Дистрофия сетчатки глаза — как улучшить зрение прибором «очки сидоренко. Рабочая программа учебной дисциплины (модуля) анатомия, физиология и патология

  • Дата: 16.04.2019

Природа дала человеку не только способность четко видеть днем и хорошо различать цвета. Человеческий глаз приспособлен и к сумеречному зрению. Это хорошо знают любители ночной охоты, опытные туристы, военные, сотрудники спецслужб. Существуют специальные приемы, позволяющие улучшить зрение в темноте даже без приборов ночного видения. Однако при некоторых глазных болезнях в темноте не видно ничего. Особенности ночного зрения и их аномалии рассмотрит MedAboutMe.

Строение сетчатки

Сетчатка состоит из десяти слоев клеток. Почти в самом наружном из них расположены особые клетки, способные воспринимать цвет и свет. Это фоторецепторы: колбочки и палочки. Они отличаются строением и функциями.

Первые отвечают за зрение при дневном освещении и восприятие цветов. Большинство колбочек расположено в центральной части глазного дна. А место наилучшего видения - центральная ямка сетчатки - состоит только из них. Когда требуется рассмотреть все детали, человек помещает предмет прямо перед глазом. При этом мозг получает четкое цветное изображение, сформированное в центральной ямке сетчатки.

Палочки отвечают за зрение в темноте и хорошо воспринимают движение. Эти фоторецепторы сгруппированы на периферии глазного дна. Палочки расположены менее плотно, чем колбочки. Это ведет к меньшей разрешающей способности сетчатки в темноте, а, значит, и к более низкому зрению.

Палочки могут формировать только черно-белое изображение, зато они имеют высокую фоточувствительность. Эти клетки почти в 100 раз чувствительнее к свету, чем колбочки.

Особые клетки сетчатки

«В ходе эволюции сетчатка многих живых существ достигла предела чувствительности. Она чувствует ничтожно малое количество света - один фотон. И это очень важно в темное время суток, когда освещенность измеряется лишь несколькими фотонами», - рассказывает доцент нейробиологии и медицинской инженерии Грег Филд из университета Дюка, расположенного в США.

Эта же группа исследователей обнаружила интересные особенности клеток, расположенных в самом внутреннем слое сетчатки. Некоторые из них воспринимают перемещение в определенном направлении. Так, есть клетки, отвечающие за улавливание движения, направленного вниз, вправо и так далее.

В темноте клетки, реагирующие на движение вверх, меняют свое «поведение». Они активируются при движении в любом направлении. Точная причина этого явления пока неизвестна. Грег Филд предполагает, что это особенно нужно тем животным, которые могут стать жертвами хищников. Постоянная активность таких нейронов позволяет вовремя уловить его прыжок в темноте. У человека таких клеток немного, всего около 4%, а вот у грызунов их доля достигает 20-30%.

Механизм восприятия света

Попадая внутрь глаза, световой поток фокусируется роговицей и хрусталиком в одну точку на сетчатке. Затем свет проходит через все ее слои и лишь в наружной части встречается с фоторецепторами.

Основной процесс восприятия света происходит в наружном сегменте палочек и колбочек. Он представляет собой стопку дисков. Каждый диск состоит из зрительного пигмента, окруженного мембраной. В палочках это родопсин, а в колбочках- йодопсин. Родопсин состоит из ретиналя (особая форма витамина А) и белка опсина.

Зрительный пигмент - особое вещество, способное изменять свою структуру при попадании света. Это запускает ряд химических превращений и ведет к формированию электрического потенциала. Этот импульс и передается по зрительному нерву в мозг. Тут изображение формируется и распознается.

При резкой смене уровня освещенности глаз не сразу приспосабливается к новым условиям. Процесс приспособления к яркому свету называется световой адаптацией, а к низкому освещению - темновой адаптацией. Существуют специальные приборы для регистрации световой чувствительности в ходе темновой адаптации. Они называются адаптометрами.

К свету глаз адаптируется быстро, это занимает 1-3 минуты. А вот темновая адаптация продолжается несколько часов. Поэтому для хорошего зрения в темное время суток следует выждать не менее часа. При этом надо избегать любого яркого света, включая карманный фонарик. Это позволит глазу максимально адаптироваться к низкому освещению.

Можно ли убить взглядом?

Интересно, что глаз может не только воспринимать информацию, но и воздействовать на окружающий мир. Так, в 2003 году канадский охотник оказался один на один с голодным медведем гризли. Ружье было недоступно, зверь был совсем рядом. От отчаянья охотник, по его словам, стал пристально смотреть ему в глаза. Медведь, вопреки обыкновению, взгляда не отвел. Никто не знает, сколько длилась эта сцена, однако в итоге хищник упал замертво. После рассказа охотника зверя нашли и произвели вскрытие. Оказалось, он умер от кровоизлияния в мозг.

Причины снижения темновой адаптации

Жалобы на низкое зрение в темноте могут быть вызваны несколькими причинами.

  • Аномалии рефракции.

Зрение большинства людей не идеально. Особенно часто встречается небольшая близорукость, реже астигматизм. И некоторые люди даже не догадываются об этом. При слабом освещении зрачок расширяется, в глаз попадает гораздо больше косых лучей. Имеющиеся аномалии рефракции мешают им сфокусироваться на сетчатке, изображение получается нечетким. Человек жалуется на низкое зрение в темноте.

Это явление можно сравнить с эффектом дырчатых очков. Их отверстия уже, чем зрачок при дневном освещении. Это дает более высокую остроту зрения в очках. Поэтому же с узким зрачком днем видно лучше, чем с широким зрачком ночью.

  • Глазные болезни.

Существует только одно офтальмологическое заболевание, которое длительное время проявляется только этим признаком. Это пигментная дистрофия сетчатки, она же - пигментный ретинит.

