Типические патологические процессы. Нарушение микроциркуляции. Тема: нарушения микроциркуляции Ожоговая травма и микроциркуляция

  • Дата: 19.07.2019

Допущено
Всероссийским учебно - методическим центром
по непрерывному медицинскому и фармацевтическому образованию
Министерства здравоохранения Российской Федерации
в качестве учебника для студентов медицинских институтов

10.1. Структурно-функциональные аспекты и физиология микроциркуляции

Звенья сердечно-сосудистой системы Функция
1-е звено Сердце и крупные сосуды (артерии) насос и сглаживание пульсации (у сердца перепады АД от 150 до 0, а в крупных артериях от 120 до 80 мм рт.ст.)
2-е звено Артериолы резистентные сосуды и (сопротивление кровотоку)
Прекапиллярные сфинктеры регуляция кровотока через орган, регуляция АД
Артерио-венулярные шунты сброс крови в обход капилляров (из артериол в венулы) - неэффективный кровоток
3-е звено Капилляры обмен крови и клеток газами и питательными веществами. Кровоток и АД постоянны
4-е звено Венулы, вены емкостные сосуды, вмещают до 70-80% всей крови. Низкое АД, медленный кровоток

Микроциркуляторное звено - ключевое. Работа сердца и всех отделов сердечно-сосудистой системы приспособлены к созданию оптимальных условий для микроциркуляции (низкое и постоянное АД, кровоток обеспечен наилучшими условиями для поступления продуктов обмена, жидкости в кровяное русло из клеток и наоборот).

  1. Артериолы - приносящие сосуды. Внутренний диаметр - 40 нм, метартериолы - 20 нм, прекапиллярные сфинктеры - 10 нм. Для всех характерно наличие выраженной мышечной оболочки, поэтому они называются резистивными сосудами. Прекапиллярный сфинктер расположен в месте отхождения от метартериолы прекапилляра. В результате сокращения и расслабления прекапиллярного сфинктера достигается регуляция кровенаполнения ложа, следующего за прекапилляром.
  2. Капилляры - обменные сосуды. К этому компоненту русла микроциркуляции относятся капилляры, в некоторых органах они из-за своеобразной формы и функции называются синусоидами (печень, селезенка, костный мозг). Согласно современным представлениям, капилляр - тонкая трубка диаметром 2-20 нм, образованная одним слоем эндотелиальных клеток, без мышечных клеток. Капилляры ответвляются от артериол, могут расширяться и сужаться, т.е. изменять свой диаметр независимо от реакции артериол. Число капилляров равняется приблизительно 40 миллиардам, общая протяженность - 800 км, площадь - 1000 м 2 , каждая клетка удалена от капилляра не более чем на 50-100 нм.
  3. Венулы - отводящие сосуды диаметром около 30 нм. В стенках гораздо меньше мышечных клеток по сравнению с артериолами. Особенности гемодинамики в венозном отделе обусловлены наличием в венулах диаметром 50 нм и больше, клапанов, препятствующих обратному кровотоку. Тонкостенность венул и вен, большое их количество (в 2 раза больше, чем приносящих сосудов) создает огромные предпосылки для депонирования и перераспределения крови из резистивного русла в емкостное.
  4. Сосудистые мостики - "обводные каналы" между артериолами и венулами. Обнаружены почти во всех частях тела. Поскольку эти образования встречаются исключительно на уровне микроциркуляторного русла, более правильно называть их " артериоло-венулярными анастомозами ", их диаметр - 20-35 нм, на ткани площадью 1,6 см 2 регистрируется от 25 до 55 анастомозов.

Физиология микроциркуляции. Главная функция - транскапиллярный обмен газами и химическими веществами. Зависит от следующих факторов:

  1. Скорости кровотока в микроциркуляторном русле. Линейная скорость кровотока в аорте и крупных артериях человека - 400-800 мм/сек. В русле она много меньше: в артериолах - 1,5 мм/сек; в капиллярах - 0,5 мм/сек; в крупных венах - 300 мм/сек. Таким образом, линейная скорость кровотока прогрессивно снижается от аорты к капиллярам (в связи с повышением площади поперечного сечения кровяного русла и снижением АД), затем скорость кровотока вновь повышается по направлению тока крови к сердцу.
  2. Кровяное давление в русле микроциркуляции. Так как линейная скорость кровотока прямо пропорциональна АД, то по мере разветвления кровяного русла от сердца к капиллярам АД снижается. В крупных артериях оно составляет 150 мм рт ст, в русле микроциркуляции - 30 мм рт ст, в венозном отделе - 10 мм рт ст.
  3. Вазомоции - реакция спонтанного сужения и расширения просвета метартериол и прекапиллярных сфинктеров. Фазы - от нескольких секунд до нескольких минут. Определяются изменениями в содержании тканевых гормонов: гистамина, серотонина, ацетилхолина, кининов, лейкотриенов, простагландинов.
  4. Проницаемости капилляров. В центре внимания - проблема проницаемости биомембран капиллярной стенки. Силами перехода веществ и газов через капиллярную стенку являются:
    • диффузия - взаимное проникновение веществ в сторону меньшей концентрации для равномерного распределения О 2 и СО 2 , ионов с молекулярной массой меньше 500. Молекулы с большей молекулярной массой (белки) не диффундируют через мембрану. Они переносятся с помощью других механизмов;
    • фильтрация - проникновение веществ через биомембрану под влиянием давления, равного разнице между гидростатическим давлением (Р гидр. , выталкивающее вещества из сосудов) и онкотическим давлением (Р онк, удерживающее жидкость в сосудистом русле). В капиллярах Р гидр. несколько выше Р онк. Если Р гидр. , выше Р онк, идет фильтрация (выход из капилляров в межклеточное пространство), если оно ниже Р онк - идет абсорбция. Но и фильтрация обеспечивает переход через биомембрану капилляров только веществ с молекулярной массой менее 5000;
    • микровезикулярный транспорт или транспорт через большие поры - перенос веществ с молекулярной массой более 5000 (белки). Осуществляется с помощью фундаментального биологического процесса микропиноцитоза. Суть процесса: микрочастицы (белки) и растворы поглощаются пузырьками биомембраны капиллярной стенки и переносятся через нее в межклеточное пространство. Фактически это напоминает фагоцитоз. Физиологическая значимость микропиноцитоза видна из того, что, согласно расчетным данным, за 35 минут эндотелий русла микроциркуляции с помощью микропиноцитоза может перенести в прекапиллярное пространство объем плазмы, равный объему капиллярного русла!

10.2. Гемореология и микроциркуляция

Гемореология - наука о влиянии элементов крови и взаимодействии их со стенками капилляров на кровоток.

10.2.1. Влияние элементов крови: взаимодействие между собой (агрегация) и влияние на кровоток

Вязкость крови обусловлена молекулярными силами сцепления между слоями крови, форменными элементами крови и стенкой сосудов.

Наибольшее влияние на вязкость крови оказывают:

  • белки крови и особенно фибриноген (повышение фибриногена повышает вязкость крови);
  • эритроцитарный гематокрит (Ht) = объем эритроцитов в %

Повышение Ht наблюдается при повышении вязкости крови. При многих патологических состояниях (коронарная недостаточность, тромбоз) вязкость крови повышается. При анемиях, естественно, вязкость крови падает, так как число эритроцитов снижается.

Механизм влияния. Почему эритроциты, а также и тромбоциты влияют на вязкость крови? На поверхности эритроцитов и тромбоцитов отрицательный дзета-потенциал, поэтому одноименно заряженные эритроциты и тромбоциты, несущие на своей наружной мембране отрицательный потенциал, отталкиваются друг от друга (так называемая электрокинетическая активность). Это феномен лежит в основе СОЭ.

Повышение в крови содержания высокомолекулярных белков, в том числе фибриногена, приводит к падению потенциала на поверхности эритроцитов, поэтому они, отталкиваясь уже слабее, агрегируют в "монетные столбики" (так же действуют АДФ, тромбин, норадреналин). Гепарин, наоборот, повышает электрокинетическую активность и ускоряет кровоток в русле микроциркуляции.

10.2.2. Влияние взаимодействия со стенкой капилляров

При движении крови по капилляру между центральной движущейся частью эритроцитов и стенкой капилляра образуется неподвижный пристеночный слой, по-видимому, играющий роль смазки.

В норме форменные элементы крови свободно продвигаются, не прилипая к стенкам сосуда. При повреждении эндотелия к нему сразу прилипают "тромбоциты" (атеросклероз, механическая травма, воспалительные повреждения стенок капилляров).

Вероятно, это можно рассматривать как явление защитное, гомеостатическое, так как тромбоциты закрывают дефект. При образовании тромба возможно опасное ограничение кровотока, отрыв тромба и эмболия, что является патологическим состоянием.

10.2.3. Факторы регуляции микроциркуляции

Факторы регуляции микроциркуляции направлены на: а) изменение тонуса сосудов и б) на изменение проницаемости.

Артериолы и венулы:

  1. Нервная система и ее медиаторы норадреналин и ацетилхолин осуществляет регуляцию на уровне артериол и венул. Норадреналин оказывает преимущественно вазоконстрикторное действие, ацетилхолин - вазодилятаторное.
  2. Эндокринная система - ангиотензин, вазопрессин оказывает вазоконстрикторное действие.

Прекапиллярные сфинктеры:

  1. Нервная регуляция отсутствует.
  2. Тонус н диаметр изменяются местными тканевыми гормонами тучных клеток и базофилов при их дегрануляции: гистамином (вазодилятация и повышение проницаемости капилляров), серотонином (преимущественно вазоконстрикция), лейкотриенами (вазоконстрикция), простагландинами (простациклин - констрикция, тромбоксан А2 - дилятация), кининами (вазодилятация и повышение проницаемости). Все эти гормоны называются местными, так как они образуются местно, в тканях. Действие их кратковременное, потому что они быстро разрушаются с периодом полураспада в сек/мин.

Примеры типичного развития событий:

  • расширенпе резистивных сосудов микроцпркуляции(вазодилятацня) снижение АД снижение скорости линейного кровотока - замедление кровотока маятникообразные движения и остановка кровотока;
  • повышение проницаемости сосудов - плазмопотеря, сгущение крови, повышение вязкости, замедление кровотока, стаз. С повышением проницаемости - выход эритроцитов - геморрагии.

