Пчелиный яд и апитоксинотерапия в апитерапии. Пчелиный яд убивает вич и при этом щадит здоровые клетки

  • Дата: 13.06.2019

Мелитин, полипептид со свойствами ПАВ, способны разрушать вирус иммунодефицита человека, не причиняя при этом вреда окружающим живым клеткам. Об этом сообщают ученые из Вашингтонского университета (США) со страниц мартовского номера журнала «Antiviral Therapy».

Исследователи считают, что ими совершен прорыв в деле создания вагинального геля, который предотвратит заражение женщин вирусом, иногда вызывающим смертоносный СПИД. Такой гель обещает быть востребован в тех местах планеты, где ВИЧ «чувствует себя» особенно хорошо, например, на юге Африки.

Ядовитый мелитин способен (в определенных концентрациях) разрушать защитные оболочки различных микробов и вирусов, в т.ч. ВИЧ, образуя в них каналы. Ранее было установлено, что наночастицы, наполненные полипептидом пчелиного токсина, обладают противораковыми свойствами, т.е. могут убивать опухолевые клетки, не желающие погибать самостоятельно. Еще в 2004 году ученые из Хорватии научились лечить рак с помощью продуктов, выделенных из яда пчелы.

Как же мелитину удается перфорировать вирусные оболочки, не затрагивая мембраны здоровых клеток? Дело в наночастицах, поверхность которых снабжена своеобразными «бамперами». Когда частицы вступают в контакт с нормальными клетками, они от них отталкиваются. В свою очередь, ВИЧ гораздо меньше в размерах, чем наночастицы, поэтому он застревает между «бамперами» на поверхности агента, где и подвергается разрушительному воздействию токсина, фактически «раздевающего» вирус.

Большинство антиретровирусных лекарств подавляют способность вируса к размножению внутри инфицированных клеток. Но сам ВИЧ при этом не перестает быть собой - зараза просто «дремлет». А некоторые штаммы вируса вообще нашли способ не поддаваться препаратам, ингибирующих репликацию патогена.

Мелитин же разрушает ВИЧ физически. Теоретически, к этому адаптироваться невозможно - без двуслойной липидной мембраны вирус не жилец. Если экспериментальные наночастицы ввести больному в кровь, то они должны очистить ее от ВИЧ. Кстати, и разрабатывались данные чудеса технологии изначально для того, чтобы получить искусственную кровь, однако с доставкой кислорода частицы справились плохо. Одно хорошо - то, что организм их не отторгает и наночастицы могут циркулировать в кровотоке продолжительное время. То есть, с их помощью можно исцелять не только от ВИЧ, а и от других инфекций, вызываемых патогенами с малыми размерами - например от . Также гель с наночастицами потенциально способен убивать сперматозоиды, используясь в качестве противозачаточного средства.

Совсем недавно сбор апитоксина был трудозатратным с малым выходом полезного фармакологического сырья. Методика «доения» напоминала сбор яда кобры, гадюки. На емкость натягивали мембрану, принуждая пчел отдать секрет, ввести жало сквозь мембрану. Для большего провоцирования насекомых использовали вращающийся барабан, а иногда просто собирали неживых особей и отделяли у них ядовитые железы. Первый препарат пчелиного яда был получен в 1915 г.

Научный прогресс позволил получать объемы яда в промышленных масштабах. На пчелу воздействуют слабым ударом тока, ее реакция на боль — выделение яда на специальные стеклянные пластинки. В природе пчела погибает, если жало, застряв в теле противника, отрывается. В производственных условиях пчела используется, как донор, многократно.

В воздушном пространстве яд кристаллизируется, не теряя свойств, поэтому может находиться в форме:

  • естественной природной жидкости;
  • высушенного яда в виде порошка серовато-кремового оттенка;
  • в виде масляного препарата(эмульсии), поскольку трудно растворим в спирте и не растворяется в эфире;
  • лиофилизированный, то есть в виде мельчайших крупинок чисто белого порошка.

Пчелиный ядовитый секрет хорошо растворяется в воде, поэтому его смывают с подложек при сборе яда или с жалоносного аппарата, а затем выпаривают.

Сухой яд за короткое время впитывает в себя влагу и, разрушаясь под действием бактерий, теряет свои биологические свойства. Поэтому его хранят в темных герметично закрытых стеклянных емкостях. В таком случае его свойства удается сохранить несколько лет.

Состав апитоксина

Работы по изучению состава яда ведутся и сегодня, но известно, что в нем содержится огромное количество органических и неорганических соединений, большинство из которых либо токсичны, или способствуют воспалению и разрушают ткани. Ингредиенты яда действуют синергично, их взаимодействие усиливает друг друга.

Токсины, которые есть только в пчелином яде, действуют избирательно к клеточным структурам. Белковые соединения, такие как, мелиттин, апамин и др.полипептиды, могут разрушить мембраны клеток живого организма. С ними связано, в основном, биологическое действие секрета: сокращение гладкой мускулатуры, разрушение оболочки эритроцитов крови, паралич синапса центральных и периферических нейронов и клеток.

Повреждающее воздействие ферментов апитоксина (особенно гиалуронидаза и фосфолипаза) происходит методом энзиматического гидролиза. Субстанция соединительной ткани растворяется, яд проникает глубже.

Сильную воспалительную реакцию, отек и боль провоцируют биогенные производные аммиака (гистамин, норадреналин), но позволяют, также, снизить артериального давление и содействуют активности органов выделения пищеварительной системы. Макромолекулы аминокислот, связанные пептидной связью, серапин и терцапин дают успокоительный эффект, а адолапин блокирует слипание эритроцитов, предотвращая образование сгустков крови.

Некоторые компоненты, например, мелиттин, вызывают разную от размеров одноразовой дозы реакцию организма. В малом количестве мелиттин дает воспаление, средний объем стимулирует кору надпочечников, что приводит к противовоспалительному эффекту. Большие дозы являются токсическими, блокируют дыхательный центр, могут привести к остановке сердца. Недаром говорят: «яд в малых дозах лекарство». Апитоксин – сильнейший иммуномодулятор и иммуностимулятор. При правильно рассчитанной схеме лечения можно восстановить поврежденный гомеостаз.