Плохое ночное зрение может сопровождать и другие заболевания. Например, воспаление зрительного нерва, его атрофия, воспаление сетчатки с прилежащей частью сосудистой оболочки, внутриглазное инородное тело. Но в этом случае обязательно будут и другие признаки, указывающие на проблему. Например, низкое зрение днем, слабое различение цветов, вялотекущее воспаление глаза.

  • Недостаток витамина А в питании.

Из него строится важнейшая часть зрительного пигмента родопсина. Поэтому его недостаточное поступление с пищей приводит к нарушению ночного зрения. О гиповитаминозе А также говорят шелушение кожи, сухость и ломкость волос, поперечная исчерченность ногтей, частые конъюнктивиты или стоматиты.

Пигментный ретинит

Причина заболевания точно не известна. Однако большинство исследователей связывают ее с мутациями в генах, кодирующих родопсин. Заболевание передается по наследству.

Суть болезни состоит в гибели фоторецепторов. Обычно сначала страдают палочки, но есть варианты смешанной палочко-колбочковой дистрофии. Как правило, процесс начинается с периферии глазного дна. С палочками и колбочками тесно контактирует самый наружный слой сетчатки - пигментный эпителий. Он отвечает за восстановление фоторецепторов после поглощения света и фотоизоляцию их друг от друга.

Структура пигментного эпителия также изменяется. Отдельные клетки перемещаются во внутренние слои сетчатки. Это очень затрудняет работу оставшихся фоторецепторов.

Заболевание проявляет себя довольно рано. Примерно в 95% случаев оно диагностируется до 30 лет. Первым признаком является снижение зрения в темноте. Многие больные не переносят и яркий свет. Затем появляются дефекты поля зрения. Типичен дефект в виде широкого кольца, которое оставляет свободным только центр и крайнюю периферию поля зрения.

Сужение поля зрения резко ухудшает ориентацию в пространстве. Но острота зрения долго остается высокой. Заболевание постепенно прогрессирует, исходом является полная слепота.

Современные методы лечения болезни

Эффективных способов борьбы с заболеванием не существует. Активно разрабатываются методы генной терапии. Суть ее состоит во введении в полость глаза модифицированных вирусов. Они несут в себе «правильные» гены клеток-фоторецепторов. Вирусы встраиваются в геном палочек. Это восстанавливает их нормальную работу. Впервые такая процедура была выполнена в Америке в марте 2018 года. Первым пациентом стал тринадцатилетний мальчик по имени Jack Hogan.

Однако генная терапия пока проходит клинические испытания и еще не вошла в клиническую практику. Кроме того, изучается применение стволовых клеток и больших доз витамина А.

В США в 2011 году для лечения больных пигментным ретинитом был разработан специальный протез сетчатки Argus. Он устанавливается на глазном дне хирургическим путем. Метод применяется только на поздних стадиях заболевания.

Конечно, устройство не дает полноценного зрения. Однако все пациенты с протезами отмечали улучшение распознавания объектов и восприятия движущихся предметов. В настоящее время Argus устанавливают в клиниках Германии, Великобритании, Франции и Италии.

Таким образом, зрение в темное время суток может быть снижено по очень разным причинам. Можно начать с похода в ближайшую оптику для выявления аномалий рефракции. Если их коррекция не дает результата, то следует пройти тщательное обследование у грамотного офтальмолога.

Использованы фотоматериалы Shutterstock


Елена Стешенко, офтальмолог

Является органом зрения. Главными его функциями являются центральное и предметное зрение, светоощущение, цветоощущение, периферическое и стереоскопическое зрение.

Строение глаза

Глаз человека состоит из глазного яблока и вспомогательных образований. По принципу работы его можно сравнить с первоклассной фотокамерой. Он имеет двояковыпуклую линзу (хрусталик ), которая может фокусироваться на различные расстояния, диафрагму (радужка ), регулирующую размер светового отверстия (зрачок ), и светочувствительную сетчатку , соответствующую цветной фотопленке. Непосредственно за сетчаткой находится слой клеток, наполненных черным пигментом, который поглощает излишний свет и предотвращает смазывание изображения (сосудистая оболочка ).

Глазное яблоко

Глазное яблоко имеет шаровидную форму и лежит в полости глазницы. В нем различают передний и задний полюсы, экватор. Линия, соединяющая полюсы, называется наружной осью глазного яблока; в норме ее длина равна 24 мм. Глазное яблоко состоит из внутреннего ядра и окружающих его трех оболочек. Фиброзная оболочка (наружная) глазного яблока является защитной. В заднем, большем, отделе она образует склеру , плотную, белого цвета, в переднем - прозрачную роговицу , через которую в глаз проникает свет.

Сосудистая оболочка (средняя) глазного яблока богата кровеносными сосудами. В ней выделяют 3 части: собственно сосудистую оболочку, ресничное тело и радужку. Радужка - передняя часть сосудистой оболочки - имеет вид круглой пластинки с отверстием в центре - зрачком . Цвет радужки зависит от содержания в ней пигмента. Большое количество пигмента обусловливает коричневую окраску глаз, малое - голубую или зеленовато-серую.

Величину зрачка регулируют мышцы, заложенные в толще радужки: мышца, суживающая зрачок, и мышца, расширяющая зрачок. Размеры зрачка изменяются в зависимости от количества поступающего в глаз света: чем больше света, тем зрачок меньше, и наоборот.

Реакция зрачка на изменение интенсивности освещения происходит не мгновенно, а в течение 10-30 секунд. Поэтому требуется определенное время для привыкания глаз к темноте (при переходе из ярко освещенного места в темное) и к свету (при выходе из темного помещения на ярко освещенную улицу).