10.2.3. Общая патология микроциркуляции

Нумерация дана в соответствии с первоисточником

В связи с тем, что нарушение микроциркуляции включается как важное патогенетическое звено в ряд типических патологических процессов и во многие патологические процессы в органах и системах, знание расстройств микроциркуляции необходимо для врачей различных специальностей.

Причины расстройств микроциркуляции:

  1. Внутрисосудистые изменения.
  2. Изменения самих сосудов.
  3. Внесосудистые изменения.

10.2.3.1. Внутрисосудистые изменения как причина нарушений микроциркуляции

  1. Дегрануляция базофилов приводит к выделению БАВ и гепарина, которые влияют на тонус и проницаемость сосудов и свертывающие свойства крови (при воспалительных и аллергических реакциях).
  2. Расстройства реологических свойств крови: 1-й патогенетический механизм связан с внутрисосудистой агрегацией эритроцитов (сладж) и замедлением капиллярного кровотока. Агрегация эритроцитов описана в трудах XVIII века по воспалению и в начале XX века была дана шведским ученым Фахреусом при изучении крови беременных женщин. Этот феномен лежит в основе определения СОЭ.

    В 1941-1945 гг. Кнайсли, Рлох описали крайнюю степень агрегации эритроцитов - сладж (в переводе - густая тина, грязь, ил). Следует различать агрегацию эритроцитов (обратима) и агглютинацию (необратима) - прилипание в результате иммунных конфликтов.

    Основные признаки сладжированной крови: прилипание друг к другу и к стенке сосудов эритроцитов, лейкоцитов, тромбоцитов, образование "монетных столбиков" и нарастание вязкости крови.

    Последствия сладжа: затруднение перфузии через русло микроциркуляции вплоть до остановки кровотока (маятникообразное движение крови, ведущее к гипоксии клеток, органа). Например, при пародонтозе в верхней части десны у коронки.

    Компенсаторная реакция. В условиях затруднения перфузии и тромбообразования раскрываются шунтирующие артериоло-венулярные анастомозы. Однако, полной компенсации не наступает и развивается нарушение многих органов, обусловленное гипоксией.

    Патогенетические принципы восстановления реологических свойств крови

    1. Введение низкомолекулярных декстранов (полиглюкин, реомакродекс).

      Механизм действия:

      • разведение крови (гемодилюция) и повышение онкотического давления за счет макромолекул этих углеводородов, влекущее переход жидкости из межклеточного вещества в сосуды;
      • повышение дзета-потенциала на эритроцитах, тромбоцитах;
      • закрытие поврежденной стенки эндотелия сосудов.
    2. Введение антикоагулянтов (гепарина), повышающих дзета-потенциал на мембранах эритроцитов, тромбоцитов, лейкоцитов.
    3. Введение тромболитиков (фибринолизин).

Мы рассмотрели одну из внутрисосудистых причин расстройств микроциркуляции - агрегацию эритроцитов, а вторую причину, связанную с диссеминированным внутрисосудистым свертыванием (ДВС-синдром) при проникновении в кровоток тканевых факторов реакции свертывания крови с развитием внутрисосудистой коагуляции, мы разберем в главе 19 .

Большинство патологических состояний сопровождается внутрисосудистым свертыванием крови. При деструкции тканей из них в сосудистое русло вымывается тканевой тромбопластин (особенно им богата плацента, паренхиматозные органы). Попадая в кровоток, он запускает реакцию свертывания крови, что сопровождается формированием фибриновых сгустков, тромбов. Эта реакция ограничивает кровопотерю, поэтому относится к реакциям защитного, гомеостатического характера.

10.2.3.2. Расстройства микроциркуляции, связанные с патологическими изменением стенки сосудов

Виды патологических изменений стенки сосудов:

  • повышение проницаемости мембран капилляров, связанное с действием БАВ (гистамин, кинины, лейкотриены) при лихорадке, воспалительных, иммунных и других повреждениях. Вследствие действия сил диффузии и фильтрации это приводит к значительному увеличению потери плазмы, а с ней и веществ с молекулярной массой более 5000, увеличению вязкости крови и прогрессирующей агрегации эритроцитов. Возникает стаз, приводящий к отеку ткани;
  • крайней степенью высокой проницаемости является повреждение биомембран стенок микрососудов и прилипание к ним форменных элементов крови. Через 5-15 мин в области повреждения обнаруживается адгезия тромбоцитов. Прилипшие тромбоциты образуют "псевдоэндотелий", временно закрывающий дефект в эндотелиальной стенке (выстилка тромбоцитов). При более сильных повреждениях сосудистой стенки возникает диапедез форменных элементов крови и микрокровоизлияние.

10.2.3.3. Расстройства микроциркуляции, связанные с периваскулярными изменениями

Система микроциркуляции с ее центральной частью - капиллярами - составляет единое функциональное целое с клетками паренхимы и стромы органа.

Роль тучных клеток тканей в нарушении микроциркуляции при воздействии патологических факторов

Тучные клетки в силу того, что они расположены рядом с микрососудами или прямо в них (базофилы), оказывают наибольшее влияние на систему микроцпркуляции. Это связано с тем, что они являются депо БАВ (местных тканевых гормонов). Обычной их реакцией на повреждающий фактор является дегрануляцня, сопровождающаяся выбросом БАВ и гепарина. Влияние БАВ на микроциркуляцию связано с действием на тонус и проницаемость микрососудов, а гепарина - с антикоагуляционным действием;

Затруднение лимфообращения

Лимфатические капилляры играют дренажную, отводящую жидкость роль. При деформации лимфатических капилляров, например при переходе острого воспаления в хроническое, наступает облитерация (заращениe) лимфатических капилляров. Нарушение оттока жидкости и белка, повышение тканевого давления в межклеточной жидкости приводит к затруднению микроциркуляции, переходу жидкой части крови из русла в ткани, что имеет существенное значение в развитии отека в очаге поражения.

10.2.4. Нарушение микроциркуляции при типических патологических процессах

К типическим патологическим процессам относятся патологические реакции, протекающие однотипно у животных м человека. С одной стороны, это доказывает наше общее эволюционное происхождение, с другой стороны, позволяет ученым переносить результаты опытов с животных на человека. К типическим патологическим процессам относятся, например:

  • воспаление:
  • иммунные нарушения:
  • опухолевый рост;
  • ионизирующая радиация.

10.2.4.1. Нарушения микроциркуляции при местном поражении тканей

Результатом местного воздействия любого патологического агента на ткань является повреждение мембран лпзосом, выход их ферментов, вызывающих избыточное образование БАВ, например, кининов, либо через дегрануляцию тучных клеток, базофилов. Так как это регуляторы микроциркуляции, то при любом процессе, вызывающем повышение БАВ, будут отмечаться нарушения микроциркуляцни.

10.2.4.2. Воспаления и расстройства микроциркуляции

Как никакой другой процесс, воспаление связано с нарушениями микроциркуляции. БАВ вызывают:

  • артериальную вазодилятацию в очаге воспаления (гиперемия);
  • повышение проницаемости в очаге (отек, повышение вязкости крови, преимущественно в венулах, диапедез эритроцитов - микрокровоизлияния, лейкоцитов);
  • прилипание тромбоцитов к стенкам эндотелия (тромб);
  • агрегацию эритроцитов (замедление кровотока, стаз, сладжеобразование, гипоксия);

В завершающую стадию воспаления - пролиферацию - увеличена потребность в аминокислотах, кислороде для биосинтеза АТФ, чему препятствуют расстройства мпкроциркуляции. Поэтому очень важно восстановить эффективный кровоток в заживающей рано.

10.2.4.3. Ожоговая травма и микроциркуляция

Так как действие термического фактора также приводит к повреждению мембран лизосом (пускового звена воспаления), то эта проблема при ожоге переходит в более общую проблему воспаления, в данном случае неинфекцнонного воспаления.

Вначале в очаге ожога преимущественно, как и при воспалении, повреждаются венулы. Через несколько часов изменения проницаемости развиваются преимущественно в капиллярах. Развивается агрегация эритроцитов ("монетные столбики" или "зернистая икра"), приводящая к стазу, сладжу и гипоксии. Это состояние нарушения микроциркуляции, по существу, лежит и в основе ожогового шока.

10.2.4.4. ГЧНТ и ГЧЗТ и микроциркуляция

Описанная общепатологическая закономерность развития нарушении микроциркуляции прослеживается и при аллергических реакциях. Местом протекания реакций антиген-антитело или антиген-Т-лимфоцит киллер может быть система микроциркуляции. И вновь существенную роль здесь играет дегрануляция тучных клеток тканей и базофилов крови под влиянием иммунного комплекса с освобождением БАВ и гепарина. Выброс этих веществ ведет к патохимичееким нарушениям, в результате которых развивается комплекс тяжелых патофизиологических расстройств - шоковое состояние.

Мы разобрали 3 типических патологических процесса: воспаление, ожог, аллергические реакции. Все они в начальных фазах имеют свою специфику: этиологию и патогенез.Но теперь уже ни у кого не вызывает сомнения то, что нарушения мпкроциркуляции и, в конечном итоге, перфузии органов играют существенную роль в патогенезе и исходе воспалительного и шокового синдромов.

Стаз: виды, причины, проявления, последствия.

Стаз – значительное замедление или прекращение тока крови и/или лимфы с сосудах органа или ткани.

Причины

Ишемия и венозная гиперемия. Они приводят к стазу вследствие существен­ного замедления кровотока (при ишемии в связи со снижением притока ар­териальной крови, при венозной гиперемии в результате замедления или пре­кращения её оттока) и создания условий для образования и/или активации веществ, обусловливающих склеивание форменных элементов крови, фор­мирования из них агрегатов и тромбов.

Проагреганты - факторы, вызывающие агрегацию и агглютинацию формен­ных элементов крови.

Патогенез стаза :

На финальном этапе стаза всегда происходит процесс агрегации и/или агглютинации форменных элементов крови, что приводит к сгущению крови и снижению ее текучести. Этот процесс активируют проагреганты, катионы и высокомолекулярные белки.

