десятичные дроби

Число знаков после десятичного разделителя

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Гаусса

Метод Гаусса − это метод перехода от исходной системы линейных уравнений (при помощи эквивалентных преобразований) к системе, которая решается проще, чем исходная система.

Эквивалентными преобразованиями системы линейных уравнений являются:

  • перемена местами двух уравнений в системе,
  • умножение какого-либо уравнения в системе на ненулевое действительное число,
  • прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Рассмотрим систему линейных уравнений:

(1)

Запишем систему (1) в матричном виде:

Ax=b (2)
(3)

A -называется матрица коэффициентов системы, b правая часть ограничений, x − вектор переменных, которую нужно найти. Пусть rang(A )=p .

Эквивалентные преобразования не меняют ранг матрицы коэффициентов и ранг расширеннной матрицы системы. Не меняется также множество решений системы при эквивалентных преобразованиях. Суть метода Гаусса заключается в приведении матрцы коэффициентов A к диагональному или ступенчатому.

Построим расшренную матрицу системы:

На следующем этапе обнуляем все элементы столбца 2, ниже элемента . Если данный элемент нулевой, то эту строку меняем местами со строкой, лежащий ниже данной строки и имеющий ненулевой элемент во втором столбце. Далее обнуляем все элементы столбца 2 ниже ведущего элемента a 22 . Для этого сложим строки 3, ... m со строкой 2, умноженной на −a 32 /a 22 , ..., −a m2 /a 22 , соответственно. Продолжая процедуру, получим матрицу диагонального или ступенчатого вида. Пусть полученная расширенная матрица имеет вид:

(7)

Так как rangA=rang (A|b ), то множество решений (7) есть (n−p )− многообразие. Следовательно n−p неизвестных можно выбрать произвольно. Остальные неизвестные из системы (7) вычисляются так. Из последнего уравнения выражаем x p через остальные переменные и вставляем в предыдущие выражения. Далее из предпоследнего уравнения выражаем x p−1 через остальные переменные и вставляем в предыдущие выражения и т.д. Рассмотрим метод Гаусса на конкретных примерах.

Примеры решения системы линейных уравнений методом Гаусса

Пример 1. Найти общее решение системы линейных уравнений методом Гаусса:

Обозначим через a ij элементы i -ой строки и j -ого столбца.

a 1 1 . Для этого сложим строки 2,3 со строкой 1, умноженной на -2/3,-1/2 соответственно:

Матричный вид записи: Ax=b , где

Обозначим через a ij элементы i -ой строки и j -ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a 11 . Для этого сложим строки 2,3 со строкой 1, умноженной на -1/5,-6/5 соответственно:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

где x 3 , x

Подставив верхние выражения в нижние, получим решение.

Тогда векторное решение можно представить так:

где x 3 , x 4 − произвольные действительные числа.

Решение систем линейных уравнений методом Гаусса. Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x 1 из всех уравнений системы, начиная со второго, далее исключается x 2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная x n . Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса . После завершения прямого хода метода Гаусса из последнего уравнения находитсяx n , с помощью этого значения из предпоследнего уравнения вычисляется x n-1 , и так далее, из первого уравнения находится x 1 . Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса .

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.


Пример.

Решите систему линейных уравнений методом Гаусса.

Одним из универсальных и эффективных методов реше­ния линейных алгебраических систем является метод Гаусса , состо­ящий в последовательном исключении неизвестных.

Напомним, две системы называются эквивалентными (равносильными), если множества их решений совпадают. Другими словами, системы эквивалентны, если каждое решение одной из них является решением другой и наоборот. Эквивалентные системы получаются приэлементарных преобразованиях уравнений системы:

    умножение обеих частей уравнения на число отличное от нуля;

    прибавление к некоторому уравнению соответствующих частей другого уравнения, умноженных на число отличное от нуля;

    перестановка двух уравнений.

Пусть дана система уравнений

Процесс решения этой системы по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система с помощью элементарных преобразований приводится к ступен­чатому , илитреугольному виду, а на втором этапе (обратный ход) идет последовательное, начиная с последнего по номеру переменного, определение неизвестных из полученной ступенчатой системы.

Предположим, что коэффициент данной системы
, в против­ном случае в системе первую строку можно поменять местами с любой другой строкой так, чтобы коэффициент прибыл отличен от нуля.