Яд пчелы выдерживает кипячение и заморозку, но попадая в желудок человека, разрушается ферментами (пепсином, ренпином). Поэтому препараты с апитоксином предназначены, в основном, для поверхностных растираний (мази и бальзамы), внутрикожных уколов (стерильные растворы), жидких составов для физиопроцедур.

Действуя на концы отростков нервных волокон, апитоксин раздражает клетки нервных центров. Происходит стимулирование кровообращения и ускорение метаболизма. В костном мозге ускоряется выработка красных кровяных телец, количество гемоглобина в крови растет, а содержание холестерина снижается. Вязкость крови становится меньше — это служит хорошей профилактикой инфарктов миокарда и инсультов. Повышенная нервная возбудимость снижается, реакция мышц приходит в норму, становится лучше сон и повышается аппетит.

Апитоксин подкожно назначают при различных нарушениях в суставах и мышцах (подагра, миозиты, артриты), ущемлении или воспалении нерва (невралгия, радикулит, остеохондроз), параличе (включая перенесенный инсульт), болезнях сердечно-сосудистой системы (атеросклероз, стенокардия, инфаркт миокарда).

Яд в болевые точки и рефлекторные участки вводится, присаживая пчелу, впрыскивая апитоксин шприцем, электро и фонофореза, а также апимассажа.

При различных болезнях места, наиболее чувствительные к воздействию (болевые точки) имеют различную локализацию. В каждый последующий сеанс количество пчел увеличивают в зависимости от заболевания и индивидуальной реакции организма на апитоксин, доводя до 18 – 20 шт. В одном курсе от 9 до 21 сеанса, проводимом через день (длится не более 15 минут). Целители-практики, такие, как Н.П. Йориш, К.А.Кузьмина, Н.З.Хисматуллина, практикующие лечение пчелами, используют разную численность пчел, биоактивные точки и длительность восстановительного перерыва.

В ходе сеанса мохнатое тельце насекомого аккуратно переносят пинцетом или пальцами и прикладывают брюшком к чистой поверхности рефлекторной зоны или биоактивной точки. Жало застревает в слоях кожи благодаря шипам на его поверхности. Поэтому спустя 5-10 минут жало аккуратно вынимают и обрабатывают борным вазелином. Под влиянием яда от головного мозга возникает кровоотток к тканям, подверженным воздействию яда, по этой причине больной может потерять сознание. После сеанса необходимо полежать не менее получаса. Находиться на открытом солнце, загорать и плавать, заниматься тяжелым физическим трудом запрещено.

Как показали наблюдения, алкоголь обладает специфическими антитоксическими свойствами, поэтому при проведении лечебных сеансов от распития спиртных напитков воздерживаются. Аскорбиновая кислота, входящая в состав многих фруктов и консерваций, катализирует действие гистаминазы, обезвреживая бактериальные токсины. По этой причине рекомендуется соблюдать молочно-растительную диету без пряностей, солений и копченого.

Для разных заболеваний разработана своя методика пчелоужаливания. Так, нейросенсорную тугоухость лечат ужаливанием в заушную зону, при тереотоксикозе пчел присаживают над паращитовидными железами. Хотя чаще всего насекомых принуждают жалить наружные поверхности конечностей.

Другие виды апитоксинотерапии

По этим методикам природного ужаливания можно вкалывать шприцем ампулированный яд. В таком случае можно четко дозировать поступление препарата, но в этом случае болевые ощущения от процедуры больше. В настоящее время проводятся разработки схем для лечения различных заболеваний на основе китайской акупунктуры.

Хороший суммирующий результат оказывает совместное влияние апитоксина и постоянного тока (электрофорез), как и взаимное действие яда и ультразвука (фонофорез). В основном физиопроцедуры используют при радикулитах, артрозах, полиартритах.

Положительный эффект на организм оказывает также апимассаж. Увеличенное поступление крови к больному органу и расслабление мускулатуры под действием массажных приемов и апитоксина глубоко прогревают больное место и дают обезболивающий эффект. После инструкций с апитерапевтом больной самостоятельно втирать яд в болевые точки.

Врач, на основе медицинской карты больного, его индивидуальной переносимости и биопроб, может комбинировать все методы апитоксинотерапии.

Древний целитель Гален (примерно 130 – 200 гг.н.э) советовал применять смесь пчелиного яда и меда в качестве средства, питающего волосяные луковицы и стимулирующего рост волос. Поскольку существует высокий риск для жизни при самостоятельных попытках рассчитать индивидуальные дозы как естественного пчелолечения, так и применения аптечных препаратов чистого апитоксина, рекомендуем пользоваться фармацевтическими средствами, прошедшими клинические испытания.

Важно понимать, что лечение укусами насекомых и впрыскивание медицинских препаратов пчелиного яда кроме сильного лечебного действия оказывает сильное токсическое и категорически запрещено, например, при туберкулезе, сахарном диабете, всех инфекционных заболеваниях в активной фазе и нагноительных процессах. Мазями, состав которых включает пчелиный яд, можно лечиться самостоятельно при индивидуальной переносимости данного продукта пчеловодства.

Ученые из Университета Вашингтона (США) сообщили, что содержащийся в пчелином яде токсин мелиттин уничтожает вирус иммунодефицита человека (ВИЧ – вирус, вызывающий СПИД), оставляя невредимыми окружающие здоровые клетки. Они утверждают, что их открытие является одним из важнейших шагов к созданию вагинального геля, предотвращающего распространение ВИЧ. Преподаватель медицины доктор Джошуа Худ сказал: «Мы надеемся, что в тех местах, где ВИЧ наиболее распространен, люди вскоре смогут использовать этот гель в качестве превентивной меры, предупреждающей дальнейшее распространение инфекции».