Кзади от радужки в виде валика располагается ресничное тело . В нем заложена ресничная мышца , сокращение которой через специальную связку (ресничный поясок) передается на хрусталик и вызывает изменение его кривизны. Тем самым осуществляется аккомодация - приспособление глаза к видению предметов на разном расстоянии. При сокращении ресничной мышцы натяжение связки ослабевает, хрусталик в силу своих эластических свойств становится более выпуклым, его преломляющая способность увеличивается и глаз настраивается на рассматривание близко расположенных предметов. Если ресничная мышца расслабляется, то хрусталик, напротив, уплощается и глаз настраивается на рассматривание далеко расположенных объектов. Ресничное тело также вырабатывает специальную внутриглазную жидкость - водянистую влагу , заполняющую камеры глаза.

Собственно сосудистая оболочка , располагающаяся позади ресничного тела, содержит большое количество кровеносных сосудов, снабжающих кровью другие оболочки глазного яблока, и черный пигментный слой, который поглощает свет.


Чувствительная оболочка (внутренняя) глазного яблока называется сетчаткой . Она имеет сложное строение. Здесь находятся светочувствительные рецепторные клетки - палочки (около 125 млн) и колбочки (6,5 млн). Они содержат пигмент (палочки - родопсин, колбочки - йодопсин), который поглощает лучи с определенной длиной световой волны.

Поглощая свет, зрительный пигмент меняется, что приводит к высвобождению энергии и возникновению нервного импульса. Существуют один тип палочек и три типа колбочек. Палочки необходимы в сумерках, они воспринимают информацию об освещенности и форме предметов. Колбочки, чувствительность которых к свету в 1000 раз меньше, - аппарат дневного и цветового видения. Разные типы колбочек реагируют на синий, зеленый или красный цвет. Другие цвета воспринимаются при одновременном раздражении колбочек двух или более типов.


Палочки и колбочки распределены в сетчатке неравномерно. Местом наилучшего видения в сетчатке является так называемое желтое пятно диаметром 1 мм, расположенное напротив зрачка, в котором имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а количество палочек возрастает. Недалеко от желтого пятна, ближе к носу, находится слепое пятно - место выхода зрительного нерва из сетчатки, которое не содержит светочувствительных элементов. При рассматривании специалистом глазного дна место выхода зрительного нерва легко определяется, т.к. именно здесь в сетчатку входят питающие ее сосуды.

Оболочки глазного яблока окружают его внутреннее ядро, которое состоит из прозрачных светопреломляющих сред: стекловидного тела , хрусталика и водянистой влаги, заполняющей переднюю и заднюю камеры глаза .

Хрусталик, как уже указывалось, имеет форму двояковыпуклой линзы, которая может менять свою кривизну. Он эластичен, прозрачен и расположен позади зрачка. Хрусталик преломляет входящие в глаз световые лучи и фокусирует их на сетчатке. Позади хрусталика находится стекловидное тело - прозрачная желеобразная масса, заполняющая пространство перед сетчаткой. Через стекловидное тело проходят световые лучи, которые преломляются роговицей и хрусталиком и фокусируются на сетчатке.

Пространство между роговицей и радужкой составляет переднюю камеру глаза, а между радужкой и хрусталиком - заднюю камеру . Камеры глаза сообщаются между собой через зрачок и заполнены прозрачной жидкостью - водянистой влагой. Водянистая влага питает те структуры глазного яблока, которые не имеют кровеносных сосудов: роговицу, хрусталик и стекловидное тело. Водянистая влага играет важную роль в поддержании внутриглазного давления, что необходимо для нормального зрения.

Вспомогательный аппарат глаза


Вспомогательный аппарат глаза включает брови, веки, мышцы глазного яблока и слезный аппарат. Брови служат для предохранения глаз от пота, стекающего со лба. Ресницы, находящиеся на свободных краях верхнего и нижнего век, защищают глаза от пыли, снега и дождя. На каждом веке около 80 ресниц, которые располагаются в 2-3 ряда. Ресницы обновляются в течение 100 дней. Основу века составляет плотная пластинка, которая снаружи покрыта кожей, а изнутри - особой соединительной оболочкой - конъюнктивой. Конъюнктива переходит с век на переднюю поверхность глазного яблока.

Слезный аппарат представлен слезной железой и слезоотводящими путями. Слезная железа лежит в ямке лобной кости у наружной стенки глазницы. Слеза омывает поверхность глазного яблока и стекает в медиальный угол глазной щели. Отсюда через слезные канальцы слеза отводится в полость носа. Слезы увлажняют роговицу и конъюнктиву, смывают пылевые частицы и обезвреживают микроорганизмы. Без слез роговица может высохнуть и ее преломляющая способность нарушится. Оттоку слезной жидкости способствуют мигательные движения век.

Подвижность глазного яблока обеспечивается шестью мышцами, которые располагаются вокруг него в глубине глазницы: четырьмя прямыми (верхняя, нижняя, наружная и внутренняя) и двумя косыми (верхняя и нижняя). Эти мышцы действуют таким образом, что оба глаза движутся синхронно и направлены на один и тот же объект. Схождение зрительных осей обоих глаз на рассматриваемом предмете называется конвергенцией. Такое положение глаз обеспечивает бинокулярное зрение (получение одного изображения в обоих глазах), что важно для восприятия размера, формы, объема предмета, а также движения, расстояния и глубины. Мышцы глаза сокращаются произвольно, команды к ним от головного мозга проводятся по трем парам черепных нервов.