Преобразуем систему, исключив неизвестное во всех уравне­ниях, кроме первого. Для этого умножим обе части первого уравнения наи сложим почленно со вторым уравнением системы. Затем умножим обе части первого уравнения наи сложим с третьим уравнением системы. Продолжая этот процесс, получим эквивалент­ную систему

Здесь
– новые значения коэффициентов и свободных членов, которые получаются после первого шага.

Аналогичным образом, считая главным элементом
, исклю­чим неизвестноеиз всех уравнений системы, кроме первого и второго. Продолжим этот процесс, пока это возможно, в результате получим ступенчатую систему

,

где ,
,…,– главные элементы системы
.

Если в процессе приведения системы к ступенчатому виду появятся уравнения , т. е. равенства вида
, их отбрасывают, так как им удовлетворяют любые наборы чисел
. Если же при
появится уравнение вида, которое не имеет решений, то это свидетельствует о несовместности системы.

При обратном ходе из последнего уравнения преобразованной сту­пенчатой системы выражается первое неизвестное через все остальные неизвестные
, которые называютсвободными . Затем выражение переменнойиз последнего уравнения системы подставляется в предпоследнее уравнение и из него выражается переменная
. Аналогичным образом последовательно определяются переменные
. Переменные
, выраженные через свободные переменные, называютсябазисными (зависимыми). В результате получается общее решение системы линейных уравнений.

Чтобы найти частное решение системы, свободным неизвестным
в общем решении придаются произвольные значения и вычисляются значения переменных
.

Технически удобнее подвергать элементарным преобразованиям не сами уравнения системы, а расширенную матрицу системы

.

Метод Гаусса - универсальный метод, который позволяет решать не только квадратные, но и прямоугольные системы, в которых число неизвестных
не равно числу уравнений
.

Достоинство этого метода состоит также в том, что в процессе решения мы одновременно исследуем систему на совместность, так как, приведя расширенную матрицу
к ступенчатому виду, легко определить ранги матрицыи расширенной матрицы
и применитьтеорему Кронекера - Капелли .

Пример 2.1 Методом Гаусса решить систему

Решение . Число уравнений
и число неизвестных
.

Составим расширенную матрицу системы, приписав справа от матрицы коэффициентов столбец свободных членов.

Приведём матрицу к треугольному виду; для этого будем получать «0» ниже элементов, стоящих на главной диагонали с помощью элементарных преобразований.

Чтобы получить «0» во второй позиции первого столбца, умножим первую строку на (-1) и прибавим ко второй строке.

Это преобразование запишем числом (-1) против первой строки и обозначим стрелкой, идущей от первой строки ко второй строке.

Для получения «0» в третьей позиции первого столбца, умножим первую строку на (-3) и прибавим к третьей строке; покажем это действие с помощью стрелки, идущей от первой строки к третьей.




.

В полученной матрице, записанной второй в цепочке матриц, получим «0» во втором столбце в третьей позиции. Для этого умножили вторую строку на (-4) и прибавили к третьей. В полученной матрице вторую строку умножим на (-1), а третью - разделим на (-8). Все элементы этой матрицы, лежащие ниже диагональных элементов - нули.

Так как , система является совместной и определенной.

Соответствующая последней матрице система уравнений имеет треугольный вид:

Из последнего (третьего) уравнения
. Подставим во второе уравнение и получим
.

Подставим
и
в первое уравнение, найдём


.

Учреждение образования «Белорусская государственная

Сельскохозяйственная академия»


Кафедра высшей математики

Методические указания

по изучению темы «Метод Гаусса решения систем линейных

уравнений» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Метод Гаусса решения систем линейных уравнений

Эквивалентные системы уравнений

Две системы линейных уравнений называются эквивалентными, если каждое решение одной из них является решением другой. Процесс решения системы линейных уравнений состоит в последовательном преобразовании её в эквивалентную систему с помощью так называемых элементарных преобразований , которыми являются:

1) перестановка любых двух уравнений системы;

2) умножение обеих частей любого уравнения системы на отличное от нуля число;

3) прибавление к любому уравнению другого уравнения, умноженного на любое число;

4) вычёркивание уравнения, состоящего из нулей, т.е. уравнения вида .

Гауссовы исключения

Рассмотрим систему m линейных уравнений с n неизвестными:

Суть метода Гаусса или метода последовательного исключения неизвестных состоит в следующем.

Вначале с помощью элементарных преобразований исключается неизвестная из всех уравнений системы, кроме первого. Такие преобразования системы называются шагом гауссового исключения . Неизвестная называется разрешающей переменной на первом шаге преобразований. Коэффициент называется разрешающим коэффициентом , первое уравнение называется разрешающим уравнением , а столбец коэффициентов при разрешающим столбцом .