Проагреганты (тромбоксан А 2, катехоламиныATк форменным элементам крови) вызывают адгезию, агрегацию, агглюти­нацию форменных элементов крови с последующим их лизисом и высвобож­дением из них БАБ.

Катионы. К + , Са 2+ ,Na + ,Mg 2+ высвобождаются из клеток крови, повреждён­ных стенок сосудов и тканей. Адсорбируясь на цитолемме форменных эле­ментов крови, избыток катионов нейтрализует их отрицательный поверхнос­тный заряд.

Высокомолекулярные белки (например, у-глобулины, фибриноген) снимают поверхностный заряд неповреждённых клеток (соединяясь с отрицательно заряженной поверхностью клеток с помощью аминогрупп, имеющих поло­жительный заряд) и потенцируют агрегацию форменных элементов крови и адгезию их конгломератов к стенке сосуда.

Виды стаза

Первичный (истинный) стаз. Формирование стаза первично начинается с активации форменных элементов крови и выделения ими большого количе­ства проагрегантов и/или прокоагулянтов. На следующем этапе форменные элементы агрегируют, агглютинируют и прикрепляются к стенке микрососу­да. Это и вызывает замедление или остановку кровотока в сосудах.



Вторичный стаз (ишемический и застойный).

Ишемический стаз развивается как исход тяжёлой ишемии в связи со сниже­нием притока артериальной крови, замедлением скорости её тока, турбулент­ным его характером. Это и приводит к агрегации и адгезии клеток крови.

Застойный (венозно-застойный) вариант стаза является результатом за­медления оттока венозной крови, сгущения её, изменения физико-хими­ческих свойств, повреждения форменных элементов крови (в частности, в связи с гипоксией). В последующем клетки крови адгезируют друг с дру­гом и со стенкой микрососудов.

Проявления стаза

При стазе происходят характерные изменения в сосудах микроциркуляторного русла:

уменьшение внутреннего диаметра микрососудов при ишемическом стазе, увеличение просвета сосудов микроциркуляторного русла при застойном ва­рианте стаза, большое количество агрегатов форменных элементов крови в просвете сосу­дов и на их стенках, микрокровоизлияния (чаще при застойном стазе).

Последствия стаза:

При быстром устранении причины стаза ток крови в сосудах микроциркуля­торного русла восстанавливается и в тканях не развивается каких-либо суще­ственных изменений.

Длительный стаз приводит к развитию дистрофических изменений в тканях, нередко - к гибели участка ткани или органа (инфаркт).

Сладж: характеристика понятия, причины, механизмы формирования, проявления и последствия.

Сладж – феномен, характеризующийся адгезией, агрегацией и агглютинацией форменных элементов крови, что обусловливает сепарацию её на конгломераты из эритроцитов, лейкоцитов, тромбоцитов и плазму, а также нарушение микрогемоциркуляции.

Причины сладжа :

Нарушение центральной гемодинамики (при сердечной недостаточности, венозном застое, патологических формах артериальной гиперемии).

Повышение вязкости крови (например, в условиях гемоконцентрации, гиперпротеинемии, полицитемии).

Повреждение стенок микроспадов (при местных патологических процессах, аллергических реакциях, опухолях)

Механизмы развития сладжа:

ФЭК - форменные элементы крови.

Последствия сладжа:

1. Нарушение тока крови внутри сосудов (замедление, вплоть до стаза, тур­булентный ток крови, включение артериоловенулярных шунтов), расстрой­ство процессов транскапиллярного тока форменных элементов крови.

2. Нарушение метаболизма в тканях и органах с развитием дистрофий и рас­стройством пластических процессов в них.

Причины: нарушения обмена 0 2 и С0 2 в связи с адгезией и агрегацией эритроцитов и развитие васкулопатий в результате прекращения или зна­чительного уменьшения ангиотрофической функции тромбоцитов (они находятся в конгломератах форменных элементов крови).

3. Развитие гипоксии и ацидоза в тканях и органах.

Феномен сладжа является причиной расстройств микроциркуляции (в тех случаях, когда он развивается первично) или следствием внутрисосудистых нарушений микрогемоциркуляции (при их первичном развитии).

Расстройства микроциркуляции: причины, типовые формы. Интраваскулярные нарушения: основные формы, причины, проявления и последствия.

Микроциркуляция – упорядоченное движение крови и лимфы по микрососудам, транскапиллярный перенос плазмы и форменных элементов крови, перемещение жидкости во внесосудистом пространстве.

Микроциркуляторное русло . Совокупность артериол, капилляров и венул со­ставляет структурно-функциональную единицу сердечно-сосудистой системы - микроциркуляторное (терминальное) русло. Терминальное русло организова­но следующим образом: от терминальной артериолы отходит метартериола, распадающаяся на образующие сеть анастомозирующие истинные капилляры; венозная часть капилляров открывается в посткапиллярные венулы. В месте отделения капилляра от артериол имеется прекапиллярный сфинктер - скоп­ление циркулярно ориентированных ГМК. Сфинктеры контролируют локаль­ный объём крови, проходящий через истинные капилляры; объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тону­сом ГМК артериол. В микроциркуляторном русле присутствуют артериолове-нулярные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами (юкстакапиллярный кровоток). Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в боль­шом количестве присутствуют в некоторых участках кожи, где они играют важ­ную роль в терморегуляции (мочка уха, пальцы). К микроциркуляторному рус­лу относят также мелкие лимфатические сосуды и межклеточное пространство.

Причины расстройств микроциркуляции.

Многочисленные причины, вызывающие разнообразные нарушения микро­циркуляции, объединяют в три группы.

Расстройства центрального и регионарного кровообращения. К наиболее зна­чимым относят сердечную недостаточность, патологические формы артери­альной гиперемии, венозную гиперемию, ишемию.

Изменения вязкости и объёма крови и лимфы. Развиваются вследствие гемо-концентрации и гемодилюции.

Гемо(лимфо)концентрация. Причины: гипогидратация организма с разви­тием полицитемической гиповолемии, полицитемия, гиперпротеинемия (преимущественно гиперфибриногенемия).

Гемо(лимфо)дилюция. Причины: гипергидратация организма с развитием олигоцитемической гиперволемии, панцитопения (уменьшение количества всех форменных элементов крови), повышенная агрегация и агглютинация форменных элементов крови (приводит к значительному повышению вяз­кости крови), ДВС-синдром.

Повреждение стенок сосудов микроциркуляторного русла. Обычно наблюда­ется при атеросклерозе, воспалении, циррозах, опухолях и др.

Типовые формы интраваскулярных (внутрисосудистых) расстройств:

1. Замедление (вплоть до стаза) тока крови и/или лимфы.

Наиболее частые причины:

А) Расстройства гемо- и лимфодинамики (например, при сердечной недо­статочности, венозной гиперемии, ишемии).

Б) Увеличение вязкости крови и лимфы [в результате гемо(лимфо)концент-рации при длительной рвоте, диарее, плазморрагии при ожогах, полици-темии, гиперпротеинемии, агрегации клеток крови, внутрисосудистом её свёртывании, микротромбозе).

В) Значительное сужение просвета микрососудов (вследствие сдавления их опухолью, отёчной тканью, образования в них тромбов, попадания эмбо-ла, набухания или гиперплазии эндотелиальных клеток, образования ате-росклеротической бляшки и т.п.).

Проявления. Сходны с наблюдающимися в сосудах микроциркуляторного русла при венозной гиперемии, ишемии или стазе.

2. Ускорение кровотока.

Основные причины.

А) Нарушения гемодинамики (например, при артериальной гипертензии, патологической артериальной гиперемии или сбросе артериальной крови в венозное русло через артериоловенулярные шунты).

Б) Снижение вязкости крови вследствие гемодилюции (при водном отрав­лении); гипопротеинемии, почечной недостаточности (при олигуричес-кой или анурической стадии); панцитопении.

3. Нарушение ламинарности (турбулентность) тока крови и/или лимфы.

Наиболее частые причины.

А) Изменения вязкости и агрегатного состояния крови (в результате образо­вания агрегатов клеток крови при полицитемии, значительном увеличе­нии числа форменных элементов крови выше нормы или гиперфибрино-генемии; при формировании микротромбов).

Б) Повреждение стенок микрососудов или нарушение гладкости их (при васку-литах, гиперплазии клеток

эндотелия, артериосклерозе, фиброзных измене­ниях в различных слоях сосудистых стенок, развитии в них опухолей и т.п.)

4. Увеличение юкстакапиллярного тока крови. Происходит вследствие откры­тия артериоловенулярных шунтов и сброса крови из артериол в венулы, ми­нуя капиллярную сеть микроциркуляторного русла.Причина: спазм ГМК артериол и закрытие прекапиллярных сфинктеров при значительном увеличении уровня катехоламинов в крови (например, при гиперкатехоламиновом кризе у пациентов с феохромоцитомой), чрез­мерном повышении тонуса симпатической нервной системы (например, в условиях стресса), гипертензивном кризе (например, у пациентов с гипер­тонической болезнью). Проявления : ишемия в регионе сброса крови из артериол в венулы, от­крытие и/или увеличение диаметра артериоловенулярных шунтов, Турбу­лентный характер тока крови в местах ответвлений и входов в венулы шун­тирующих сосудов (обусловлен тем, что артериоловенулярные шунты от­ходят от артериол и впадают в венулы, как правило, под значительным углом; это сопровождается соударением форменных элементов крови друг с другом и стенкой сосуда, что приводит к выделению проагрегантов и прокоагулянтов, к образованию агрегатов и тромбов)

Всем известно, что организм человека полноценно работает, если каждая мельчайшая клеточка будет получать кислород и питательные вещества в полном объеме. А для этого, в свою очередь, необходимо хорошее функционирование микроциркуляторного русла – самых мелких сосудов в организме, или капилляров. Именно в них происходит обмен газов и питательных веществ между кровью и окружающими тканями.