Мелиттин – мощный токсин, входящий в состав пчелиного яда. Он способен пробить брешь в защитной оболочке ВИЧ, а также воздействовать на другие вредоносные вирусы. Наночастицы мелиттина обладают противораковыми свойствами и способны уничтожать опухолевые клетки. В противоопухолевой терапии пчелиный яд применяется не впервые. В 2004 году хорватские ученые сообщили в журнале «Journal of the Science of Food and Agriculture» («Наука питания и сельского хозяйства»), что пчелопродукты, в том числе пчелиный яд, можно с успехом использовать для лечения и профилактики рака. Они также доказали, что нормальные, здоровые клетки остаются при этом незатронутыми. Большинство препаратов против ВИЧ направлены на ингибирование (препятствование) активности вируса, а наночастицы мелиттина атакуют его жизненно важные структуры.

Доктор Худ объяснил это так: «Атаки мелиттина направлены на физическую структуру ВИЧ. Теоретически у вируса нет никакой возможности адаптироваться к такому воздействию. Для этого у него должно быть защитное покрытие в виде двухслойной мембраны». Худ считает, что мелиттин можно применять в двух видах терапии – в предотвращении распространения ВИЧ-инфекции (вагинальный гель) и для того, чтобы противодействовать уже существующей инфекции, в том числе ее лекарственно-устойчивым видам.

Теоретически наночастицы мелиттина, попадая в кровь пациента, очищают ее от ВИЧ-инфекции. По словам доктора Худа, «Те частицы, которые мы используем в своих экспериментах, были разработаны много лет назад как искусственный продукт крови. Они не способствуют доставке кислорода, но, тем не менее, циркулируют в организме благополучно и представляют собой надежную платформу, на основе которой организм может адаптироваться к различным видам инфекций». Мелиттин атакует двухслойные защитные мембраны без разбора, что позволяет использовать его в лекарственной терапии при ВИЧ-инфекциях, гепатитах В и С, а также в качестве противозачаточного препарата.

Данное исследование, однако, не рассматривает мелиттин как средство контрацепции. Тем не менее, доктор Худ заявил: «Мы изучаем возможность применения мелиттина партнерами, желающими завести ребенка, в тех случаях, когда ВИЧ диагностирован только у одного из них. Сами частицы являются совершенно безопасными для спермы, а также для вагинальных клеток». Данное исследование было проведено в лабораторных условиях на животных. Но, поскольку наночастицы мелиттина, как выяснилось, не вредят человеческому организму, в ближайшее время их вполне можно будет использовать и в исследованиях с участием человека.

Christian Nordqvist, Medical News Today

Представления о роли пептидов в регуляции поведенческих, висцеральных и других функций организма в последнее время претерпевают чрезвычайно бурное развитие. По сравнению с другими системами межклеточной сигнализации пептидная система наиболее многочисленная, а сами пептидные регуляторы оказываются особенно плейотропными, полифункциональными. Сформировалась концепция о функциональной непрерывности, регуляторном континууме, состоящем из пептидов и сопряженных с ними межклеточных сигнализаторов другой природы. Такой континуум характеризуется наличием сложных межпептидных взаимодействий - способностью каждого пептида индуцировать выход определенной группы других пептидов. В результате первичные эффекты того или иного пептида развиваются во времени в виде цепных либо каскадных процессов .

Пчелиный яд, эволюционно приспособленный к защите пчелиного жилища, представляет собой сложную многокомпонентную систему, в которой выделяют полипептиды, ферменты, амины и феромоны. Особую роль в регуляции функций организма, являющегося акцептором пчелиного яда, играет кластер пептидов (полипептидов). Это мелиттин, апамин, МСД-пептид, адолапин, тертиапин, секапин, минимин, кардиопеп .

Мелиттин

Мелиттин -основной физиологически нестабильный компонент. Он образован 26 остатками 12 аминокислот и составляет более 50% сухого вещества пчелиного яда. В водной среде мелиттин формирует тетрамер, состоящий из двух димеров, его молекулярная масса возрастает от 2840 (мономер мелиттина) до 11 200 (тетрамер мелиттина), при этом изменяется и объем молекулы.

Основные биологические эффекты мелиттина связаны с его способностью менять или нарушать структуру мембран. Связываясь с мембраной, пептид способен образовывать каналы, в результате повышается проницаемость для ионов, что может вызвать лизис клеток. При этом наблюдаются накопление Na + и Ca 2+ , утечка K + и метаболитов (пропорционально количеству мелиттина, взаимодействующего с мембраной).

Мелиттин ингибирует работу различных АТФаз, из-за чего нарушается транспорт ионов через мембрану. Кроме того, он усиливает работу Na + -K + -насоса, увеличивая вход натрия в клетку, при этом может инициироваться митогенез, стимулироваться синтез ДНК.

Мелиттин способен образовывать комплексы с некоторыми пептидами, например: с альбумином, тропонином и кальмодулином. Как и кальмодулин, он обладает взаимоингифирующими свойствами. Прямым связыванием мелиттин подавляет активность белка киназы C, Ca-кальмодулинзависимой киназы, протеинкиназы, аденилатциклазы. Пептид повышает активность фосфолипазы A 2 , вызывая образование арахидоновой кислоты из мембранных фосфолипидов.

В результате стимулирования мелиттином систем, воспроизводящих в артериальных стенках простагландины, в несколько раз увеличивается количество простациклина, расширяющего кровеносные сосуды. Мелиттин нарушает процесс свертывания крови, действуя в двух направлениях: угнетает активность тромбопластина, зависящую от его связи с некоторыми фосфолипидами, и вызывает денатурацию фибриногена, вероятно, образуя связи между щелочным мелиттином и кислым фибриногеном.

Влияние мелиттина на тепловую денатурацию белков усиливается при повышении его концентрации (свыше 30 мг/мл) и уменьшается при ее снижении. Защитный эффект мелиттина наиболее сильно проявляется в отношении альбумина и гамма-глобулина при концентрации пептида 0,3 мг/мл. Повышение устойчивости белков, по мнению ряда авторов, противодействует воспалительной реакции.