При выполнении одного шага гауссового исключения нужно пользоваться следующими правилами:

1) коэффициенты и свободный член разрешающего уравнения остаются неизменными;

2) коэффициенты разрешающего столбца, расположенные ниже разрешающего коэффициента, обращаются в нули;

3) все прочие коэффициенты и свободные члены при выполнении первого шага вычисляются по правилу прямоугольника:



, где i =2,3,…,m ; j =2,3,…,n .

Аналогичные преобразования выполним и над вторым уравнением системы. Это приведёт к системе, у которой во всех уравнениях, кроме первых двух, будет исключена неизвестная . В результате таких преобразований над каждым из уравнений системы (прямой ход метода Гаусса) исходная система приводится к эквивалентной ей ступенчатой системе одного из следующих видов.

Обратный ход метода Гаусса

Ступенчатая система

имеет треугольный вид и все (i =1,2,…,n ). Такая система имеет единственное решение. Неизвестные определяются, начиная с последнего уравнения (обратный ход метода Гаусса).

Ступенчатая система имеет вид

где , т.е. число уравнений системы меньше либо равно числу неизвестных. Эта система не имеет решений, так как последнее уравнение не будет выполняться ни при каких значениях переменной .

Ступенчатая система вида

имеет бесчисленное множество решений. Из последнего уравнения неизвестная выражается через неизвестные . Затем в предпоследнее уравнение вместо неизвестной подставляется её выражение через неизвестные . Продолжая обратный ход метода Гаусса, неизвестные можно выразить через неизвестные . В этом случае неизвестные называются свободными и могут принимать любые значения, а неизвестные базисными.

При практическом решении систем удобно выполнять все преобразования не с системой уравнений, а с расширенной матрицей системы, состоящей из коэффициентов при неизвестных и столбца свободных членов.

Пример 1 . Решить систему уравнений

Решение . Составим расширенную матрицу системы и выполним элементарные преобразования:

.

В расширенной матрице системы число 3 (оно выделено) является разрешающим коэффициентом, первая строка является разрешающей строкой, а первый столбец – разрешающим столбцом. При переходе к следующей матрице разрешающая строка не изменяется, все элементы разрешающего столбца ниже разрешающего элемента заменяются нулями. А все другие элементы матрицы пересчитываются по правилу четырёхугольника. Вместо элемента 4 во второй строке запишем , вместо элемента -3 во второй строке будет записано и т.д. Таким образом, будет получена вторая матрица. У этой матрицы разрешающим элементом будет число 18 во второй строке. Для формирования следующей (третьей матрицы) вторую строку оставляем без изменения, в столбце под разрешающим элементом запишем нуль и пересчитаем оставшиеся два элемента: вместо числа 1 запишем , а вместо числа 16 запишем .

В результате исходная система свелась к эквивалентной системе

Из третьего уравнения находим . Подставим это значение во второе уравнение: y =3. В первое уравнение подставим найденные значения y и z : , x =2.

Таким образом, решением данной системы уравнений является x =2, y =3, .

Пример 2 . Решить систему уравнений

Решение . Выполним элементарные преобразования над расширенной матрицей системы:

Во второй матрице каждый элемент третьей строки разделили на 2.

В четвёртой матрице каждый элемент третьей и четвёртой строки разделили на 11.

. Полученная матрица соответствует системе уравнений

Решая данную систему, найдём , , .

Пример 3 . Решить систему уравнений

Решение . Запишем расширенную матрицу системы и выполним элементарные преобразования:



.

Во второй матрице каждый элемент второй, третьей и четвёртой строк разделили на 7.

В результате получена система уравнений

эквивалентная исходной.

Так как уравнений на два меньше, чем неизвестных, то из второго уравнения . Подставим выражение для в первое уравнение: , .

Таким образом, формулы дают общее решение данной системы уравнений. Неизвестные и являются свободными и могут принимать любые значения.

Пусть, например, Тогда и . Решение является одним из частных решений системы, которых бесчисленное множество.

Вопросы для самоконтроля знаний

1) Какие преобразования линейных систем называются элементарными?

2) Какие преобразования системы называются шагом гауссова исключения?

3) Что такое разрешающая переменная, разрешающий коэффициент, разрешающий столбец?

4) Какими правилами нужно пользоваться при выполнении одного шага гауссова исключения?