Примерно это выглядит так – клетки крови (эритроциты) получают кислород в легких, и благодаря разветвленной сети сосудов во всех органах и тканях организма, доставляют его в каждый орган. Все внутриорганные сосуды делятся на все более мелкие артерии, артериолы и, наконец, капилляры, в которых благодаря тончайшей стенке и происходит газообмен между кровью и клетками органов. После того, как кровь “отдала” кислород в клетки, она собирает отработанные продукты (углекислый газ и другие вещества), которые посредством мелких и более крупных вен доставляются в легкие и выводятся наружу с выдыхаемым воздухом. Подобным образом клетки обогащаются и питательными веществами, всасывание которых происходит в кишечнике.

Таким образом, именно от состояния жидкой части крови и стенок самих капилляров зависит функционирование жизненно важных органов – головного мозга, сердца, почек и т. д.

Капилляры представлены тончайшими трубочками, диаметр которых измеряется в нанометрах, а стенка не обладает мышечной оболочкой и наиболее приспособлена для диффузии веществ в обе стороны (в ткани и обратно в просвет капилляров). Скорость кровотока и давление крови в этих мелких сосудах крайне замедлена (порядка 30 мм рт ст), по сравнению с крупными (около 150 мм рт ст), что также имеет благоприятное значение для полноценного газообмена между кровью и клеткам.

Если в силу каких-либо патологических процессов меняются реологические свойства крови, обеспечивающие ее текучесть и вязкость, или повреждается стенка сосудов, то возникают нарушения микроциркуляции, которые сказываются на обеспечении клеток внутренних органов важнейшими веществами.

Причины нарушений микроциркуляции

В основе подобных нарушений лежат процессы повреждения сосудистой стенки, вследствие чего повышается ее проницаемость. Развивается застой крови и выход ее жидкой части в околоклеточное пространство, что приводит к сдавлению увеличенным объемом межклеточной жидкости мелких капилляров, и обмен между клетками и капиллярами нарушается. Кроме этого, в случае, когда повреждается целостная капиллярная стенка изнутри, например, при атеросклерозе, а также при воспалительных или аутоиммунных заболеваниях сосудов, к ней “прилипают” тромбоциты, пытаясь закрыть образовавшийся дефект.

Итак, основными патологическими состояниями, которые приводят к нарушению тока крови в сосудах микроциркуляторного русла, являются:

  • Патология центральных органов системы кровообращения – острая и хроническая , все виды шока (травматический, болевой, вследствие кровопотери и др), ишемия миокарда, (увеличение объема крови и ее застой в венозной части кровеносного русла).
  • Патологические изменения в соотношении жидкой и клеточной частях крови – обезвоживание или, наоборот, увеличение объема жидкой части крови при избыточном поступлении жидкости в организм, с повышенным тромбообразованием в просвете сосудов.
  • Заболевания сосудистой стенки:
    1. (дословно, воспаление сосудов) – первичные геморрагические, васкулиты при аутоиммунных заболеваниях ( , ревматоидном артрите, ревматизме), васкулиты при геморрагических лихорадках и при бактериемии (сепсисе – проникновении в кровь бактерий и генерализации инфекций),
    2. крупных и мелких артерий, когда на внутренней стенке сосудов откладываются атеросклеротические бляшки, препятствующие нормальному току крови,
    3. Повреждение сосудистой стенки и прикрепление к ней при заболеваниях вен – при и ,
    4. , при котором происходит токсическое влияние избытка глюкозы на внутреннюю выстилку сосудов, развивается ишемия (недостаточное поступление крови) мягких тканей.

Какими симптомами подобные нарушения проявляются?

Нарушения микроциркуляции крови могут возникнуть в любом органе. Однако наиболее опасно поражение капилляров в сердечной мышце, в головном мозге, в почках и в сосудах нижних конечностей.

Сердце

типичные причины нарушения кровоснабжения сердечной мышцы (миокарда)

Нарушения микроциркуляции в сердечной мышце свидетельствуют о развитии ишемии миокарда, или . Это хроническое заболевание (ИБС), опасность которого в развитии острого , нередко с летальным исходом, а также в формировании хронической сердечной недостаточности, которая приводит к тому, что сердце не способно обеспечивать кровью весь организм.

К начальным симптомам нарушения кровотока в миокарде относятся такие признаки, как повышенная утомляемость, общая слабость, плохая переносимость физических нагрузок, при ходьбе. На стадии, когда развивается выраженная ишемия миокарда, появляются давящие или жгучие боли за грудиной или в проекции сердца слева, а также в межлопаточной области.

Мозг

Расстройства микроциркуляции в сосудах головного мозга появляется вследствие острых или хронических . Первая группа заболеваний включает , а вторая развивается вследствие длительно существующей , когда сонные артерии, питающие мозг, находятся в состоянии повышенного тонуса, а также вследствие поражения сонных артерий атеросклеротическими бляшками или из-за выраженного позвоночника, когда шейные позвонки оказывают давление на сонные артерии.

ишемия мозга, из-за нарушения кровоснабжения

В любом случае, когда питание клеток головного мозга нарушается, так как возникает и отек межклеточного вещества, возможны микроинфаркты вещества головного мозга. Все это носит название хронической дисциркуляторной (ХДЭП).

К симптомам ДЭП относятся изменения когнитивных и мыслительных функций, нарушения эмоционального спектра, забывчивость, особенно потеря бытовой памяти, обидчивость, плаксивость, шаткость походки и другие неврологические симптомы.

Почки

Нарушения микроциркуляции в сосудах почек могут возникнуть вследствие острых или хронических процессов. Так, при шоковом состоянии кровь не поступает в сосуды почек, вследствие чего развивается острая почечная недостаточность. При хронических процессах в почках (артериальная гипертония, поражение сосудов при сахарном диабете, пиелонефрит и гломерулонефрит) нарушения капиллярного кровотока развиваются исподволь, на протяжении всего периода болезни, и проявляются клинически, как правило, незначительными признаками – редким мочеиспусканием, никтурией (мочеиспусканием в ночное время), отеками на лице.

Острое же состояние проявляется отсутствием мочи (анурия) или резким уменьшением ее количества (олигурия). Острая почечная недостаточность является крайне опасным состоянием, так как без лечения происходит отравление организма продуктами собственного метаболизма – мочевиной и креатинином.

Нижние конечности

Нарушения микроциркуляции в сосудах нижних конечностей чаще всего развиваются вследствие острого артерий или вен нижних конечностей, а также при – поражении микроциркуляторного русла у пациентов с высоким уровнем глюкозы крови. Кроме этого, нарушения капиллярного кровотока в мышцах голеней и стоп возникают у курильщиков из-за постоянного спазма сосудов соответствующих сосудов и клинически проявляются .

Остро возникшие нарушения кровотока при тромбозах проявляются резким отеком, побледнением или посинением конечности, и выраженным болевым синдромом в ней.

Хронические нарушения микроциркуляции, например, при или диабетической ангиопатии характеризуются периодическими болями, отечностью стоп, нарушением чувствительности кожи.

Отдельного внимания заслуживает . Это состояние, которое развивается вследствие длительного повреждения сосудистой стенки неусваивающейся клетками глюкозой, вследствие чего развиваются макро- и микроангиопатия (патология сосудов) от незначительных до выраженных нарушений.

ишемия нижних конечностей и трофические расстройства из-за диабета

Незначительные нарушения микроциркуляции при диабете проявляются ощущением ползания мурашек, чувством онемения и похолоданием стоп, вросшими ногтями, грибковым поражением и трещинами на коже подошв. Выраженные нарушения развиваются вследствие присоединения вторичной бактериальной флоры из-за снижения местного и общего иммунитета и проявляются длительно незаживающими трофическими язвами. В тяжелых случаях развивается стопы и даже может понадобиться ампутация стоп.

Кожа

Также следует упомянуть о нарушениях микроциркуляции в сосудах кожи.

В коже изменения кровотока и, как следствие, кислородного обеспечения клеток, встречаются не только при указанных патологических состояниях, например, в коже конечностей при тромбозе или при сахарном диабете, но и у совершенно здоровых лиц при процессах старения кожи. Причем преждевременное старение может встречаться у лиц молодого возраста и нередко требует пристального внимания врачей-косметологов.

Итак, выделяют варианты спастического, атонического и спастико-застойного нарушения кровотока в микрососудах кожи:

Опасны ли микроциркуляторные нарушения?

Несомненно, многие нарушения микроциркуляции опасны для здоровья и даже жизни больного, в первую очередь если они возникают остро. Так, нарушения кровотока в мелких сосудах сердечной мышцы, возникшие при остром коронарном тромбозе, приводят к выраженной ишемии миокарда, а через несколько минут или часов – к некрозу (отмиранию) клеток сердечной мышцы – развивается острый инфаркт миокарда. Чем обширнее зона поражения, тем неблагоприятнее прогноз.

При остром тромбозе бедренных артерий и вен любое промедление в плане медикаментозного и оперативного вмешательства может привести к потере конечности.

То же самое касается и лиц с диабетической ангиопатией и синдромом диабетической стопы. Такие пациенты должны быть обучены правильному уходу за своими стопами, чтобы не лишиться ног при развитии гнойной инфекции или гангрены стопы.

В случае длительно существующих процессов в организме, например, при нарушениях микроциркуляции в почках и в головном мозге при гипертонии, нарушение функции органа, конечно, есть, но острой угрозы для жизни не возникает.

Возрастное нарушения кровотока в микрососудах кожи вообще не несет никакой опасности для жизни и здоровья, а вызывает только эстетические проблемы.

К какому врачу обращаться?

Нарушения микроциркуляции крови – общетиповой процесс, поэтому обращение к какому-либо конкретному специалисту зависит от наличия первичной патологии и клинических проявлений.

Если вы заметили учащенное или, наоборот, редкое мочеиспускание, сопровождаемое высокими цифрами артериального давления, а также симптомы со стороны сердца (боли в грудной клетке, одышку, перебои в сердце), следует обратиться к терапевту или к кардиологу.

При отеках, похолодании и изменении цвета конечностей (побледнение, посинение или покраснение) необходимо посетить сосудистого или хотя бы общего хирурга. Синдром диабетической стопы совместно лечат эндокринологи и хирурги.

Нарушения микроциркуляции сосудов головного мозга вследствие инсультов, гипертонии или остеохондроза позвоночника (так называемая ДЭП сложного генеза) – прерогатива неврологов.

