Роботы помощники во время операций. Презентация на тему "медицинская робототехника ". Роботы для больниц

  • Дата: 12.06.2019

Слайд 2

Медицинская робототехника

Для восстановительной медицины и реабилитации Роботы для жизнеобеспечения Роботы для диагностики, терапии, хирургии Активные биоуправляемые протезы, экзоскелетоны Массаж точечный и классический, кресла Активные и пассивные движения конечностей в суставах Малоинвазивные для диагностики и хирургии Рентгеновский облучатель наноробот Телеуправление через интернет Перекладка, транспортировка Подвоз лекарств Передача инструментов хирургу поводырь Сервис для пожилых Автоматическая комната

Слайд 3

Робот “Lokomat” для выполнения движений конечностей в бедренных, коленных и голеностопных суставах.

Слайд 4

активный протез коленного сустава Активные протезы и экзоскелетоны

Слайд 5

протезы активные пассивные простейшие тяговые Миотонические биоэлектрические Без обратных связей С обратными связями тяговые

Слайд 6

робот Unimate Puma 560 Первый хирургический робот UnimatePuma 560 был создан в конце 1980-х в Америке. Этот робот, по сути, являлся большой рукой с двумя когтистыми отростками, которые могли врфащаться друг относительно друга. Амплитуда движений - 36 дюймов. Робот имел довольно ограниченный спектр движений, использовался в нейрохирургии для удерживания инструментов при проведении стереотаксической биопсии.

Слайд 7

В 1998 году появился активный робот ZEUS, предназначенный для дистанционной эндоскопической хирургии. Параллельно с ZEUS создавалась другая аналогичная система, получившая название DA VINCI. ZEUS

Слайд 8

HEXAPOD

  • Слайд 9

    Робот по названием «Да Винчи»

    Слайд 10

    Робот Да Винчи - это прогрессивный хирургический робот, наиболее распространённый в мире. Робот приводится в движение врачом - хирургом и оснащён четырьмя "руками" - одна рука производит съёмку и три руки оперируют - эти руки обладают максимальной степенью свободы и подвижностью, лучшими, чем рука человека. Эти руки вводятся в операционное пространство на теле через тончайшие разрезы и обеспечивают врачу - хирургу не только дополнительные руки для оперирования, но и более совершенную свободу движений по сравнению с обычной операцией. Врач - хирург управляет операцией со своего пульта управления, находящегося около оперируемого пациента и с которого он приводит в движение оперирующие руки и управляет всем, что происходит в операционной.

    Слайд 11

    Преимущества использования данного прибора ​ Робот обеспечивает хирургу максимальную степень свободы и более хорошую подвижность и, тем самым, даёт ему возможность осуществлять движения, которые человеческая рука не способна выполнять. Рука робота более крепкая и устойчивая, чем человеческая рука Изображение, которое передаёт камера хирургу - это увеличенное трёхмерное изображение, которое облегчает определение местоположения повреждения и его лечение Хирургическое вмешательство является менее инвазивным, чем при обычной операции, так как разрезы на брюшной стенке значительно меньше, чем разрезы при обычной операции Процесс восстановления более быстрый и количество дней пребывания в стационаре меньше Кровотечение из прооперированного участка минимальное и ранний послеоперационный период особенно короток

    Слайд 12

    Выполняемые операции * Восстановление митрального клапана * Реваскуляризация миокарда * Абляция тканей сердца * Установка эпикардиального электронного стимулятора сердца для бивентрикулярной ресинхронизации * Желудочное шунтирование * Фундопликация по Nissen * Гистерэктомия и миомэктомия * Операции на позвоночнике, замена дисков * Тимэктомия - операция по удалению вилочковой железы * Лобэктомия легкого * Эзофагоэктомия * Резекция опухоли средостения * Радикальная простатэктомия * Пиелопластика * Удаление мочевого пузыря * Радикальная нефрэктомия и резекция почки * Реимплантация мочеточника

    Слайд 13

    Посмотреть все слайды

    Сегодня исследовательские группы по всему миру пытаются нащупать концепцию использования роботов в медицине. Хотя правильнее, пожалуй, говорить «уже нащупали». Судя по количеству разработок и интересу всевозможных научных групп, можно утверждать о том, что магистральным направлением стало создание медицинских микророботов. Сюда же можно отнести и роботов с приставкой «нано-». Причём первые успехи в этой области были достигнуты сравнительно недавно, всего восемь лет назад.