Апамин

Апамин принадлежит к самым малым натуральным пептидам, действующим на центральную нервную систему (ЦНС). Он включает 18 аминокислот и составляет примерно 3% общего количества яда. Молекулярная масса равна 2036.

Это сильный нейротоксин. При внутривенном введении мышам сублетальных доз (1-2 мг/кг) апамина у них появляются некоординированные движения конечностей, переходящие в судороги мышц всего тела. После периода двигательной активности, продолжающейся в зависимости от дозы 30-50 ч, выжившие мыши проявляют двигательную сверхвозбудимость в следующие 20-30 ч. При введении в мозговые желудочки активность пептида возрастает в 1000 раз. Апамин избирательно блокирует кальцийзависимое проникновение калия через мембрану нервных клеток и угнетает пуринергическую иннервацию. Подавляя тормозные процессы в ЦНС, апамин положительно воздействует на процессы возбуждения.

Апамин влияет на постсинаптические мембраны центральной и периферической нервной системы. В концентрации 10 -8 -10 -7 моль/л он обратимо угнетает неадренергическое торможение норадреналина, АТФ и кофеина в гладкомышечных клетках желудочно-кишечного тракта. Все эти процессы связаны с активацией кальцийзависимой калиевой проводимости. Установлено блокирующее действие апамина на некоторые типы данной проводимости и в других тканях: скелетных мышцах, некоторых нейронах и нейробластоме, гепатоцитах .

Под влиянием апамина увеличиваются скорость и сила работы сердца, но это не связано ни с расширением, ни с сужением сосудов. Действие апамина на сердце в большой мере обусловлено специфическим влиянием на кальциевый транспорт через клеточные мембраны. Апамин способен поддерживать пониженную работу сердца и предупреждать возникновение резкой слабости в результате снижения кровяного давления. При аритмии апамин в дозе 0,2 мг восстанавливает нормальный ритм работы сердца .

Апамин ингибирует Ca 2+ — и активирует K + -каналы кардиомиоцитов. В то же время он может частично ингибировать калиевый ток, не влияя на кинетику активации. По мнению ряда авторов, существуют две различные популяции: апамин-чувствительные и апамин-нечувствительные K + -каналы.

При исследовании влияния компонентов пчелиного яда на гипофизарно-надпочечную систему обнаружено, что наиболее сильно ее активирует апамин. Внутривенное введение апамина кошкам в дозе 10 мг/кг вызывает быстрое увеличение в крови обоих надпочечных гормонов - кортизона и адреналина. Примерно через 1 ч после инъекции пептида уровень кортизона и адреналина был выше исходного в 9 и 8 раз соответственно. Одновременно наступали изменения в сердечно-сосудистой системе: давление крови внезапно повышалось на 30-50%. Эти данные дают основание считать, что апамин действует как стимулятор на мезенцефальную ретикулярную формацию мозга. Необходимо отметить, что адреналин также угнетает некоторые воспалительные реакции, в результате чего усиливается мощное антивоспалительное действие кортизола .

МСД-пептид

МСД-пептид вызывает дегрануляцию (разрушение) тучных клеток, за что и получил свое наименование Mast Cell Degranulating (МСД). При этом из мастоцитов высвобождаются гистамин, гепарин, серотонин и гемотрипсиноподобный протеолитический энзим. Данный пептид образован 22 аминокислотными остатками и составляет 2% общей массы яда. Молекулярная масса равна 2598. Пептид проявляет ярко выраженные свойства основания, его рН примерно 12. Щелочные свойства МСД-пептида зависят от девяти щелочных аминокислот против двух молекул аспарагиновой кислоты, причем одна из них имеет амидопириновую карбоксильную группу.

Этот пептид принадлежит к группе так называемых специфических гистамин-выделителей. Они дегранулируют мастоциты и освобождают находящиеся в них биологически активные вещества, приводя в действие специальную энергозависимую каталитическую систему.

МСД-пептид влияет на проницаемость капилляров и вызывает отек в месте инъекции. При использовании в дозах больших, чем необходимо для дегрануляции тучных клеток, МСД-пептид оказывает противовоспалительное действие. Он способен высвобождать гистамин из тучных клеток и в этом отношении в 10-1000 раз активнее мелиттина.

При введении МСД-пептида в мозговые желудочки в дозе 0,1 мкг появляются признаки раздражения ЦНС. Трехкратное увеличение дозы вызывает токсические явления и гибель животного. Способность МСД-пептида раздражать ЦНС, вероятно, обусловлена его структурным сходством с апамином.

Некоторые авторы опубликовали убедительные данные об антивоспалительной активности МСД-пептида. По массе он примерно в 1000 раз активнее, чем гидрокортизон при карагининовом воспалении лапы крысы. При внутривенном введении в дозе 200 мкг/кг МСД-пептид полностью снимает отек воспаленной лапы крысы, вызванный брадикинином, простагландином Е, серотонином, каликреином и гистамином.

Адолапин

Адолапин - единственный компонент пчелиного яда, обладающий болеутоляющим действием. Оно обусловлено свойством адолапина замедлять биосинтез и фармакологическую активность простагландинов Е, снижающих противоболевой порог. Полипептидная цепь состоит из 103 аминокислот. Молекулярная масса равна 11 500. Эта величина служит границей между молекулярной массой белков и пептидов.

Данный пептид препятствует агрегации (склеиванию) эритроцитов крови, наступающей, когда к эритроцитарной суспензии добавляют раствор желатина. По мнению многих авторов, задержка агрегации эритроцитов - свойство эффективных противовоспалительных средств.

Адолапин угнетает активность двух ключевых ферментов обменных процессов биосинтеза воспаления - циклооксигеназу и липооксигеназу. С циклооксигеназы начинается биосинтез простагландинов, а липооксидаза, включающая группу лейкотреинов, вызывает спазмы гладких мышц и действует гемотоксически.