От глазных яблок зрительная информация поступает в головной мозг по зрительным нервам. Зрительный нерв образован отростками нервных клеток, лежащих в сетчатке. На нижней поверхности мозга зрительные нервы перекрещиваются, причем на другую сторону переходят лишь волокна, которые идут от внутренних половин сетчатки. После перекреста нервы носят название зрительных трактов . В каждом зрительном тракте проходят волокна, несущие информацию от внутренней половины сетчатки противоположного глаза и наружной половины сетчатки глаза своей стороны. Тем самым создаются условия для бинокулярного зрения. Зрительный тракт оканчивается в подкорковых зрительных центрах. Отсюда часть волокон направляется к центру зрения в коре затылочной доли полушарий большого мозга (вблизи шпорной борозды), где формируются зрительные ощущения. Другая часть волокон обеспечивает осуществление рефлекторных движений глаз: их поворот, зрачковый рефлекс и аккомодацию.

Головной мозг воспринимает раздражения из внешней среды и интерпретирует их с учетом всей накопленной информации. Так, получаемое на сетчатке изображение является перевернутым и уменьшенным. Но человек видит предметы неперевернутыми. Это происходит потому, что деятельность органа зрения проверяется показаниями других органов чувств.

Болезни глаза

Вследствие неправильного развития глазное яблоко может быть удлиненным, при этом уже в молодом возрасте возникает близорукость (миопия); при укорочении глазного яблока отмечается дальнозоркость (гиперметропия). Эти дефекты зрения исправляют с помощью очков.

Нарушение цветового зрения называется дальтонизмом, им страдают около 8% мужчин и 0,5% женщин. Цветовая слепота объясняется отсутствием колбочек одного или нескольких типов, что связано с генетическим дефектом.

С возрастом эластичность хрусталика уменьшается. Вместе с атрофией ресничной мышцы это приводит к нарушению аккомодации, тогда человек плохо видит на близком расстоянии. Исправляют такую старческую дальнозоркость с помощью очков - двояковыпуклых линз, которые надевают при чтении. С возрастом хрусталик может потерять и свою прозрачность. Помутнение хрусталика называют катарактой и лечат хирургическим путем.

Нарушение зрения, называемое астигматизмом , возникает в случае неправильной кривизны роговицы или хрусталика. В этом случае изображение на сетчатке искажается. Для исправления нужны очки с цилиндрическими стеклами. Повышение внутриглазного давления является признаком тяжелого заболевания глаз - глаукомы .

Воспаление соединительной оболочки, называемое конъюнктивитом , вызывается инфекцией, пылью или химическими веществами и характеризуется ее покраснением, отеком, чувством жжения и тяжести в глазах.

Радужку в медицине приравнивают к своеобразному табло, где отражается
состояние человеческого организма. Метод иридодиагностики (диагностика
по радужке) позволяет установить локализацию различных
заболеваний в организме человека.

Профилактика зрения

Глаз человека - сложная оптическая система, требующая внимательного отношения. Следует оберегать глаза от механических воздействий. При чтении необходимо следить, чтобы свет падал слева, а расстояние от глаз до книги составляло 35-40 см. Нельзя наклоняться к книге ближе, т.к. постоянное напряжение ресничной мышцы может привести к преждевременному развитию близорукости.

Слишком яркое освещение также вредит зрению, поскольку разрушает световоспринимающие клетки. Не рекомендуется читать в движущемся транспорте: из-за неустойчивого положения книги все время меняется фокусное расстояние, что ослабляет аккомодационный аппарат. Расстройство зрения может возникнуть при недостатке в пище витамина А, поэтому необходима специальная диета для глаз . Также рекомендуется выполнять упражнения для глаз , устраивать перерывы от чтения и работы на компьютере.

Бережное отношение к глазам позволит надолго сохранить хорошее зрение и ясный взгляд на окружающий мир.

В органе зрения различают глазное яблоко и вспомогательные аппараты глаза.

Глазное яблоко располагается в глазнице, которая образована костями мозгового и лицевого черепа. Оно имеет вид шаровидного тела, более выпуклого спереди. Различают его передний и задний полюсы. Передний полюс соответствует центру роговицы, т. е. ее наиболее выпуклой части, задний находится несколько латеральнее входа в глазное яблоко зрительного нерва. Прямая линия, проходящая через передний и задний полюсы, носит название зрительная.ось глаза. Эта ось под острым углом пересекает прямую, соединяющую центр роговицы с местом наилучшего видения, которое расположено в области так называемого желтого пятна, находящегося на дне глазного яблока. Глазное яблоко имеет оболочки и светопреломляющие среды глаза. Наружная оболочка называется фиброзной, средняя - сосудистой, а внутренняя - чувствительной.

Фиброзная оболочка, в свою очередь, подразделяется на два отдела: задний, больший, белочную оболочку, или склеру, и

передний,меньший – роговую оболочку, или роговицу глаза.

Сосудистая оболочка находится за фиброзной оболочкой глазного ябдока. В сосудистой оболочке принято различать три части: заднюю –собственно сосудистую оболочку, среднюю – ресничное тело, и переднюю – радужку.

В толще ресничного тела находится ресничная мышца. Она состоит из пучков гладких мышечных волокон, которые расположены в трех направлениях: круговом, радиальном и меридиональном. Меридиональные волокна составляют основную часть ресничной мышцы. При напряжении эта мышца расслабляет связку, а через нее и капсулу хрусталика, который в силу своих эластических свойств становится при этом более выпуклым, что необходимо, когда требуется видеть предметы на близком расстоянии. При расслаблении мышцы ресничное тело принимает исходное положение, ресничные связки натягиваются, и хрусталик становится более плоским. В старческом возрасте эластичность связки и упругость хрусталика уменьшаются, что приводит к нарушению зрения.