    В 2006 году группа исследователей под руководством Сильвана Мартеля впервые в мире провела успешный эксперимент, запустив крошечного робота размером с шарик от авторучки в сонную артерию живой свиньи. При этом робот перемещался по всем назначенным ему «путевым точкам». И за прошедшие с тех пор годы микроробототехника несколько продвинулась вперёд.

    Одной из главных целей для инженеров сегодня является создание таких медицинских роботов, которые будут способны перемещаться не только по крупным артериям, но и по относительно узким кровеносным сосудам. Это позволило бы проводить сложные виды лечения без столь травматического хирургического вмешательства.

    Но это далеко не единственное потенциальное преимущество микророботов. В первую очередь, они были бы полезны при лечении рака, целенаправленно доставляя лекарство прямо к злокачественному образованию. Ценность такой возможности сложно переоценить: при химиотерапии препараты подаются через капельницу, нанося сильнейший удар по всему организму. По сути, это сильный яд, который повреждает многие внутренние органы и, за компанию, саму опухоль. Это сравнимо с ковровой бомбардировкой ради уничтожения небольшой одиночной цели.

    Задача создания подобных микророботов находится на стыке целого ряда научных дисциплин. Например, с точки зрения физики - как заставить столь малый объект самостоятельно двигаться в вязкой жидкости, которой для него является кровь? С точки зрения инженерии - как обеспечить робота энергией и как отслеживать перемещение по организму крохотного объекта? С точки зрения биологии - какие использовать материалы для изготовления роботов, чтобы они не наносили вреда организму человека? А в идеале, роботы должны быть биоразлагаемыми, чтобы не пришлось ещё решать проблему их вывода из организма.

    Одним из примеров того, как микророботы могут «загрязнять» тело пациента, является «биоракета».

    Этот вариант микроробота представляет собой титановое ядро, окружённое оболочкой из алюминия. Диаметр робота 20 мкм. Алюминий вступает в реакцию с водой, в ходе которой на поверхности оболочки формируются пузырьки водорода, которые толкают всю конструкцию. В воде такая «биоракета» проплывает за одну секунду расстояние, равное 150 своим диаметрам. Это можно сравнить с человеком двухметрового роста, который за секунду проплывает 300 метров, 12 бассейнов. Работает такой химический двигатель около 5 минут благодаря добавке галлия, уменьшающего интенсивность образования оксидной плёнки. То есть максимальный запас хода составляет около 900 мм в воде. Направление движению задаётся роботу внешним магнитным полем, а использовать его можно для точечной доставки лекарств. Но только после иссякания «заряда», в пациенте окажется россыпь микрошариков с алюминиевой оболочкой, который отнюдь не благотворно влияет на организм человека, в отличие от биологически нейтрального титана.

    Микророботы должны быть так малы, что просто масштабировать до нужного размера традиционные технологии не получится. Никаких стандартных деталей подходящего размера тоже не производят. А даже если бы и производили, они бы просто не подошли для таких специфических нужд. И потому исследователи, как это уже много раз было в истории изобретений, ищут вдохновения у природы. Например, у тех же бактерий. На микро, и тем более наноуровне действуют совсем другие физические законы. В частности, вода является очень вязкой жидкость. Поэтому нужно применять другие инженерные решения для обеспечения движения микророботов. Бактерии эту задачу зачастую решают с помощью ресничек.

    В начале этого года группа исследователей из Университета Торонто создала прототип микроробота длиной в 1 мм, управляемого внешним магнитным полем и оснащённого двумя захватами. Разработчикам удалось с его помощью построить мост. Также этот робот может использоваться не только для доставки лекарств, но и для механического восстановления тканей в кровеносной системе и органах.

    Мускульные роботы

    Ещё одно интересное направление в микроробототехнике - роботы, приводимые в движение мускулами. Например, есть такой проект: стимулируемая электричеством мышечная клетка, к которой прикреплён робот, чей «хребет» сделан из гидрогеля.