Высокая активность, обезболивающее и противовоспалительное действие, высокий терапевтический индекс и незначительная анафилактогенность характеризуют адолапин как перспективное лекарственное средство. Его можно применять самостоятельно или в комбинации с другими препаратами. При фармакологическом и биохимическом изучении установлено определенное преимущество адолапина по сравнению с некоторыми другими синтетическими противовоспалительными препаратами.

Тертиапин и секапин

Тертиапин и секапин - минорные полипептидные компоненты пчелиного яда. Тертиапин характеризуется выраженным пресинаптическим действием на нервно-мышечный препарат лягушки. Его особенность проявляется в независимости пресинаптического действия от содержания кальция в среде . Этот пептид ингибирует Са 2+ -связывающий белок кальмодулин, регулирующий активность большого числа Са 2+ -связывающих ферментов. Секапин при введении мышам в дозе 80 мкг/кг вызывает седативный эффект, гипотермию и пилоэрекцию .

Минимин

Минимин составляет около 3% общей массы пчелиного яда. Молекулярная масса около 6000. Вызывает прекращение роста личинок дрозофил, из которых развиваются мухи в 1/4 натуральной величины.

Кардиопеп

Кардиопеп обладает адреномиметическими и антиаритмическими свойствами.

Таким образом, данные литературы и собственные исследования позволяют утверждать, что пептиды в составе пчелиного яда являются регуляторными. При этом можно выделить следующие факторы:

  • во-первых, их молекулярная масса не превышает величину, граничащую с белками;
  • во-вторых, регуляторное действие данных пептидов реализуется при воздействии на организм в минимальных дозах;
  • в-третьих, регуляторное действие осуществляется за счет совместного действия пептидов, ферментов и аминов, а также суммарного влияния нескольких пептидов, регулирующих одну из функций.

Широкий набор регуляторных пептидов, присутствующих в пчелином яде, совместно с ферментами и биогенными аминами обеспечивает многостороннее воздействие на организм человека, что служит основой клинической апитерапии .

А.Е.Хомутов, д-р биол. наук, проф. кафедры биохимии и физиологии. Нижегородский государственный университет им. Н.И.Лобачевского.

  • Апитерапия. / Хисматуллина Н.3. - Пермь: Мобиле, 2005. - 296 с.
  • Руководсто по апитерапии (лечение пчелиным ядом, мёдом, прополисом, цветочной пыльцой и другими продуктами пчеловодства) для врачей, студентов медицинских вузов и пчеловодов / Э. А. Лудянский. – Вологда: [ПФ "Полиграфист"], 1994. – 462 с.

2 Химический состав пчелиного яда по книге Хисматуллиной Н.З.

2.1 Состав пчелиного яда

Высушенный пчелиный яд представляет собой многокомпонентную смесь из неорганических и органических веществ. Органические вещества яда:
  • углеводы;
  • жиры;
  • белки;
  • пептиды;
  • аминокислоты;
  • биогенные амины;
  • ароматические и алифатические соединения и т. д.

Если высушенный яд составляет 30-45% от нативного секрета, то основная часть сухого вещества яда представлена белками и пептидами - около 80% минеральных веществ, остающихся после сжигания яда при 500-600°C, составляют 2-4% сухой массы яда. Состав пчелиного яда по данным разных источников представлен в таблице.

Название Молекулярная
масса Количество
аминокислотных
остатков 4÷8 88
130
130 1÷3 41000 10÷12 15800 129 1 22000 1 55000 0.6 170000 40÷50 120000 (тетрамер) рН выше 9
2840 (мономер) в растворе 26 0.01 1÷3 2036 18 1÷2 2593 22 0.5÷2 3000 25 1 2500 21 1÷3 600 1940 11000 15800, 8500 13÷15 менее 600 0.5÷2 111 0.2÷1 189.7 0.1÷0.5 169 176 2 180 52 700 1 700 43.6 7.1 13.6 2.6 33.1
Содержание
в яде, %
1.Ферромоны (летучие вещества)
Этилацетат
Изоамилацетат
n-амилацетат и др.
(всего идентифицировано больше 20 летучих составляющих)
2.Белки (ферменты)
Гиауронидаза
Фосфолипаза А2
Мезофосфолипаза
Кислая фосфатаза (фосфомоноэстераза)
Альфа-глюкозидаза
3.Пептиды (полипептиды)
Мелиттин
Мелиттин F
Апамин
МСД (пептид 401)
Секапин
Тертиапин
Прокамины
Кардиопеп
Адолапин
Протеазные ингибиторы
Другие пептиды
4.Биологически активные амины
Гистамин
Дофамин
Норадреналин
Серотонин
5.Сахара
Глюкоза
Фруктоза
6.Липиды
Фосфолипиды
7.Аминокислоты
Свободные аминокислоты
8.Минеральный состав (из 30-45% сухого остатка и 2-4% золы)
Углерод
Водород
Азот
Азот
Фосфор
Магний
Кальций
Медь и др.

Химический состав яда - это результат биохимической эволюции соединений, обладающих выраженными биологическими свойствами. Ингредиенты яда имеют строгую специализацию, но действуют синергично, дополняя и усиливая друг друга.

Феромоны - биологически активные вещества, выделяемые пчелами в окружающую среду и являющиеся средством внутривидовой сигнализации. Это сигнальные вещества, имеющие большое значение, в первую очередь, для защитного поведения пчел. Различают феромоны половые, тревоги, сбора и т. д.

Токсины пчелиного яда (пептиды, полипептиды) - низкомолекулярные белковые соединения, структура которых уникальна, они видоспецифичны и предназначены для токсического действия.