Радужка, т. е. передняя часть сосудистой оболочки, имеет вид фронтально расположенного круглого диска с отверстием посередине - зрачком. Она построена из мышечных волокон кругового и радиального направления. Круговые волокна составляют мышцу-суживатель зрачка (сфинктер), а радиальные волокна - мышцу-расширитель зрачка (дилататор). Радужка выполняет функцию оптической диафрагмы, находящейся внутри глазного яблока. На радужке различают:

переднюю и заднюю поверхности. Передняя поверхность хорошо видна через роговицу. Она имеет пигмент, от характера и количества которого зависит цвет глаз: чем его больше, тем темнее цвет глаз.


Чувствительная (внутренняя) оболочка глазного яблока - это сетчатка, которая развивается в виде выроста из вещества промежуточного мозга и по своему происхождению, строению и функции составляет одно целое со зрительным нервом. Соответственно трем частям сосудистой оболочки прилегающая к ней сетчатка подразделяется на зрительную, ресничную и радужковую части. Наибольшей сложностью строения отличается зрительная часть, в которой под микроскопом различают до десятка слоев. В состав одного из слоев входят палочковидные и колбочковидные зрительные клетки (палочки и колбочки). Палочки воспринимают световые раздражения,а колбочки обеспечивают способность различать цвета и их оттенки. Палочки сетчатки имеют так называемый зрительный пурпур, или родопсин, который вырабатывается клетками "пигментного слоя. На свету зрительный пурпур разлагается, а в темноте вновь образуется, придавая всей сетчатке розоватый цвет.

Строение сетчатки: /, //, /// - первые, вторые и третьи нейроны сетчатки; / - пигментный слой; 2 - слой палочек и колбочек; 3 - наружная пограничная перепонка; 4 - внешний зернистый слой; 5 - внешний межзернистый слой; 6 - внутренний зернистый слой; 7 - внутренний межзернистый слой; 8 - гангли-озные клетки; 9 - волокна зрительного н.; 10 - внутренняя пограничная перепонка.

Наружный слой сетчатки, обращенный к сосудистой оболочке| глазного яблока, содержит пигмент и представляет собой пигментный эпителий, соединенный с сосудистой оболочкой значительно более прочно, чем с внутренними слоями самой сетчатки, обращенными в сторону полости глазного яблока. На зрительной части сетчатки выделяются два места, которые отличаются по своему строению и функциональным особенностям: сосок зрительного нерва и желтое пятно. Сосок зрительного нерва - это место вхождения нерва внутрь глазного яблока. Он имеет около 1,7 мм в поперечнике и располагается кнутри от места прохождения оптической оси глазного яблока. Желтое пятно (так называется потому, что у него желтоватый цвет) является местом наилучшего видения. Его поперечник равен приблизительно 1 мм. Посредине пятна есть центральная ямка - место наибольшей чувствительности сетчатки к световым раздражениям. В противоположность этому сосок зрительного нерва, не имеющий ни палочек, ни колбочек, световых раздражений не воспринимает и является своеобразным слепым пятном сетчатки глаза.Остальные две части сетчатки, ресничная и радужковая, построены сравнительно просто. Радужковая часть состоит из пигментного эпителия, о котором уже говорилось, а ресничная часть - из двух слоев эпителиальных клеток (наружный слой представляет собой пигментный эпителий).

Глазное яблоко имеет следующие прозрачные (преломляющие) среды: роговицу, жидкость передней и задней камер глазного яблока, хрусталик и стекловидное тело. Лучи, попадая в глаз, преломляются и образуют на сетчатке глаза обратное и уменьшенное изображение.

Передней камерой глазного яблока называется пространство между задней поверхностью роговицы, передней поверхностью радужки и отчасти передней поверхностью хрусталика. Щель между задней поверхностью радужки и передней поверхностью ресничной связки, а также отчасти передней поверхностью хрусталика носит название задняя камера глазного яблока. Обе камеры наполнены прозрачной жидкостью, которая вырабатывается кровеносными сосудами, в большом количестве находящимися в ресничных отростках. Жидкость передней камеры вместе с роговицей глаза образуют двояковыпуклую линзу, имеющую около 30 диоптрий, т. е. составляют преломляющую среду для проходящих световых лучей.

Наиболее важной светопреломляющей средой является хрусталик. Он построен из волокон, которые имеют шестигранную форму и идут по меридианам. Хрусталик заключен в прозрачную капсулу. По краю хрусталика она прикрепляется к ресничному пояску, который состоит из волокон, идущих к ресничному телу. По внешнему виду хрусталик сравнивают с двояковыпуклой линзой. Передняя поверхность хрусталика имеет меньшую выпуклость, чем задняя. Переднезадний размер его равен 3,7 мм. Когда при сокращении ресничной мышцы уменьшается натяжение прозрачной капсулы хрусталика, он в силу своих эластических свойств становится более выпуклым, и переднезадний размер его может достигать 4,4 мм. При рассматривании" отдаленных предметов хрусталик уплощается, а при рассматривании близко расположенных предметов становится толще. Приспособление глаза к наилучшему видению на близком и далеком расстоянии носит название аккомодация. У животных, живущих в воде, хрусталик имеет шаровидную форму, и его светопреломляющие свойства выше, чем у наземных животных. Человек же в воде недостаточно ясно видит очертания предметов. Это связано с тем, что светопреломляющие свойства прозрачных сред его глаза очень близки к светопреломляющему свойству воды. При переходе лучей из воды непосредственно в глаз преломление их оказывается незначительным и место пересечения находится уже не на сетчатке, как обычно, а сзади ее.

Всю полость глазного яблока позади хрусталика и ресничной связки занимает стекловидное тело, которое прилежит к сетчатой оболочке. Спереди оно имеет углубление, соответствующее по форме задней поверхности хрусталика. Стекловидное тело представляет собой прозрачное студенистое вещество, одетое прозрачной оболочкой и состоящее из тонких соединительнотканных волокон, белков и гиалуроновой кислоты.