    Эта система, по сути, копирует природное решение, встречающееся в организмах многих млекопитающих. Например, в теле человека сокращение мышц передаётся костям через сухожилия. В данном биороботе, когда клетка сокращается под действием электричества, то «хребет» сгибается и поперечные перекладины, выполняющие роль ног, притягиваются друг к другу. Если одна из них при сгибании «хребта» перемещается на меньшее расстояние, то робот движется по направлению к этой «ноге».

    Есть и другое видение, какими должны быть медицинские микророботы: мягкими, повторяющими формы различных живых существ. Например, вот такая робо-пчела (RoboBee).

    Правда, она предназначена не для медицинских целей, а для целого ряда других: опыления растений, поисково-спасательных операций, обнаружения ядовитых веществ. Авторы проекта, конечно, не копируют слепо анатомические особенности пчелы. Вместо этого они внимательно анализируют всевозможные «конструкции» организмов различных насекомых, адаптируя и воплощая их в механике.

    Или другой пример использования имеющихся в природе «конструкций» - микроробот в виде двустворчатого моллюска. Движется он с помощью хлопанья «створок», создавая тем самым реактивную струю. При размере около 1 мм он может плавать внутри человеческого глазного яблока. Как и большинство других медицинских роботов, этот «моллюск» в качестве источника энергии использует внешнее магнитное поле. Но есть важное отличие - он лишь получает энергию для движения, само поле его не двигает, в отличие от большинства других видов микророботов.

    Большие роботы

    Конечно, одними лишь микророботами парк медицинской техники не ограничивается. В фантастических фильмах и книгах медицинские роботы обычно представляются в виде замены хирурга-человека. Мол, это некое крупное устройство, которое быстро и очень точно производится всевозможные хирургические манипуляции. И не удивительно, что эта идея была реализована одной из первых. Конечно, современные хирургические роботы не способны заменить человека целиком, но зашивание им уже вполне доверяют. Также они используются в качестве продолжения рук хирурга, как манипуляторы.

    Однако в медицинской среде не утихают споры относительно целесообразности использования таких машин. Многие специалисты придерживаются мнения, что особых выгод такие роботы не дают , а благодаря своей высокой цене существенно увеличивают стоимость медицинских услуг. С другой стороны, есть исследование , согласно которому пациентам с раком простаты, подвергавшимся хирургической операции с роботом-ассистентом, в дальнейшем требуется менее интенсивное применение гормональных средств и радиотерапии. В общем, неудивительно, что усилия многих учёных оказались направлены на создание микророботов.

    Интересным проектом является Робонавт (Robonaut), телемедицинский робот, предназначенный для оказания помощи космонавтам. Это пока экспериментальный проект, но такой подход может быть использован не только для оказания таким важным и дорогим в подготовке людям, как космонавты. Телемедицинские роботы могут быть использованы и для оказания помощи в различных труднодоступных районах. Конечно, это будет целесообразно только в том случае, если дешевле будет установить в лазарете какого-нибудь глухого таёжного или горного посёлка робота, чем держать фельдшера на зарплате.

    А этот медицинский робот ещё более узкоспециализирован, он используется для лечения облысения. ARTAS занимается автоматическим «выкапыванием» волосяных фолликул из кожи головы пациента, основываясь на фотографиях высокого разрешения. Потом врач-человек вручную внедряет «урожай» в облысевшие участки.

    Всё-таки мир медицинских роботов вовсе не так однообразен, как может показаться неискушённому человеку. Более того, он активно развивается, идёт накопление идей, результатов экспериментов, ищутся наиболее эффективные подходы. И кто знает, возможно, ещё при нашей жизни слово «хирург» будет означать врача не со скальпелем, а с баночкой микророботов, которых достаточно будет проглотить или внедрить через капельницу.

    Робототехника сегодня завоевывает разнообразные области, в которых, казалось бы, всегда будут трудиться люди. Одна из этих областей – медицина. Сегодня роботы делают сложные операции или заменяют органы, жизненно важные для человека. Итак, представляем вам 10 медицинских роботов.

    Cue

    Биолог Аюб Кхаттак и дизайнер Клинт Север создали устройство, которое должно помочь людям, чувствующим недомогание. Аппарат Cue, анализирующий состояние здоровье своего пользователя, обладает компактными габаритами, что упрощает его повседневное использование. На данный момент Cue показывает уровень витамина D, тестостерона, а также умеет определять способность человека к воспроизводству. Кроме того, аппарат выявляет у своего хозяина наличие таких заболеваний, как ВИЧ и грипп. Для того, чтобы провести анализ, в специальный картридж необходимо поместить образец слюны, крови или слизистой оболочки пользователя. Анализ производится в течение нескольких минут.