Ферменты , (энзимы) которые содержатся в яде пчел, могут рассматриваться как агенты, повреждающие тканевые структуры путем энзиматического гидролиза. Основными энзимами, входящими в состав пчелиного яда и определяющими ряд его важнейших эффектов, являются:
  • фосфолипаза А2;
  • гиалуронидаза;
  • кислая фосфатаза;
  • а-глюкозидаза;
  • лизофосфолипаза (фосфолипаза В - устаревшее название, современное - фосфолипаза L);

2.2 Свойства компонентов пчелиного яда

Биохимические Фармакологические Токсические Различная степень деструкции клеточных мембран эритроцитов, базофилов, тучных клеток и мембран лизосом. Цитолиз базофилов и тучных клеток сопровождается выделением серотонина, брадикинина и гистамина. Усиливает синтез из арахидоновои кислоты простагландинов различных классов. Повышает тонус гладких мышц (главным образом желудочно - кишечного тракта и поперечно-полосатых мышц), что связано с выделением гистамина из тучных клеток и базофилов. Уменьшает активность тромбопластина. Стимулирует продукцию адренокортикотропного гормона (АКТГ). Связывается с биологически активными клеточными веществами. Угнетает иммунный ответ посредством стимуляции гормонов надпочечников. Ограничивает доступ кислорода к тканям, обеспечивает реализацию радиопротекторного действия при лучевом поражении. Снижает артериальное давление. Противовоспалительные свойства. Оказывает сосудорасширяющее действие, предохраняет сосуды от атеросклеротических изменении. Терапевтические дозы повышают тонус. Антикоагулянтное действие. При повышении выделения глюкокортико стероидов корой надпочечников - противовоспалительное действие. Антибактериальное действие , угнетает рост грамположительных бактерий. Противоревматические свойства. Высокие дозы вызывают блокаду симпатических ганглиев (понижение артериального давления). Повышенные дозы нарушают неиромышечную передачу и вызывают противополож. эффект. Местная воспалительная реакция. Большие дозы вызывают гемолитическую анемию и появление гемоглобина в моче, спазм бронхов. Вызывает дегрануляцию только тучных клеток с высвобождением гистамина, серотонина и гепарина. Механизм выделения гистамина принципиально отличается от соответствующего процесса при аллергических реакцияхнемедленного типа. Стимулирует АКТГ - синтетическую функцию гипофиза Гипотензивное действие, повышение проницаемости стенки капилляров. Противовоспалительный эффект Аллергических свойств не обнаружено. Менее токсичный ингредиент пчелиного яда Обладает эндорфиноподобной активностью, нарушает межеинаптическую передачу. Угнетает циклооксигеназу и липоксигеназу, уменьшает и замедляет биосинтез простагландинов, напрямую влияет на воспалительный очаг Анальгетический и противовоспалительный эффекты. Сочетание центрального и периферического анальгетического эффекта Низкая аллергенность Умеренное седативное и гипотермическое действие Исключительно низкая токсичность Ингибирует Са2+- связывающий белок кальмодулин, регулирующий активность большого числа Са2+-зависимых ферментов Выраженное пресинаптическое действие на нервно-мышечный аппарат Угнетают действие протеолитических ферментов железистого секрета пчел, крови и тканей ужаленного организма, сохраняют активность белково - пептидного комплекса яда. Угнетают активность трипсина Обладают противовоспалительными свойствами , которые обусловлены угнетением некоторых протеолитических ферментов, участвующих в развитии воспалительного процесса, задерживают передвижение некоторых видов лейкоцитов Нетоксичны Воздействует на течение сердечной недостаточности Антиаритмическое действие, близкое по выраженности к β -адреноблокаторам Воздействует на структурные фосфолипиды, (фосфоглицериды), входящие в состав биологических мембран, митохондрий, нарушает клеточные функции. Образует из лецитина биологически активный лизолецитин, угнетает деятельность тканевых дегидрогеназ и тромбокиназ, тормозит окислительное фосфолирование, обладает нейротропными свойствами, нарушает процесс высвобождения медиаторов из пресинаптических терминалей, ингибирует тепловую коагуляцию яичного желтка Понижение свертываемости крови под влиянием пчелиного яда (гемолитическая активность). Гидролитическая функция и трансацилазная активность Структурный яд, антигенный и аллергенный субстрат, усиливает антикоагулянтное действие мелиттина Вызывает распад гиалуроновой кислоты, которая определяет барьерные функции основного межклеточного вещества. Разрушает ткани и способствует распространению в организме активных начал яда из-за повышенной проницаемости кровеносных сосудов. Биологическая роль сводится к обеспечению проникновения яда в ткани человека с последующей резорбцией в кровь Ускоряет рассасывание гематом, спаек, рубцов, восстанавливает проходимость фаллопиевых труб. Свойство энзима имеет положительное значение в случае применения в виде накожных мазей и линиментов Выраженные антигенные и аллергенные свойства Специфический нейромедиатор для дофаминовых рецепторов, стимулирует α- и β- адренорецепторы, увеличивает сердечный выброс Вызывает небольшое изменение артериального давления, а также силы и частоты сердечных сокращений без увеличения общего периферического сопротивления. В отличие от адреналина и норадреналина, уменьшает почечный кровоток и диурез Содержится в организме в связанном виде. Освобождается при воспалительных и аллергических реакциях, анафилактическом шоке. Вызывает боль у млекопитающих и человека Гормональное действие, медиаторные функции. Вызывает расширение капилляров, увеличивает их проницаемость и сокращение гладкой мускулатуры Играет важную роль в развитии аллергических реакций В организме образуется из дофамина и является предшественником адреналина. Гормон мозгового слоя надпочечников человека Участвует в передаче нервных импульсов в периферических нервных окончаниях и синапсах центральной нервной системы, воздействует как α1-адреномиметик на адренергические рецепторы мышц кровеносных сосудов, вызывает их сужение, что приводит к повышению артериального давления
Название
(действие)
Свойства
Мелиттин (снижает поверхностное натяжение клеток и их органелл)
МСД (пептид 401)
Адолапин
Секалин
Тертиапин
Протеазные ингибиторы
Кардиопеп
Фосфолипаза А2 (наиболее устойчивый энзим пчелиного яда)
Гиалуронидаза (гликопротеин), наиболее активный энзим мукопол и сахаридов
Дофамин (допамин)
Гистамин
Норадреналин

Мелиттин - пептидный компонент, имеющий характерную молекулярную структуру, сочетающую гидрофобные и гидрофильные свойства. Молекула мелиттина, благодаря поверхностно-активным свойствам, способна гидрофобной частью встраиваться в бислойные липидные структуры, что способствует их модификации и лизису с участием ферментов.