Вспомогательные аппараты глаза. К вспомогательным органам глаза относятся мышцы, веки, конъюнктива и слезный аппарат.

Слезный аппарат:

1 - м., поднимающая верхнее веко; 2 - глазное яблоко; 3 - блок; 4 - слезное озеро; 5 - слезный мешок; 6 - носо-слезный проток; 7 - стенка носовой полости; 8 - нижнее веко; 9 - железы хряща века; 10 - нижняя косая м.; 11 -жировая ткань; 12 - нижняя стенка глазницы; 13 - нижняя прямая м.; 14 - выводные канальцы слезной железы; 15 - латеральная прямая м.; 16 - верхняя прямая м.; 17 - слезная железа; 18 - верхняя косая м.

Глазное яблоко приводят в движение 6 мышц: 4 прямые и 2 косые. Различают мышцы: верхнюю, нижнюю, медиальную и латеральную прямые и верхнюю и нижнюю косые. Все эти мышцы построены из поперечнополосатой мышечной ткани. Они начинаются от общего сухожильного кольца, которое располагается в глубине глазницы и охватывает зрительный нерв. Исключением является только наиболее короткая нижняя косая мышца, которая начинается непосредственно от надкостницы нижней стенки глазницы и идет к глазному яблоку. Прямые мышцы глазного яблока идут кпереди и прикрепляются в области его экватора, несколько спереди от него, прирастая к фиброзной оболочке глазного яблока. Верхняя косая мышца идет вдоль верхнемедиального края глазницы и сухожилием перекидывается через фиброзную петлю, прикрепляющуюся в лобной кости. От петли это сухожилие идет под острым углом кнаружи и прирастает к фиброзной оболочке глазного яблока сверху и несколько латерально от его срединной плоскости.

Функция мышц глазного яблока заключается в том, что косые мышцы вращают его вокруг переднезадней оси, медиальная и латеральная прямые мышцы - вокруг вертикальной оси, а верхняя и нижняя прямые - вокруг поперечной оси. Таким образом, глазное яблоко имеет возможность вращаться вокруг трех взаимно перпендикулярных осей. Практически же благодаря совместному действию отдельных мышц оно может вращаться вокруг любой оси, проведенной через его центр. При рассматривании отдаленных предметов оптические оси глаз устанавливаются более параллельно и пересекаются при их продолжении под более острым углом, чем при рассматривании близко расположенных предметов.

Все глазное яблоко вместе с мышцами находится внутри полости глазницы и окружено жировой клетчаткой. Стенки глазницы выстланы надкостницей. Жировая клетчатка отделяется от глазного яблока соединительнотканным листком, который носит название влагалища глазного яблока. Между влагалищем и фиброзным слоем стенки глазного яблока находится пространство щелевидной формы, которое напоминает полость шаровидного сустава. Однако в отличие от суставных полостей оно имеет тонкие тяжи, соединяющие фасцию глазного яблока с его стенкой. Мышцы, подходя к глазному яблоку, проходят своими сухожилиями через эту фасцию.

Веки представляют собой образования, защищающие глазное яблоко спереди. Различают верхнее и нижнее веки. Верхнее веко больше нижнего и значительно подвижнее его благодаря действию мышцы, поднимающей верхнее веко, которая прикрепляется к его хрящу. По краям век растут ресницы. Между свободными краями верхнего и нижнего века находится глазная щель. Ее наружный угол острый, а внутренний имеет закругления и образует так называемое слезное озеро. Внутри этого угла располагается небольшое возвышение розоватого цвета - слезное мясцо, содержащее жировую ткань и сальные железки. Скелетом каждого века является хрящ века. Веки снабжены железами хряща, а также сальными железами, секрет которых смазывает края век и ресницы. Непосредственно под кожей на веках располагается мышца, которая составляет часть круговой мышцы глаза. Она является антагонистом мышцы, поднимающей верхнее веко.

Конъюнктива - это слизистая оболочка, покрывающая внутреннюю поверхность век и часть глазного яблока. Место перехода конъюнктивы с век на глазное яблоко именуется сводом. Различают верхний и нижний своды конъюнктивы.

Слезный аппарат включает слезную железу и систему слезных путей. Слезная железа находится в латеральном верхнем углу глазницы. Она относится к альвеолярно-трубчатым железам и имеет от 5 до 12 выводных канальцев, которые открываются в области верхнего свода конъюнктивы, в его наружном отделе. Слезная железа вырабатывает секрет, увлажняющий глазное яблоко при смыкании век.

Слезы стекают по слезным путям, по направлению к медиальному углу глаза. Когда веки сомкнуты, между ними по линии смыкания образуется щель треугольной формы, носящая название слезного ручья, по которому слезы попадают в слезное озеро, а оттуда в слезные канальцы. Верхний и нижний слезные канальцы идут медиально и сходятся, образуя расширение - слезный мешок, окруженный фиброзной тканью и прирастающий к слезной кости. К стенке слезного мешка прикрепляется слезная часть круговой мышцы глаза, которая при сокращении может расширять слезный мешок и тем самым способствовать присасыванию скапливающихся слез в слезные канальцы. Слезный мешок продолжается книзу в виде носослезного протока, который идет в костном носослезном канале, открывающемся в носовую полость под нижней носовой раковиной.

Кровоснабжение сетчатки глаза и зрительного нерва осуществляет центральная артерия сетчатки, которая входит внутрь глазного яблока в толще зрительного нерва и является ветвью глазной артерии (ветви внутренней сонной артерии). Вместе с центральной артерией проходит центральная вена сетчатки.

На экваторе расположены 4 вортикозные вены, впадающие в глазные вены, которые вливаются в пещеристый синус.