Коррекцией нарушенного кровотока в коже и связанного с этим старения кожи занимаются косметологи и врачи-дерматологи.

Улучшение микроциркуляции, препараты улучшающие кровоток

Возможно ли как-то улучшить или восстановить кровоток в мельчайших сосудах организма? Ответ на это – да, на современном этапе развития медицины существует достаточно средств, способных регулировать тонус сосудов, а также влиять на их внутреннюю стенку и на способность крови к тромбообразованию, и, таким образом, способствовать улучшению микроциркуляции.

Для улучшения кровообращения в нижних конечностях в основном применяются следующие группы препаратов для улучшения микроциркуляции:

  1. Спазмолитики (папаверин, спазмалгон) – снимают тонус крупных и мелких сосудов благодаря влиянию на гладкомышечную прослойку в их стенке,
  2. Ангиопротекторы и (пентоксифиллин (вазонит), трентал, курантил) способствуют улучшению обменных процессов в самой сосудистой стенке, благодаря чему стабилизируется ее проницаемость для жидкой части крови,
  3. Биогенные стимуляторы (солкосерил, актовегин) обладают схожим действием, что и протекторы,
  4. Вазодилататоры (нифедипин, амлодипин) также ослабляют тонус сосудов.
  5. При острых состояниях используются препараты, снижающие свертывающую способность крови и препятствующие дальнейшему тромбообразованию – (гепарин, варфарин), антиагреганты (аспирин), фибринолитики (урокиназа, стрептокиназа, альтеплаза).

Улучшить микроциркуляцию в головном мозге возможно с помощью тех же препаратов, но чаще применяются следующие – спазмолитики (дротаверин), вазодилататоры (циннаризин, винпоцетин), дезагреганты (трентал, курантил), корректоры микроциркуляции (бетагистин), а также (пирацетам, ноотропил), полипептиды (кортексин, церебролизин), препараты гаммааминомасляной кислоты (пантогам, фенибут).

В качестве корректоров микроциркуляции для сердечной мышцы, кроме указанных препаратов, высокоэффективными являются антиоксиданты и антигипоксанты (мексидол, предуктал), которые не только улучшают кровоток в капиллярах миокарда, но еще и повышают устойчивость его клеток к кислородному голоданию (гипоксии).

Из средств, позволяющих корригировать расстройства микроциркуляции в почках, чаще назначаются пентоксифиллин, трентал и курантил.

Для кожи лица восстановление микроциркуляции заключается в основном в применении наружных косметологических процедур, таких, как лазерное воздействие на кожу, мезотерапия, установка мезонитей, плазмолифтинг, пилинг, массаж, различные маски с ретиноидами и множество других методов улучшения микроциркуляции. Все они способны стимулировать работу сосудов в коже таким образом, чтобы клетки получали достаточно питательных веществ и кислорода.

В заключение следует отметить, что нарушения кровотока в мелких сосудах – довольно обширное понятие, вмещающее в себя большое количество заболеваний в качестве причинных факторов. Поэтому поиском этих факторов должен заниматься только врач на очном приеме, а пациентам, имеющим некоторые из вышеописанных симптомов, необходимо обращаться за помощью к специалистам.

Микроциркуляция - кровоток через систему мелких сосудов (диаметр менее 100 мкм), находящихся в каком-либо органе или ткани, посредством которого клетки получают питание и освобождаются от метаболитов, катаболитов, в результате изменяющегося потока крови, соответствующего потребностям тканей (А.М.Чернух, 1975).

В последнее время в системе периферического кровообращения условно выделяют микроциркуляторное, или сосудистое русло, которое в свою очередь в соответствии с делением сосудов на кровеносные и лимфоносные делится на микроциркуляторное кровеносное и лимфоносное русло. Микроциркуляторное кровеносное русло состоит из сосудов, диаметр которых не превышает 100 мкм, т.е. артериол, метартериол, капиллярных сосудов, венул и артериоловенулярных анастомозов. В нем осуществляется доставка питательных веществ и кислорода к тканям и клеткам, удаление из них углекислоты и шлаков, поддерживается равновесие притекающей и оттекающей жидкости, оптимальный уровень давления в периферических сосудах и тканях.

Микроциркуляторное лимфоносное русло представлено начальным отделом лимфатической системы, в котором происходит образование лимфы и поступление ее в лимфатические капилляры. Процесс образования лимфы имеет сложный характер и заключается в переводе жидкости и растворенных в ней веществ, в том числе белков, через стенку кровеносных капиллярных сосудов в межклеточное пространство, распространении веществ в периваскулярной соединительной ткани, резорбции капиллярного фильтрата в кровь, резорбции белков и избытка жидкости в лимфоносные пути и т.д.

Таким образом, с помощью микроциркуляторного кровообращения осуществляется тесное гематоинтерстициальное и лимфоин-терстициальное взаимодействие, направленное на поддержание необходимого уровня метаболизма в органах и тканях в соответствии с их собственными потребностями, а также потребностями организма в целом.

Методы изучения микроциркуляторного сосудистого русла. Комплексное изучение состояния микроциркуляции в норме и при ее нарушениях достигается с помощью физиологических и морфологических методов. Прежде всего следует указать на широкое использование в клинике и эксперименте кино- и фотосъемки, телевизионной микроскопии, фотоэлектрической регистрации и др.

Классическими объектами для биомикроскопии в условиях эксперимента являются брыжейка лягушки, крысы и других теплокров

ных животных, перепонка крыла летучей мыши, защечный мешок хомяка, ухо кролика, радужная оболочка глаза, а также другие органы и ткани.

Для изучения микроциркуляции у человека используют микрососуды конъюнктивы и радужной оболочки глаз, слизистой оболочки носа и рта. Применение световодной техники позволяет изучить особенности микроциркуляции и во внутренних органах (головном мозге, почках, печени, селезенке, легких, скелетной мышце и др.).

Большой вклад в дело разработки теоретических, экспериментальных и прикладных аспектов проблемы микроциркуляции внесли видные патофизиологи А.М.Чернух (1979), Ю.В.Быць (1995) и др.

Типические нарушения микроциркуляции. В соответствии с общепринятой классификацией E.Maggio (1965) расстройства микроциркуляции делят на внутрисосудистые нарушения, связанные с изменением самих сосудов, и внесосудистые нарушения.

Внутрисосудистые нарушения. Наиболее важными внутрисо-судистыми нарушениями являются расстройства реологических особенностей крови в связи с изменением суспензионной стабильности клеток крови и ее вязкости. В нормальных условиях кровь имеет характер стабильной суспензии клеток в жидкой части.

Сохранность суспензионной стабильности крови обеспечивается величиной отрицательного заряда эритроцитов и тромбоцитов, определенным соотношением белковых фракций плазмы (альбуминов, с одной стороны, глобулинов и фибриногена, с другой), а также достаточной скоростью кровотока. Уменьшение отрицательного заряда эритроцитов, причиной которого чаще всего является абсолютное или относительное увеличение содержания положительно заряженных макромолекул глобулинов и (или) фибриногена и их адсорбция на поверхности эритроцитов, приводит к снижению суспензио-ной стабильности крови, к агрегации эритроцитов и других клеток крови. Снижение скорости кровотока усугубляет этот процесс. Описанный феномен получил название "сладжа" (рис. 6.2). Основными особенностями сладжированной крови являются прилипание друг к другу эритроцитов, лейкоцитов, тромбоцитов и повышение вязкости крови, что затрудняет ее перфузию через микрососуды.

В зависимости от характера воздействия сладж может быть обратимым (при наличии только агрегации эритроцитов) и необратимым. В последнем случае имеет место агглютинация эритроцитов.

В зависимости от размеров агрегатов, характера их контуров и плотности упаковки эритроцитов различают такие типы сладжа:

0 классический (крупные размеры агрегатов, неровные очертания контуров и плотная упаковка эритроцитов);

Рис. 6.2. Сладж-феномен. В просвете капилляра почечного клубочка гемолизи-рующиеся эритроциты (Эр) в виде монетных столбиков: СтК - стенка капилляра; Мз - мезангий х 14500 (по С.М.Секаловой)

0 декстрановый (различная величина агрегатов, округлые очертания, плотная упаковка эритроцитов);

0 аморфный гранулированный (огромное количество мелких агрегатов в виде гранул, состоящих всего из нескольких эритроцитов).

Размеры агрегатов при различных видах сладжа колеблются от 10 х 10 до 100 х 200 мкм и более.

Процесс формирования агрегатов клеток крови имеет определенную последовательность. В первые минуты после повреждения преимущественно в капиллярных сосудах и венулах образуются агрегаты из тромбоцитов и хиломикронов. Они плотно фиксируются к стенке микрососудов, образуя "белый" тромб, или уносятся в другие отделы сосудистой системы к новым очагам тромбообразования.

Эритроцитарные агрегаты образуются в первые часы после повреждения первоначально в венулах, а затем и в артериолах, что обусловлено снижением скорости кровотока. Спустя 12-18 ч развитие указанных нарушений прогрессирует как по выраженности проявлений, так и по распространенности. Возможно и обратное развитие процесса в направлении дезагрегации.

Нарушения микроциркуляции проявляются частичной или полной закупоркой сосудов, резким замедлением кровотока, сепарацией и отделением плазмы от эритроцитов, маятникообразным движением плазмы со взвешенными в ней агрегатами и стазом крови.

Таким образом, сладж - феномен, возникающий первоначально как местная реакция ткани на повреждение, в дальнейшем своем развитии может приобрести характер системной реакции, т.е. генерализованного ответа организма. В этом заключается его общепатологическое значение.

Нарушения, связанные с изменениями самих сосудов, или нарушения проницаемости сосудов обмена. Сосуды (капиллярные сосуды и ве-нулы) характеризуются двумя основными функциями: осуществлением движения крови и способностью пропускать в направлении кровь - ткань и обратно воду, растворенные газы, кристаллогидраты и крупномолекулярные (белковые) вещества. Морфологической основой проницаемости капиллярных сосудов и венул является эндотелий и базальная мембрана.

Механизм перехода вещества через сосудистую стенку может быть активным и пассивным.