Мелиттин сочетает в себе свойства вещества с про- и противовоспалительным действием . Воспалительное действие (местная реакция) - это результат его прямого действия на проницаемость мембран, накопление биологически активных веществ и синтез простагландинов. Противовоспалительный эффект (системный) обеспечен АКТГ и проявляется при введении относительно высоких доз (0,05-2 мкг/мл). Токсические дозы (10мкг/мл и более) угнетают центральную нервную систему, дыхательный центр и выделение адреналина, повышают артериальное давление (за счет резкого увеличения концентрации глюкокортикостероидов), вызывают сердечную аритмию. Мелиттин - слабый антиген и аллерген, укрепляет лизосомные мембраны.

Апамин - низкомолекулярный пептид пчелиного яда, способный активно модифицировать ионные каналы клеточной мембраны, что сопровождается характерными изменениями функционального состояния клеток и органов.

МСД (пептид 401) , более сильный дегранулирующий и освобождающий гистамин агент. Если фосфолипаза и мелиттин освобождают биогенные амины из мастоцитов, повреждая клеточную мембрану и разрушая их органеллы, то действие МСД-пептида основано на другом механизме. Он принадлежит к группе специфических гистамин-выделителей. Основной эффект - способность вызывать дегрануляцию тучных клеток с выходом гистамина, серотонина и гепарина.

3 Химический состав пчелиного яда по книге Лудянского Э.А.

3.1 Состав пчелиного яда. Свойства компонентов пчелиного яда

Высокомолекулярные вещества состоят из фосфолипазы А и В, гиалуронидазы, кислой фосфатазы и других.

Гиалуронидаза - фермент, разрушающий полисахариды, входящие в состав соединительной ткани и клеточных мембран, термоустойчива, обладает аллергическими свойствами. Помогает увеличивать проходимость клеток и тканей. Активность фермента сглаживается гепарином и сывороткой крови. Сглаживает рубцовую ткань. Она расщепляет кровяные и тканевые структуры, повреждает мембраны митохондрий и блокирует проводимость структур нервной системы. Фосфолипаза А превращает фосфолипиды в токсические соединения (гемолитический яд), вследствие чего нарушает процессы тканевого дыхания, является наиболее активным антигеном и аллергеном. Фосфолипаза отщепляет лецитин и кефалин от фосфолипидов, что уменьшает поверхностное натяжение. Шаполини установил, что этот энзим (2% состава яда) состоит из 18 3 аминокислотных остатков, к которым примыкают сахара. Активизирование экзима происходит в присутствии хлорида натрия и железа.

Липофосфолипаза (фосфолипаза В) в свою очередь переводит токсичный лизолецитин в нетоксичные соединения, снижая тем самым активность фосфолипазы А (Ст. Шкендеров).

Кислая фосфатаза - сложный белок типа гликопротеинов, термоустойчива, нетоксична, совместно с альфа-глюкозидазой обеспечивает сверхчувствительность к пчелиному яду. Альфа-глюкозидаза с молекулярным весом 170000 чувствительна к высокой температуре, нетоксична.

В состав пчелиного яда входят 18 из 20 обязательных аминокислот (аланин, валин, гликокол, лейцин, изолейцин, серин, трионин, лизин, аргинин, глютаминовая и аспарагиновая кислота, триптофан, пролин, тирозин, цистин, метионин, фенилаланин, гистидин). Еще Парацельс писал, что эффект действия пчелиного яда зависит от дозы. Малые дозы яда, попадая в кровь, компенсируют дефицит аминокислот поэтому наилучший вариант апитерапии пчелоужаление. Метионин активизирует действие гормонов, витаминов, ферментов, снижает уровень холестерина. Гистидин положительно влияет на жировой обмен, улучшает состояние больного с атеросклерозом. К низкомолекулярным соединениям относятся пептиды. Эти химические соединения играют большую роль в человеческом организме, стимулируя различные биохимические процессы, участвуя в белковом, жировом, гормональном, минеральном, водном и других видах обменов. Они состоят из цепочки аминокислот, вырабатываются АПУД-клетками. По данным В.Е.Клуша (1987), Т.В.Докукиной с сотр. (1989) и других, пептиды усиливают активность клеток центральной нервной системы, более интенсивно проводятся импульсы по проводящим путям и периферической нервной системы. По мнению Б.Н.Орлова (1988) пептиды пчелиного яда обеспечивают его столь многостороннее действие.

Р.Д.Сейфулла с сотр.(1988) показали, что пептиды являются аналогами с антагонистами различных гипоталамических факторов. Ведущим пептидом в пчелинном яде является мелиттин (55%). (Нейман и Габерман 1952, Габерман 1964).

Меллиттин состоит из 26 аминокислот, стимулирует активность надпочечниково-гипофизарной системы, повышает уровень кортизола в плазме крови, иммуносупрессор, улучшает образование специфических антител, связывает и выводит продукты воспалительных реакций, малые дозы мелиттина увеличивают образование ЦАТФ в печени и стимулируют железы внутренней секреции, что уменьшает воспалительную реакцию. Меллитин действует антибактериально, особенно на граммположительные микробы. Шипмэн и Коул из Сан-Франциско в 1967г. установили радиопротекториое действия мелиттина. 60% мышей, которым предварительно вводились большие дозы яда и подвергшиеся затем интенсивному рентгеновскому излучению, остались живы. Б.Н.Орлов показал ганглиоблокирующее действие этого пептида.