Иннервацию глазного яблока (помимо зрительного нерва) осуществляют ветви, принадлежащие к системе тройничного нерва, и ветви связанного с ним ресничного узла. Иннервация гладких мышц глазного яблока и наружных мышц, построенных из поперечнополосатой мышечной ткани, уже была рассмотрена.

Ход зрительной информации. Световые лучи, пройдя через прозрачные, светопреломляющие среды глазного яблока, попадают на сетчатку, где воспринимаются ее палочками и колбочками. Зрительная информация идет к биполярным клеткам, передающим импульсы ганглиозным клеткам сетчатки, которые являются более крупными и имеют хорошо выраженное тигроидное вещество в цитоплазме. Нейриты этих клеток образуют пучки волокон, из которых складывается зрительный нерв - проводник зрительного анализатора. Из глазницы зрительный нерв через одноименный канал проходит внутрь черепа, где на основании мозга, в области турецкого седла, образует неполный перекрест, продолжаясь в зрительный тракт. Волокна зрительного тракта идут к зрительному бугру, где расположен третий нейрон пути, а затем в центральную часть анализатора - в зрительный центр коры большого мозга, находящийся в затылочной доле по краям шпорной бороды. Часть волокон проходят к латеральным коленчатым телам и верхним холмикам четверохолмия. Благодаря связи последних с черепными нервами и с автономной нервной системой возможна автоматическая регуляция величины зрачка, установка глаз на рассматриваемый предмет.

Слепое пятно глаза открыто французским физиком Эдмом Мариоттом в 1668 г. Он использовал свое открытие для оригинальной забавы придворных короля Людовика XIV. Мариотт помещал двух зрителей на расстоянии двух метров друг напротив друга и просил их рассматривать одним глазом некоторую точку сбоку, тогда каждому казалось, что у его визави нет головы. Голова попадала в сектор слепого пятна смотрящего глаза.

Известен рисунок Мариотта для нахождения слепого пятна. Если смотреть на крестик правым глазом (левый глаз должен быть закрыт), приближая или отдаляя рисунок от глаза, наступает момент, когда черный кружок не виден.

Рис. 1. Рисунок Мариотта для нахождения слепого пятна глаза

Глаз устроен так, что человек может сосредоточить внимание на чем-то, что особенно заинтересовало его в этот момент. Интерес может быть продиктован жизненной необходимостью, а может быть вызван и красотой формы.

Рис. 2. Геометрическая схема глазного дна

В центре глазного дна есть небольшое углубление – центральная ямка. Это место наилучшего видения. Главный луч зрения всегда направлен по оси: центральная ямка – центр хрусталика – рассматриваемый предмет. Вокруг центральной ямки расположилось желтое пятно. Это место дневного зрения и наилучшего цветового восприятия. Чем дальше от желтого пятна, тем меньше колбочек содержит сетчатка и все больше палочек. Палочки приспособлены для сумеречного зрения и для восприятия формы. На некотором расстоянии от желтого пятна находится так называемое слепое пятно . Здесь нет ни колбочек, ни палочек, этим местом глаз не видит. Это сосок зрительного нерва.

Зачем слепое пятно? Разве нельзя было все волокна зрительного нерва, идущие к колбочкам и палочкам, собрать где-то в глубине глаза, а не на поверхности сетчатки? И почему слепое пятно природа разместила именно здесь, а не где-нибудь дальше, ведь места в глазном яблоке еще много?!

В соответствии со своим строением глаз не просто передает в мозг световые сигналы, поступившие в него извне, не зеркально отражает все то, что находится перед ним, а готовит информацию для мозга в определенном порядке и соподчиненности. Центральная ямка и желтое пятно дают самое четкое изображение и наилучшее цветовосприятие. Периферическая часть поля ясного зрения дает менее четкое восприятие и тем самым обеспечивает главенствующую роль центра. Слепое пятно не участвует в зрительном восприятии совсем. За слепым пятном идет еще более дальняя периферия, которая обеспечивает только общее восприятие, являясь как бы фоном для поля ясного зрения, но она очень чувствительна к световым сигналам от движущихся предметов, что биологически имеет смысл и очень важно в борьбе за существование.

А что же делает самая дальняя периферия глазного яблока, куда не попадают световые лучи? Там создается ноль-цвет и служит он базой для сравнения всех цветовых ощущений, которые дает сетчатка.

Как видим, глаз устроен разумно. Желтое пятно имеет слегка вытянутую форму по горизонтали и соответствует углам 6° и 8°. На расстоянии 12° от центральной ямки начинается слепое пятно, которое соответствует углу 6°. До наружного края слепого пятна от середины центральной ямки 18°. Если таким радиусом описать круг, получим основание зрительного конуса, соответствующее 36°. Это поле ясного зрения .

Безусловно, глазное дно не расчерчено циркулем. Это живая ткань и границы названных элементов глазного дна размыты, нечетки, но они есть. Таким образом, можно заключить, что наружная граница слепого пятна является границей поля ясного зрения.

Источники информации:

  1. Ковалев Ф.В. Золотое сечение в живописи. – К.: Выща школа, 1989.
  2. Лаврус В.С. Свет и тепло . – К.: НиТ, 1998.

1. желтое пятно 2. слепое пятно

3. стекловидное тело 4. роговица

2. Периферический отдел слуховой сенсорной системы расположен в …

1. наружном ухе 2. внутреннем ухе

3. среднем ухе 4. височной коре

3. В барабанной полости расположены …

1. преддверие и улитка 2. костные ячейки

3. слуховые косточки 4. слуховой и вестибулярный нервы

4. Атрезия наружного слухового прохода – это …

1. травма наружного слухового прохода

2. воспаление наружного слухового прохода

3. искривление наружного слухового прохода

4. заращение наружного слухового прохода

5. К полной глухоте приводит заболевание…

1. диффузный гнойный лабиринтит

2. ограниченный лабиринтит

3. катаральный средний отит (тубоотит)

4. оставшееся прободение в барабанной перепонке

6. Слуховая (евстахиева) труба обеспечивает...