Если силы, которые обеспечивают транспорт веществ, находятся за пределами сосудистой стенки, а транспорт осуществляется в соответствии с концентрационными и электрохимическими градиентами, такой вид транспорта называется пассивным. Существует он главным образом для переноса воды, растворенных газов и низко

молекулярных веществ, т.е. таких веществ, которые свободно проникают через сосуды обмена, в связи с чем изменение проницаемости существенно не сказывается на скорости их перехода.

Активный характер транспорт веществ имеет тогда, когда он осуществляется против концентрационного и электрохимического градиентов (транспорт "вгору") и для его осуществления требуется определенное количество энергии. Особенно велика роль данного механизма в транспорте белков и других, в том числе чужеродных, макромолекул.

При патологии часто наблюдается увеличение или уменьшение интенсивности перехода веществ через сосудистую стенку не только за счет изменения интенсивности кровотока, но и за счет истинного нарушения сосудистой проницаемости, которое сопровождается изменением структуры стенки сосудов обмена и усиленным переходом крупномолекулярных веществ. Из двух возможных вариантов нарушения сосудистой проницаемости (уменьшение, увеличение) чаще встречается последний.

В механизме повышения сосудистой проницаемости при травме, ожоге, воспалении, аллергии большое значение придают кислородному голоданию тканей, ацидотическому сдвигу реакции среды, накоплению местных метаболитов, образованию биологически активных веществ и т.д.

По современным представлениям биологически активные амины (гистамин, серотонин) и их естественные либераторы, а также брадикинин, обладают кратковременным действием на проницаемость сосудистой стенки посредством влияния на контрактильные элементы сосудов, главным образом, венул. При различных патологических процессах, особенно при воспалении, вызванном слабыми агентами (тепло, ультрафиолетовые лучи, некоторые химические вещества), эти факторы воспроизводят раннюю фазу повышения сосудистой проницаемости (10-60 мин).

Более поздние нарушения проницаемости сосудистой стенки (от 60 мин до нескольких суток) вызываются протеазами, каллидином, глобулинами, веществами, выделяющимися нейтрофильными гранулоцитами. Действие этих факторов направлено на стенку капиллярных сосудов - межклеточный цемент эндотелия и базальную мембрану - и заключается в физико-химических изменениях (в частности, деполимеризации) сложных белково-полисахаридных комплексов. При сильном повреждении тканей повышение проницаемости сосудистой стенки имеет монофазный характер и обусловлено влиянием протеаз и кининов.

Внесосудистые нарушения. Наиболее важными являются два типа внесосудистых нарушений. Одни из них существенным образом

влияют на состояние микроциркуляции, служат дополнительными патогенетическими механизмами ее нарушений в условиях патологии. Прежде всего это реакция тканевых базофилов окружающей сосуды соединительной ткани на повреждающие агенты.

При некоторых патологических процессах (воспаление, аллергическое повреждение тканей и др.) из тканевых базофилов при их дегрануляции в окружающее микрососуды интерстициальное пространство выбрасываются биологически активные вещества и ферменты.

Действие повреждающих агентов на ткани сопровождается высвобождением из лизосом протеолитических ферментов и их активацией, которые затем расщепляют сложные белково-полисахарид-ные комплексы основного межуточного вещества. Следствием указанных нарушений являются деструктивные изменения базальной мембраны микрососудов, а также волокнистых структур, образующих своеобразный остов, в который заключены микрососуды. Очевидна роль указанных нарушений в изменении проницаемости сосудов, их просвета и замедлении кровотока.

Другой тип нарушений окружающей соединительной ткани включает в себя изменения периваскулярного транспорта интерсти-циальной жидкости вместе с растворенными в ней веществами, образования и транспорта лимфы.

Увеличение транссудации межтканевой жидкости наблюдается при увеличении гидродинамического давления крови на стенки микрососудов (наиболее частой причиной этого является застой крови местного характера или вызванный общей недостаточностью кровообращения); при уменьшении онкотического давления крови (основными причинами являются снижение продукции плазменных белков, прежде всего альбуминов, например, при голодании, при воспалительных и дистрофических изменениях в паренхиме печени, при расстройствах пищеварения и кишечного всасывания). Значительная потеря белков наблюдается при обширных ожогах, энтероколите, геморрагии, лимфоррагии, а также при заболеваниях почек воспалительной и дистрофической природы.

Таким образом, описанные нарушения микроциркуляции можно представить следующим образом.

Внутрисосудистые нарушения: уменьшение или увеличение вязкости крови, гипер- или гипокоагуляция крови, замедление или ускорение тока крови, сладжирование крови.

Внесосудистые нарушения: дегрануляция тканевых базофилов и выход в окружающую сосуды ткань биологически активных веществ и ферментов, изменения периваскулярного транспорта интерстици-альной жидкости.

Нарушения стенки микрососудов: повышение или понижение проницаемости сосудов, диапедез клеток крови, преимущественно лейкоцитов и эритроцитов.

Патогенез основных нарушений микроциркуляции: увеличение вязкости крови приводит к абсолютной полицитемии, агрегации клеток крови, обезвоживанию организма, уменьшению индекса альбумины-глобулины, микроглобулинемии и гиперфибриногенемии.

Повышение проницаемости сосудов вызывает в ранней стадии сокращение контрактильных элементов венул, активизирует действие гистамина и серотонина, в более поздней стадии приводит к деполимеризации белково-полисахаридных комплексов базальной мембраны капилляров, усиливает действие кининов и протеаз.

Диапедез эритроцитов является следствием нарушения целостности стенки микрососудов, повышением ее хрупкости под действием протеаз или повреждающих факторов. Диапедез эритроцитов проявляется микрокровоизлияниями.

Базисные понятия (определения)

Ангиоспазм - сужение или закрытие просвета сосудов в результате действия на нервно-мышечный аппарат артериальной стенки различных эмоциональных, биологических, химических и других факторов.

Гиперемия - покраснение.

Компрессия - сдавление (артерии).

Обтурация - закрытие просвета сосуда.

Суспензионная стабильность крови - постоянное сохранение суспензии клеток крови в жидкой ее части. Тургор - напряжение.

Контрольные вопросы и задания

1. Дайте определение понятию "микроциркуляция".

2. Какие существуют методы изучения микроциркуляции?

3. Назовите внутрисосудистые нарушения микроциркуляции.

4. Что такое сладж-феномен? Назовите виды сладжей.

5. Перечислите внесосудистые нарушения микроциркуляции.

6. В чем состоит суть нарушений микроциркуляции, связанных с изменениями самих сосудов?

7. Объясните механизм активного и пассивного перехода веществ через сосудистую стенку.

Кровообращение условно разделяют на центральное и периферическое.

Центральное кровообращение , осуществляясь на уровне сердца и крупных сосудов, обеспечивает:

  • поддержание системного давления крови;
  • направление движения крови из артериального русла в венозное и далее - в сердце;
  • демпфирование (амортизацию) систолических и диастолических колебаний артериального давления при выбросе крови из желудочков сердца для обеспечения равномерного кровотока.

Периферическое (регионарное) кровообращение осуществляется в сосудах органов и тканей. К нему относится кровообращение в сосудах микроциркуляторного русла, которое включает:

  • артериолы;
  • прекапилляры;
  • капилляры;
  • посткапилляры;
  • венулы:
  • артериоловенулярные шунты.

Микроциркуляторное русло обеспечивает доставку крови к тканям, транскапиллярный обмен субстратами метаболизма, кислородом. углекислым газом, а также транспорт крови от тканей. Артериоловенозные шунты определяют объем крови, притекающей к капиллярам. При закрытии этих шунтов кровь из артериол поступает в капилляры, а при открытии - в венулы, минуя капилляры.

Лимфатическая система структурно и функционально объединена с системой кровообращения и обеспечивает лимфообразующую, дренажную, барьерную, дезинтоксикационную, кровообразующую функции и включает:

  • лимфатические органы - лимфатические узлы, лимфатические фолликулы, миндалины, селезенку;
  • лимфатические транспортные пути - капилляры, микро- и макрососуды, синусы, которые имеют адренергическую иннервацию. общую с кровеносными сосудами.

Все компоненты системы кровообращения тесно связаны между собой , и расстройство деятельности одного из них, например центрального, приводит к изменениям и периферического, и микроциркуляторного кровообращения. С другой стороны, расстройства системы микроциркуляции могут стать причиной или усугублять нарушения функции сердца или крупных сосудов. При этом большую роль в патологии играет тесная интеграция кровеносной системы с лимфатической, которая по существу также составляет систему микроциркуляции. Лимфа образуется в лимфатических капиллярах из тканевой жидкости и по лимфатическим сосудам транспортируется в венозную систему. При этом 80-90 % тканевого фильтрата оттекает в венозное, а 10-20 % - в лимфатическое русло. Отток лимфы и венозной крови обеспечивается одними и теми же механизмами - присасывающим действием сердца, грудной клетки, диафрагмы и работой мышц.

ВИДЫ РАССТРОЙСТВ КРОВООБРАЩЕНИЯ

Выделяют нарушения центрального и периферического кровообращения.

Патология центрального кровообращения обусловлена главным образом нарушениями функций сердца или тока крови в крупных сосудах - аорте, нижней и верхней полых венах, легочном стволе, легочных венах. При этом возникает недостаточность кровообращения, которая сопровождается изменениями периферического кровообращения, в том числе и микроциркуляции. В результате органы и ткани не получают достаточного количества кислорода и других метаболитов, из них не удаляются токсичные продукты метаболизма. Причиной этих нарушений может быть либо нарушение функции сердца, либо снижение сосудистого тонуса-гипотония.

Патология периферического (регионарного) кровообращения, включая нарушения микроциркуляции, проявляются в трех основных формах:

  1. нарушения кровонаполнения (артериальное полнокровие и малокровие, венозное полнокровие);
  2. нарушения реологических свойств крови (тромбоз, эмболия, стаз, ДВС-синдром);
  3. нарушения проницаемости стенок сосудов (кровотечения, кровоизлияния, плазморрагия).

Полнокровие сосудов (гиперемия) может быть артериальным и венозным. Каждое из них в свою очередь может быть:

  • по течению - острым и хроническим;
  • по распространенности - местным и общим.