Меллитин увеличивает сокращаемость мышц, снижает поверхностное натяжение растворов, опосредуя реакции через простагландины Е1 и Е2. Меллитин связывается элементами ретикуло-эндотелиальной ткани, поэтому подкожное введение яда более токсично чем внутривенное.

Ст. Шкендеров и Ц.Иванов (1985) обнаружили, что меллиттин ослабляет воспалительное действие лизосом, это несколько противоречит общепринятым данным о влиянии на воспаление меллиттина. Ими также выявлено стимулирующее действие пептида на функции костного мозга. Следует все же отметить, что исследователи работали с малыми разведениями мелиттина.

В 1937 г. Фельдберг и Келловэй установили, что пчелиный яд освобождает эндогенной гистамин. Н.В.Корнева показала, что под влиянием гистамина изменяется микроциркуляция и реактивность кожных капилляров. Мелиттин и фосфолипаза А влияют не только на эритроциты, но и лейкоциты.

Б.Н.Орлов с сотр. (1983) выявили, что внутривенное введение мелиттина в дозе 0,1-0,5 мг/кг снижает тонус сосудов большого круга кровообращения, увеличивается пульсовое наполнение сосудов мозга и конечностей, улучшается функциональное состояни миокарда. Малые дозы мелиттина уменьшали вязкость крови.

Апамии (2% состава пчелиного яда) состоит из 18 аминокислот с молекулярной массой 2036. Структура открыта параллельно Габерманом и Р.А.Шиполини в 1967 г.. В 1975 г. французские исследователи выделили чистый апамин Апамин состоит из 18 аминокислот, пептид имеет щелочной характер. Молекулярная масса 2036 (Ст. Шкендеров и Ц.Иванов, 1985).

Апамин вызывает повышенную двигательную активность. Благодаря малым размерам апамин легко проходит через гематоэнцефалический барьер. При введении в мозговые желудочки активность пептида увеличивается в 100-10000 раз. Апамин сильно возбуждает центральную и периферическую нервную систему, систему коры надпочечников - гипофиз (повышение уровня адреналина, кортизола, артериального давления). Он стимулятор ретикуло-лимбических структур. (Ст. Шкендеров). Апамин предохраняет сывороточные белки от денатурации в чем значительно сильнее нестероидной группы. Он угнетает серотониновое воспаление, гистаглобин и активность сывороточного комплемекта, что влияет на иммунные процессы. Пептид не вызывает аллергии, обеспечивает противовоспалительное действие (Р.Овчаров с сотр. 1983).

Апамин увеличивает проницаемость гематоэнцефалического барьера. Малые количества пептида возбуждают нервную систему (У.Шпорри и М.Йентш, 1973) повышают двигательную активность, стимулируют образование биогенных аминов(норадреналин, серотонин, дофамин). Апамин блокирует воспалительную реакцию от внешнего воздействия, защищает сывороточные белки от денатурации, действует по типу нестероидных противовоспалительных средств. Это обусловлено протеазами, которые угнетают действие трипсина, тромбина, папаина. Действие его подобно тразилолу. Этот пептид стимулирует клетки, вырабатывающие антитела (Ст.Шкендеров) усиливает иммунокомпетентные клетки. Апамин угнетает тормозящие процессы в центральной нервной системе, стимулирует мезенцефальную и гипоталамическую зоны мозга.

Г.Вайсман (1973) показал, что экспериментальный артрит излечивается только за счет апамина. Р.Овчаров с сотр. (1976) установили, что апамин угнетает действие серотонина, мукопротеидов, гаптаглобина, что объясняет его противовоспалительный эффект.

МСД-пептид (пептид 401) был выделен Брейтхауптом и Габерманом в 1968 году, состоит из 22 аминокислот с молекулярной массой 2588, имеет щелочной характер. Этот пептид освобождает эндогенный гистамин из тучных клеток, блокируется папаверином. МСД-пептид увеличивается проницаемость капилляров и вызывает местный отек. Как и апамин, раздражает нервную систему, обладает противовоспалительным действием (в 1000 раз сильнее гидрокортизона). При внутривенном введении блокирует любое экспериментальное воспаление. Это ведущий противовоспалительный пептид пчелиного яда (Биллингэм), стабилизирует функцию эндотелия кровеносных сосудов, который становится нечувствительным к воспалению. Ведущий механизм противоболевой, действует по типу индометацина. Угнетается активность ферментов, обеспечивающих воспалительные реакции (циклооксигеназы и липооксигеназы) за счет приостановления выделения простагландинов, и гемотоксического действия. Обладает антиаггрегантным действием. Терапевтический индекс этого вещества от 5000 до 7000, тогда как традиционных аналгетиков 30-50. Опиатное число 80, т.е. в 80 раз сильнее опия. Адолапин - первый экзогенный пептид, действующий по типу эндорфинов на все анализирующие системы головного мозга. Белковые ингибиторы - пептиды, влияющие на трипсин и другие протеазы, образующиеся за доли секунд, освобождая гистамин.

В лаборатории акад. ЮА.Овчинникова (1980) был выделен низкомолекулярный компонент - тертиапин, обладавший пресинаптическим действием.

В 1971 г. выделен пептид из пчелиного яда, обуславливающий анабиоз плодовых мушек, замедление их роста.

В 1976 г. были получены мелиттии Р и секапин снижающие температуру тела и успокаивающие центральную нервную систему.

Дж.Сейн (1983) сообщил о выделении пептида кардиопеп с антиаритмическим действием по типу бета-блокирующего адренолитика.

В пчелином яде выделены неорганические кислоты: муравьиная, соляная, ортофосфорная и ацетилхолин, которые обеспечивает ощущение жжения при ужалении. Н.П.Йориш (1978) показал, что ацетилхолин пчелиного яда помогает при лечении параличей. П.Починкова с сотр. (1971) установили, что пчелиный яд, введенный ультразвуком, угнетает холинэстеразу.

Яд содержит микроэлементы: фосфор, медь, кальций, магний, по количеству их меньше чем в меде.