1. восприятие звуковых колебаний 2. возможность различения высоты звука

3. выравнивание давления по обе стороны барабанной перепонки

4. определение направления звука

7. Какое нарушение рефракции глаза отмечено на рисунке 1 цифрой 2 ...

8. У детей до 8 - 10 лет глаз является...


  1. естественно близоруким

  2. нормальным

  3. астигматическим

  4. естественно дальнозорким
9. При разрастании эта миндалина образует аденоиды у детей …

1. небная 2. носоглоточная

2. язычная 4. Трубная

1. черпаловидному и перстневидному

2. клиновидному и щитовидному

3. надгортаннику и клиновидному

4. щитовидному и черпаловидному

11. Поперечная черпаловидная мышца при сокращении вызывает…

12. Подбородочно=язычная мышца языка при сокращении …

1. осаживает язык книзу 2. выдвигает язык вперед

2. втягивает язык в полость рта

4. укорачивает язык, загибает его кончик книзу

13. При параличе мягкого неба …

1. воздух при произнесении звуков речи проходит только через нос

2. воздух при произнесении звуков речи проходит только через рот

3. воздух при произнесении звуков речи проходит через рот и нос

Студент должен владеть:

Методами определения функционального состояния отдельных систем организма у лиц, занимающихся физической культурой и спортом.


4. Общая трудоемкость дисциплины 5 зачетных единиц (180 часов) и виды учебной работы.

Вид учебной работы


Трудоемкость (час)

Распределение по семестрам

Всего

1

2

Аудиторные занятия

74

37

37

Лекции

37

18

19

Практические занятия

Семинары

Лабораторные работы

37

18

19

Другие виды аудиторных работ

Занятия в интерактиве

16

8

8

Другие виды работ

Самостоятельная работа

79

39

40

Курсовая работа

Реферат

х

х

х

Расчетно–графические работы

Формы текущего контроля

Тест, к/р

Тест, к/р

Тест. к/р

Формы промежуточной аттестации

зачет

экзамен

п/п

Разделы дисциплины

Лекции (час)

Лабораторные работы

Самостоятельная работа

1



2

4

2

Остеология. Теоретическая анатомия костной системы. Возрастные изменения. Адаптация костей к физическим нагрузкам.

2

4

4

3

Артрология. Теоретическая анатомия соединений костей. Возрастные изменения. Адаптация соединений костей к физическим нагрузкам.

2

4

6

4

Миология. Скелетные мышцы. Общая и функциональная анатомия мышц. Адаптация мышц к физическим нагрузкам.

4

3

6

5

Морфокинезиологический анализ конечностей.

2

2

6

6

Динамическая анатомия положений тела. Динамическая анатомия движений тела.

2

2

6

7

Динамическая анатомия ациклических движений тела.

2

2

6

8

Динамическая анатомия цикличных движений тела.

2

2

5

9

Динамическая анатомия вращательных движений.

2

2

4

10

Пищеварительная система.

2

2

4

11

Дыхательная и мочевыделительная системы.

2

2

4

12

Общая ангиология.

2

2

4

13

Частная ангиология

2

2

4

14

Сердце.

2

2

4

15

Лимфатическая и эндокринная системы

2

2

4

16

Спинной и головной мозг.

3

2

4

17

Проводящие пути, вегетативная нервная система

2

2

4

Итого

37

37

79

5.2. Содержание разделов дисциплины

Введение в анатомию. Общетеоретические основы функциональной анатомии. Анатомия как наука и предмет преподавания. Содержание анатомии и ее место среди биологических наук. Задачи анатомии, ее связь с дисциплинами медико-биологического и спортивно-педагогического профилей. Методологические основы анатомии. Проблема целостности организма человека. Строение тела человека во взаимосвязи с его функциями в процессе индивидуального и исторического развития. Значение социальных и биологических факторов в становлении организма человека . Методы исследования в анатомии. Классификация морфологических (анатомических) и спортивно-морфологических наук.

Роль отечественных ученых в развитии анатомических наук (И.И. Пирогов, В.А. Бец, П.Ф. Лесгафт, Н.П. Гундобин, Д.И. Зернов, В.Н. Тонков, В.П. Воробьев, В.Н. Шевкувенко, Г.М. Иосифов, В.В. Бунак, М.Ф. Иваницкий, Д.А. Жданов, В.В. Куприянов). Принципы изучения анатомии. Современные представления о целостности организма и уровнях его структурной организации. Организм и среда.

Органы, системы и аппараты органов. Принципы разграничения систем и аппаратов. Органы (системы, аппараты) исполнения, обеспечения и регуляции движений человека.

Понятие об адаптации и преадаптации . Морфофункциональная система движений и ее компоненты: органы систем исполнения, обеспечения, управления и регуляции движения человека. Факторы, обусловливающие эффект адаптационных реакций: доза (интенсивность) воздействия, однократность и многократность действия, реакция организма. Понятие о норме реакции организма (его реактивности). Факторы, определяющие норму реакции. Стресс как механизм морфофункциональной адаптации. Фазы адаптации (тревога, сопротивление, истощение) и их морфологическая характеристика. Пути приспособления организма к физическим нагрузкам.

Роль регенерации, атрофии и гипертрофии в механизме морфологической адаптации к условиям спортивной деятельности. Формы регенерации. Компенсаторно-приспособительные и деструктивные изменения при адаптации. Критерии рациональности и нерациональности в адаптации организма к условиям спортивной деятельности. Управление адаптацией и ее морфологический контроль.