ПОЛНОКРОВИЕ

Артериальное полнокровие (гиперемия) обусловлено увеличением притока крови в систему микроциркуляции при нормальном ее оттоке по венам, что проявляется расширением артериол, повышением внутрисосудистого давления и местной температуры тканей.

Причиной общей артериальной гиперемии может быть увеличение объема циркулирующей крови (плетора) или количества эритроцитов (эритремия); местной артериальной гиперемии - различные физические (температурные), химические (щелочи, кислоты), биологические (инфекционной и неинфекционной природы) факторы, воспаление, а также нарушение иннервации (ангионевротическая гиперемия) и психогенные воздействия: например, слово может привести к артериальной гиперемии лица и шеи, проявляющейся «краской стыда или гнева».

Механизмы развития артериального полнокровия:

  • нейрогенный механизм связан с преобладанием парасимпатических эффектов на артериолы и капилляры над симпатическими влияниями, что наблюдается, например, при травме, сдавлении опухолью или воспалении регионарных парасимпатических ганглиев, а также симпатических ганглиев или нервных окончаний;
  • гуморальный механизм обусловлен увеличением либо уровня биологически активных веществ с сосудорасширяющим действием (кининов, простагландинов, серотонина), либо повышением чувствительности к ним стенок артериол (в частности, к ионам внеклеточного калия);
  • нейромиопаралитический механизм заключается в истощении запасов катехоламинов в симпатических нервных окончаниях или в снижении тонуса мышечных волокон в стенках артериол, что может быть вызвано длительным физическим воздействием (например, при применении грелок, горчичников, медицинских банок), изменениями барометрического давления и др.

Виды артериального полнокровия.

Физиологическая артериальная гиперемия возникает при интенсивном функционировании органа, например в работающих мышцах, беременной матке, в стенке желудка после приема пищи. Она обеспечивает усиленное поступление в ткани кислорода и питательных веществ и способствует удалению продуктов их распада.

Патологическая артериальная гиперемия не связана с усилением функции органа, развивается при воспалении, нарушениях иннервации органов, травмах тканей, эндокринных заболеваниях, значительном повышении артериального давления и др.

Рис. 14. Полнокровие сосудов. а - артериальная гиперемия; б - венозная гиперемия; расширение и переполнение кровью вен бедра и голени.

При этом стенки артериол могут разрываться и возникает кровотечение или кровоизлияние в ткани.

Признаки артериального полнокровии

При артериальной гиперемии увеличивается пульсация артерий, меняется микроциркуляторное русло - расширяются артериолы, раскрываются резервные капилляры, в них увеличивается скорость кровотока, повышается кровяное давление. Гиперемия хорошо видна на поверхности кожи (рис. 14, а).

При артериальной гиперемии отмечаются:

  • увеличение числа и диаметра артериальных сосудов;
  • покраснение органа ткани или их участков;
  • повышение температуры тканей в области их гиперемии;
  • увеличение объема и напряжения (тургора) органа или ткани в связи с увеличением их кровонаполнения;
  • увеличение лимфообразования и лимфооттока, что обусловлено повышением перфузионного давления в сосудах микроциркуляции.

Венозное полнокровие (гиперемия) обусловлено затруднением оттока крови по венам при нормальном ее притоке по артериям , что приводит к увеличению кровонаполнения органа или ткани. Причиной венозного полнокровия является препятствие оттоку

крови в результате закрытия просвета вены тромбом или эмболом. при сдавлении вен опухолью, рубцом, жгутом, при врожденном недоразвитии эластического каркаса стенок вен или их клапанного аппарата, а также при развитии сердечной недостаточности.

Признаки венозного полнокровия:

  • цианоз, т. е. синюшный оттенок слизистых оболочек, кожи, ногтей и органов из-за увеличения в них количества венозной крови, бедной кислородом;
  • снижение температуры тканей вследствие падения вних интенсивности обмена веществ;
  • отек тканей, развивающийся в результате гипоксии (кислородного голодания) тканей стенок сосудов микроциркуля-торного русла, повышения их проницаемости и выхода в окружающую ткань плазмы крови;
  • увеличение объема органов и тканей из-за скопления в них венозной крови и отека.

Местное венозное полнокровие имеет значение в патологии главным образом в связи с развивающимся при этом острым отеком тканей в том или ином регионе тела, а также с возможностью возникновения инфаркта селезенки при тромбозе селезеночной вены. При хроническом местном венозном (застойном) полнокровии в органе активизируется образование фибробласта-ми коллагена и в строме разрастается соединительная ткань - развивается органа.

Общее венозное полнокровие имеет большое значение в патологии, возникает при различных заболеваниях и может иметь тяжелые последствия.

Острое общее венозное полнокровие чаще развивается при острой сердечной недостаточности (острый инфаркт миокарда, острый миокардит), а также в атмосфере с низким содержанием кислорода (например, при разгерметизации кабины самолета, высоко в горах, при недостаточном поступлении кислорода из акваланга при подводных работах и т. п.). При этом в тканях быстро нарастают гипоксия и ацидоз (закисление). повышается сосудистая проницаемость, появляется и прогрессирует отек, часто сопровождающийся периваскулярными кровоизлияниями.

Хроническое общее венозное полнокровие обычно развивается при хронических заболеваниях сердца, заканчивающихся хронической сердечной недостаточностью (хроническая ишемическая болезнь сердца, пороки сердца, кардиомиопатии). Помимо всех тех изменений, которые характеризуют острую венозную гиперемию, при хроническом венозном полнокровии постепенно развиваются атрофия паренхимы органов и их стромы, в результате чего происходит уплотнение (индурация ) органов и тканей. Кроме того, хронический отек и плазморрагия вызывают перегрузку лимфатической системы и развитие ее недостаточности. Формируется капиллярнотрофическая недостаточность , которая характеризуется:

  • ом микрососудов, уменьшением их просветов и уменьшением количества капилляров , что обусловливает уменьшение кровотока по капиллярам, транскапиллярный обмен веществ и нарастание кислородного голодания;
  • преобразованием истинных капилляров в емкостные (депонирующие), в которых эритроциты располагаются не в один, а в несколько рядов, капилляры резко расширяются и превращаются в венулы, стенки их теряют тонус, что приводит к еще большему расширению капилляров и венул и усиливает венозную гиперемию. При этом количество истинных капилляров снижается, артериальная кровь попадает в венозную систему по коляатералям (обходным сосудам), что способствует нарастанию гипоксических и метаболических изменений в тканях.

Характерные изменения в органах и тканях, которые развиваются при хроническом общем венозном полнокровии.

  • В коже и подкожной клетчатке, особенно нижних конечностей, происходит расширение венозных сосудов, отек кожи и подкожной клетчатки (анасарка), атрофия кожи, застой лимфы в лимфатических сосудах (лимфостаз). На фоне хронического венозного полнокровия часто развиваются трофические язвы голеней и стоп (рис. 14, б).
  • В легких длительный венозный застой имеет особое значение в связи с тем, что он развивается при хронической сердечной недостаточности (см. главу 13). При этом в легочных венах, впадающих в левое предсердие, развивается застой крови, что способствует прогрессирующей гипоксии. При этом повышается проницаемость стенок сосудов и из венул и капилляров в окружающую ткань выходит сначала плазма крови, а затем и эритроциты. Последние захватываются макрофагами, в которых гемоглобин превращается в гемосидерин и ферритин, а макрофаги получают название сидерофагов. Часть макрофагов альвеол, загруженных гемосидерином, попадает в бронхи и вместе с мокротой выводится из организма. В мокроте они называются « клетками сердечных пороков «. Часть сидерофагов распадается в строме легких, чему способствует нарастающая недостаточность лимфатических сосудов, перегруженных отечной жидкостью, сидерофагами и гемосидерином. Постепенно развивается застой лимфы. Прогрессирующие гипоксия и застой лимфы являются стимулами для активизации системы фибробластов в ткани легких и интенсивного образования ими коллагена. Нарастает склероз легких, они становятся плотными, развивается их индурация (от лат. durum - плотный). При этом гемосидерин, образующий скопления в строме и в альвеолах и характеризующий местный гемосидероз, придает легким бурый цвет и развивается бурая индурация легких - необратимое состояние, значительно ухудшающее течение хронической сердечной недостаточности и общее состояние больного (рис. 15).

    Рис. 15. Хроническое венозное полнокровие легких (бурая индурация легких). Сосуды межальвеолярных перегородок расширены (а); в строме легкого и в просвете альвеол - сидерофаги (б); часть альвеол заполнена отечной жидкостью (в); межальвеолярные перегородки утолщены и склерозированы (г).

  • В печени хроническая венозная обычно также является следствием хронической сердечной недостаточности и декомпенсации сердца. При этом застой крови вначале происходит в нижней полой вене, затем в венах печени и в центральных венах печеночных долек. Центральные вены расширяются, через их стенки выходит плазма крови и эритроциты и в центре долек атрофируются гепатоциты. На периферии дольки гепатоциты подвергаются жировой дистрофии и ткань печени на разрезе становится пестрой, напоминающей мускатный орех - на желто-коричневом фоне отчетливо видны красные точки в центрах долек. Такая картина носит название « мускатной печени » (рис. 16).
  • Селезенка при венозном застое увеличивается в размерах (застойная спленомегалия), становится синюшной и плотной (цианотическая индурация селезенки ), на разрезе не дает соскоба пульпы, ее фолликулы атрофичны, а красная пульпа склерозирована.

МАЛОКРОВИЕ

Артериальное малокровие, или ишемия, - уменьшение кровенаполнения органа или ткани, обусловленное либо снижением притока к ним крови по артериям, либо значительным увеличением потребности тканей в кислороде и субстратах метаболизма, что приводит к несоответствию между потребностями тканей в кровоснабжении и возможностями артериального кровотока. В зависимости от причин и механизмов развития ишемии выделяют пять разновидностей артериального малокровия: ангиоспастическое, обтурационное, компрессионное, в результате острого перераспределения крови и дисфункциональное.

Рис. 16. Хроническое венозное полнокровие печени (мускатная печень). В центре долек центральные вены и синусоиды резко расширены, полнокровны (а), печеночные клетки атрофичны (б), в области кровоизлиянии (в) разрушены. По периферии долек печеночные балки сохранены (г), перисинусоидальные пространства расширены (д).