    Ubot-5

    В Массачусетском университете был создан робот, помогающий людям пережить последствия инсульта. Так, в 2013 году Ubot-5 помог восстановиться 72-летнему мужчине, имеющему проблемы с сердцем. Робот умеет оценивать состояние речи больного, а также делать пациенту физиотерапию. По итогам роботы Ubot-5 с больным был выявлен положительный эффект как в области движения, так и в области речи больного.

    Argus II

    Компанией Second Sight разработала устройство, которое способно частично восстановить зрение незрячим. Вначале необходимо имплантировать специальную матрицу электродов. Кроме того, необходимы солнечные очки с миниатюрной видеокамерой. Изображение, которое попадает в объектив этой видеокамеры, передается к визуальному процессору, который находится на поясе пользователя. Далее визуальный процессор посылает данные изображения на очки в виде 60-пиксельных черно-белых изображений, которые, в свою очередь, передаются на упомянутые выше матрицы. Электроды этих матриц воздействует на фоторецепторы и клетки, передающие сигналы от фоторецепторов в зрительный нерв. Безусловно, Argus II передает пользователю изображения в виде довольно грубых форм, однако данное устройство помогает незрячим ориентироваться в пространстве.

    Lightbot

    Конструкторы из японской компании NSK создали робота-поводыря Lightbot, способного помогать незрячим людям, а также людям, имеющим проблемы с передвижением. Ориентируется Lightbot в окружающем мире, используя трехмерный датчик. Робот умеет распозновать препятствие, передвигается по лестнице как вверх, так и вниз. Благодаря колесам Lightbot умеет не только шагать, но и ездить. Кстати, скорость движения робота зависит от скорости движения использующего его человека.

    Robocast

    Ученые из Великобритании, Германии, Италии и Израиля создали робототехническую систему Robocast, призванную помочь нейрохирургам. Основная задача этой системы – помочь во время операций по трепанации мозга. Как известно, данная операция является крайне опасной и трудоёмкой: ошибка на миллиметр может привести к необратимым повреждением головного мозга. Robocast обладает системой «мозг – компьютер», которая включает в себя автоматический планировщик траектории инструмента, управляющий механизм с обратной связью, набор датчиков операционного поля, микроконтроллеры и двух роботов. Таким образом, большой робот контролирует своего маленького коллегу, размещает его в необходимом месте и координирует его в нужном направлении. Маленький робот необходим для внедрения хирургического инструмента в мозг пациента. Кроме того, Robocast всегда можно перевести на ручное управление.

    Veebot

    Обычный врач далеко не всегда попадает в вену с первого раза. Поэтому для забора крови компания Mountain View был создан робот Veebot. Робот определяет место нахождения вены в руке пациента, используя камеру, специальное программное обеспечение и инфракрасную подсветку, а также Weebot исследует вену при помощи ультразвука. Таким образом робот определяет, что толщина вены достаточна для прокола.

    7 Finger Robot

    Ученые из Массачусетского института технологий создали специальное устройство, увеличивающее количество пальцев на руке до семи. В первую очередь, дополнительные пальцы предназначены для людей, которым приходится пользоваться лишь одной рукой. Движениями механических пальцев управляют биологические пальцы пользователя. Другими словами, дополнительные пальцы копируют те движения, которые делают человек (например, захватывающее движение). Также, благодаря своим сервомоторам, дополнительные пальцы способны развивать силу, равную силе обычных пальцев.

    Робот-сиделка VGo

    Американской компанией Vgo Communication был создан робот-сиделка для больных, прошедший тестирование в одной из бостонских детских больниц. Основные задачи робота VGo заключаются в том, чтобы помочь в восстановлении больным, а также обеспечить им связь с внешним миром. Например, благодаря роботу VGo, дети, проходящие лечение в больнице, могут дистанционно посещать школу. Кроме того, робот позволяет администрации больницы контролировать деятельность своих подчиненных. Рост VGo составляет 164 сантиметров, передвигается он на четырех колесах. Ещё VGo может делать анализ крови пациентов.

    Amigo

    Ученые Лестерского университета (Великобритания) сконструировали медицинского робота Amigo, задачей которого является лечение аритмии сердца. Робот может помочь врачам вводить катетер к поврежденным участкам сердца. Amigo также способен подать больному стакан воды. Робот подключен к единой сети, в которой объединены разнообразные роботы по всему миру. Цель данной сети состоит в объединении информации о возможностях роботов, а также в создании программного обеспечения и навигационных карт, что должно сделать этих роботов доступнее в использовании.

    Jukusui-Kun

    Доктор Кабе, работающий в лаборатории японского университета Waseda, создал робота-подушку под названием Jukusui-Kun. Подушка выглядит как мягкая игрушка-медведь. Основные пользователи Jukusui-Kun – люди, страдающие синдромом апноэ сна. Во время сна такие люди испытывают трудности с дыханием – их мучает хронический храп. К робоподушке прилагаются беспроводной датчик, который подкладывается под простынь, беспроводной датчик, который прикрепляется к пальцу пациента, а также микрофон. Подушка анализирует состояние пользователя во время сна, уровень шума, движения спящего, а также количество кислорода в крови. На движения спящего Jakusui-Kun реагирует поглаживанием, после чего человек принимает позу, наиболее благоприятную для сна.

    В прошлом моем посте о телемедицине было упоминание робота-хирурга Да Винчи, которых на 2010 год было установлено около 1000 в мире. Но это далеко не единственное достижение робототехники, использованное в медицине.

    В каких сферах и для чего используют роботов? В хирургии, в качестве сиделок для детей и пожилых, в телемедицине и даже для доставки лекарств. Подробнее - прошу под хабракат.

    RIBA

    Робот Риба родом из Японии. Его представили в 2009 году. Главное его назначение - это с помощью своих длинных и сильных рук укачивать больных и пожилых людей. Это отличный помощник в клиниках, так как он может переносить пациентов с места на место, или же перекладывать из коляски в кровать.

    В 2009 представили RIBA II. Эта версия робота может поднимать пациентов прямо с пола, тогда как первый робот мог брать их только с коляски или кровати. Также грузоподъемность возросла до 176 фунтов, то есть около 80 кг, что на 41 фунт, или 18,5 кг больше, чем в первой версии.

    Зачем японцам вообще нужен такой робот? Все дело в долгожительстве. В Японии к 2015 году количество пожилых людей, которым будет нужен уход, по прогнозам достигнет пяти с половиной миллионов человек. Вот и представьте, скольким медсестрам и санитарам придется поднимать ежедневно больных с футона на коляску, с коляски на кровать, обратно и так далее. Роботы для этих целей подходят лучше, а медсестры пусть занимаются своим делом - просто заботятся о пожилых.

    А этот робот занесен в Книгу Рекордов Гиннесса как «Самый терапевтический в мире робот». Он оснащен множеством датчиков – прикосновений, света, звука, температуры и положения. Это необходимо для хорошей коммуникации с пациентом, помогает успокоить пациента.

    Keepon нужен для того же, но он, по-моему, менее милый. Он танцует и реагирует на прикосновения.

    Робот на раздаче

    Еще один способ избавить медсестер от рутинной работы, занимая их время более полезными делами - это робот от Murata Machinery Ltd, предназначенный для выдачи лекарств.

    Робот от Panasonic также предназначен для того, чтобы доставлять лекарства из аптеки больным. Первая версия этого робота уже могла хранить информацию о 400 пациентах, и выдавать лекарства в соответствии с рецептом по заявке больного или же медицинской сестры.

    Телеприсутствие

    Возвращаясь к вопросу телемедицины (которую на Хабре, судя по комментариям, считают телепередачами с Малышевой), стоит сказать о роботах телеприсутствия. Это комплексы, способные самостоятельно передвигаться, оснащенные камерами, дисплеями, динамиками и микрофонами, и дополнительно к ним - средствами для проведения диагностики и анализов. Такими средствами может быть как возможность подключения к аппаратам, например УЗИ, так и встроенные приборы - например, для аналиа крови.

    В Российских реалиях использование таких роботов практически невозможно, потому что у нас везде проблемы с пандусами - что на въезде в клиники, что внутри них. Так что робот сможет передвигаться только в пределах одного этажа максимум, а минимум - в пределах комнаты, неспособный преодолеть здоровенный порожек.

    PR-7

    Vgo - управление осуществляется по 4G.

    Хирургия

    PUMA 560 стал первым роботом, использованным в нейрохирургии. Это робот-ассистент, представленный в 1985 году.

    В ортопедии при протезировании суставов в 1992 году начали использовать RoboDoc.

    Позже появились ассистенты Зевс и Эзоп, но все равно главным действующим лицом при операции был хирург. В конце 1990-х это изменилось с появлением Да Винчи - робота для удаленных операций.

    Хирург за пультом видит участок в 3D формате с многократным увеличением и работает с джойстиками. В это время четырехрукий робот делает совершает операцию. Изначально изображение не было объемным, конечно, но потом эту проблему решили.

    Минутка трансформеров: ARES от итальянских ученых предназначен для проведения операций, не повреждая кожные покровы. Потому что пациент его проглатывает по частям, и также он выходит потом через кишечник. Внутри робот собирает сам себя, после чего хирург осуществляет операцию.

    Обучение: симуляторы пациентов

    Отправлять живых пациентов новичкам - не очень гуманно. Гораздо лучше попрактиковаться сначала на роботах, которые справляют естественные потребности, у которых бьется сердце и которые более-менее похожи на человека.

    Наиболее функциональным роботом этого типа считают HPS (Human Patient Simulator). Он хранит в себе 30 различных профилей пациентов, отличающихся физиологией и индивидуальными реакциями на лекарства. Это могут быть профили здорового ребенка беременной женщины и пожилого алкоголика. Прощупываемый на сонных, плечевых, бедренных, лучевых подколенных артериях пульс меняется в зависимости от давления, робот выдыхает углекислый газ, что отображается на мониторах, а зрачки его реагируют на свет.

    Со стоматологами - та же история. Хватит кромсать несчастных людей с больными зубками! Сначала на кошках тренируйтесь. На фото - Hanako 2, родом из Японии, что сразу видно.

    Пожалуйста, пишите в комментарии, какие еще роботы должны быть в этой публикации.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Подобные документы

      Рассмотрение принципа работы медицинского робота "Да Винчи", позволяющего хирургам выполнять сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Применение роботов и современных нанотехнологий в медицине и их значение.

      реферат , добавлен 12.01.2011

      Описание истории развития робототехники и применения ее в хирургических операциях на примере программно-управляемого автоматического манипулятора Да Винчи с инструментом Endo Wrist. Создание плавающей капсулы с камерой и эндолюминальной системы ARES.

      реферат , добавлен 07.06.2011

      Правильная и своевременная обработка рук как залог безопасности медицинского персонала и пациентов. Уровни обработки рук: бытовой, гигиенический, хирургический. Основные требования к антисептикам для рук. Европейский стандарт обработки рук EN-1500.

      презентация , добавлен 24.06.2014

      Применение в медицине микроскопических устройств на основе нанотехнологий. Создание микроустройств для работы внутри организма. Методы молекулярной биологии. Нанотехнологические сенсоры и анализаторы. Контейнеры для доставки лекарств и клеточной терапии.

      реферат , добавлен 08.03.2011

      Оказание первой медицинской помощи при несчастных случаях, бедствиях и авариях. Общие правила переноски и подъема пострадавших на носилках и без них при различны травматических повреждениях. Способы выноса пострадавших из очага бедствия или аварии.

      реферат , добавлен 27.02.2009

      Этиология, пато- и морфогенез рака прямой кишки. Маркеры онкогенеза, их прогностическая значимость. Основные критерии оценки результатов иммуногистихимического исследования и результаты состояния РПК у пациентов после радикального хирургического лечения.

      дипломная работа , добавлен 19.05.2013

      Общая характеристика и отличительные признаки различных методик обследования пациентов, используемых в современной медицине. Порядок и инструментарий для проведения обследования. Понятие и причины, разновидности одышки, направления ее исследования.

      реферат , добавлен 12.02.2013

      Разнообразие интересов и талантов Леонардо да Винчи. Проведение анатомических вскрытий художником, создание системы изображений органов и частей тела в поперечном сечении. Исследования в области сравнительной анатомии, содержание дневниковых записей.

      презентация , добавлен 28.10.2013