Ангиоспастическое малокровие обусловлено спазмом артерий вследствие увеличения содержания в тканях веществ, вызывающих спазм сосудов (например, ангиотензин, вазопрессин, катехоламины и т. п.), или повышением чувствительности к ним стенок артериол (при увеличении содержания в них ионов кальция или натрия), а также при преобладании симпатико-адреналовых влияний над парасимпатическими (стресс, стенокардия, аппендикулярная колика).

Обтурационное малокровие развивается при полном или частичном закрытии просвета артерии тромбом, эмболом (при остром малокровии) или атеросклеротической бляшкой (при хронической ишемии).

Компрессионное малокровие возникает при остром или хроническом сдавлении сосуда извне - жгутом, опухолью, отечной тканью и т. п.

Малокровие в результате острого перераспределения крови наблюдается при быстром притоке крови в ранее ишемизированные ткани. Например, при быстром удалении асцитической жидкости, сдавливавшей сосуды брюшной полости, в эту область устремляется кровь и возникает ишемия сосудов головного мозга.

Дисфункциональное малокровие является следствием значительного повышения тканями расхода кислорода и субстратов метаболизма при резкой интенсификации функции органа, например ишемия миокарда при внезапной интенсивной нагрузке на сердце (бег, поднятие тяжестей, тяжелая физическая работа), ишемия мышц голени у пожилых людей при быстрой ходьбе и т. п. Обычно этот вид ишемии возникает при сужении просвета снабжающей артерии атеросклеротической бляшкой.

По характеру течения ишемия может быть острой и хронической.

Признаки ишемии:

  • побледнение ткани и органа из-за снижения их кровенаполнения и числа функционирующих капилляров;
  • снижение пульсации артерий и уменьшение их диаметра в результате уменьшения их диастолического наполнения кровью и падения артериального давления:
  • понижение температуры ишемизированной ткани вследствие уменьшения притока теплой артериальной крови и снижения интенсивности метаболизма в ишемизированном регионе;
  • замедление тока крови по микрососудам вплоть до ее остановки;
  • снижение лимфообразования в результате падения перфузионного давления в сосудах микроциркуляции.

Последствия и значение ишемии.

Кислородное голодание тканей (гипоксия) является главным патогенным фактором ишемии. Развивающиеся при этом изменения связаны с продолжительностью и тяжестью гипоксии, чувствительностью к ней органов и наличием коллатерального кровообращения в ишемизированной ткани. Наиболее чувствительны к гипоксии головной мозг, почки и миокард, в меньшей степени - легкие и печень, в то время как соединительная, костная и хрящевая ткани отличаются максимальной устойчивостью к недостатку кислорода.

Ишемия способствует распаду в клетках макроэргических соединений - креатинфосфата и АТФ, что компенсаторно активизирует бескислородный (анаэробный) путь окисления и образования энергии - анаэробный гликолю. Следствием этого является накопление в тканях недоокисленных продуктов метаболизма, что приводит к ацидозу тканей, усилению перекисного окисления липидов, стимуляции гидролитических ферментов лизосом и в итоге - к распаду мембран клеток и внутриклеточных структур. Возникающий энергетический дефицит способствует, кроме того, накоплению в клетках ионов кальция, активизирующих ряд ферментов, которые также приводят клетки к гибели.

Функциональное состояние органа имеет большое значение при ишемии: чем интенсивнее он функционирует, тем больше нуждается в притоке артериальной крови и тем чувствительнее к малокровию.

Рис. 17. Схема развития коллатерального кровообращения и образования инфарктов (по Я. Л. Рапопорту). а - схема достаточных коллатералей: артерия (1) разделялся на три ветви, из которых одна (2) закупорена; питаемая ею область получает достаточное количество крови по коллатералям (3 и 4); б - схема концевых артфии: артерия (1) разделяется на три ветви, не имеющие артериальных соединении, а только капиллярные; закупорка одной ветви (2) лишает соответствующую часть капилляров (3) снабжения кровью (белый инфаркт); в - схема недостаточных коллатералей при геморрагическом инфаркте: Г - артерия, разделяющая на три ветви; Z - просвет средней артерии закупорен; 3 - окольный артериальный сосуд, по которому протекает кровь, заливающая участок, снабжаемый артерией (1), но недостаточный для питания тканей; 4 - вена.

Скорость развития ишемии играет решающую роль: если артериальное малокровие возникает остро, в тканях развиваются дистрофические и некротические изменения; если же ишемия носит хронический, медленно прогрессирующий характер, то в ишемизированных органах и тканях нарастают атрофические и склеротические процессы. При этом в тканях обычно успевают сформироваться коллатерали, снижающие степень гипоксии.

Коллатеральное кровообращение иногда приобретает определяющее значение в возможных исходах ишемии. Коллатеральное, или обходное, кровообращение представлено сетью мелких сосудов, соединяющих более крупные артерии и вены. Коллатеральные сосуды имеются в норме, но они находятся в спавшемся состоянии, так как потребности тканей в кровоснабжении обеспечиваются магистральными сосудами. Коллатерали начинают проводить кровь либо в условиях резко возросшей функции органа, либо при возникновении препятствия току крови по магистральному сосуду. В этих случаях раскрываются имеющиеся капилляры и начинают образовываться новые, от скорости их образования зависит уровень компенсации ишемии и ее исход. Однако в некоторых органах, таких как сердце, головной мозг, почки, коллатерали развиты слабо, поэтому при закрытии просвета магистральной артерии коллатеральное кровообращение часто не способно компенсировать ишемию и развивается некроз тканей этих органов. Вместе с тем в подкожной клетчатке, кишечнике и сальнике сеть коллатеральных сосудов в норме развита хорошо, что нередко позволяет этим органам и тканям справиться с ишемией. В остальных органах имеются коллатерали промежуточного типа, которые лишь частично позволяют компенсировать артериальное малокровие (рис. 17).

Значение ишемии заключается в снижении функций ишемизированных органов, которое, однако, может быть обратимым, если ишемия продолжалась относительно недолго и в тканях развились лишь обратимые дистрофические изменения. В случаях медленно нарастающей ишемии в организме успевают развиться компенсаторные иприспособительные процессы, позволяющие в какой-то степени восполнить функцию ишемизированного органа. Если же в ишемизированных органах развиваются некротические изменения с утратой их функций, то это может приводить к тяжелой инвалидности и смерти.

НАРУШЕНИЯ РЕОЛОГИЧЕСКИХ СВОЙСТВ КРОВИ

Эти нарушения проявляются такими патологическими процессами. как тромбоз, эмболия, стаз, сладж. ДВС-синдром.

Тромбоз - процесс прижизненного свертывания крови в просвете сосуда или в полостях сердца.

Свертывание крови является важнейшей физиологической реакцией, препятствующей смертельной потере крови при повреждениях сосудов, и если эта реакция отсутствует, развивается опасное для жизни заболевание - гемофилия. Вместе с тем при повышении свертываемости крови в просвете сосуда образуются свертки крови - тромбы, препятствующие кровотоку, что становится причиной тяжелых патологических процессов в организме, вплоть до наступления смерти. Наиболее часто тромбы развиваются у больных в послеоперационном периоде, у людей, находящихся на длительном постельном режиме, при хронической сердечно-сосудистой недостаточности, сопровождающейся общим венозным застоем, при атеросклерозе, злокачественных опухолях, у беременных, у старых людей.

Причины тромбоза делят на местные и общие:

  • Местные причины - повреждение стенки сосуда, начиная от слущивания эндотелия и заканчивая ее разрывом; замедление и нарушения кровотока в виде возникающих завихрений крови при наличии препятствия ее току, например атеросклеротической бляшки, варикозного расширения или аневризмы стенки сосуда.
  • Общие причины - нарушение соотношения между свертывающей и противосвертывающей системами крови в результате увеличения концентрации или активности свертывающих факторов - прокоагулянтов (тромбопластинов, тромбина, фибриногена и др.) либо снижения концентрации или активности антикоагулянтов (например, гепарина, фибринолитических веществ), а также повышения вязкости крови, например, всвязи с увеличением количества ее форменных элементов, особенно тромбоцитов и эритроцитов (при некоторых системных заболеваниях крови).

Стадии образования тромба.

Выделяют 4 стадии тромбообразования .

  • 1-я - стадия агглютинации тромбоцитов (сосудисто-тромбоцитарная), начинается уже при повреждении эндотелиоцитов интимы и характеризуется адгезией (прилипанием) тромбоцитов к обнаженной базальной мембране сосуда, чему способствует появление определенных факторов свертывания - фибронектина, фактора Виллебрандта и др. Из разрушающихся тромбоцитов выделяется тромбоксан А2 - фактор, суживающий просвет сосуда, замедляющий кровоток и способствующий выбросу тромбоцитами серотонина, гистамина и тромбоцитарного фактора роста. Под влиянием этих факторов запускается каскад свертывающих реакций, в том числе и образование тромбина , который вызывает развитие следующей стадии.
  • 2-я - стадия коагуляции (фибриногена (плазменная), характеризуется трансформацией фибриногена в нити фибрина, которые образуют рыхлый сверток и в нем (как в сети) задерживаются форменные элементы и компоненты плазмы крови с развитием последующих стадий.
  • 3-я - стадия агглютинации эритроцитов. Она связана с тем, что эритроциты должны передвигаться в потоке крови, а если они останавливаются, то склеиваются (агглютинируют ). При этом выделяются факторы, вызывающие ретракцию (сжатие) образовавшегося рыхлого тромба.
  • 4-я - стадия преципитации плазменных белков. В результате ретракции из образовавшегося сгустка отжимается жидкость, белки плазмы и белки из распавшихся форменных элементов крови подвергаются преципитации, сверток уплотняется и превращается в тромб, который закрывает дефект стенки сосуда или сердца, но может закрыть и весь просвет сосуда, прекратив тем самым кровоток.

Морфология тромба.

Взависимости от особенностей и скорости образования тромбы могут иметь различный состав, строение и внешний вид. Выделяют следующие виды тромбов:

  • белый mpoмб, состоящий из тромбоцитов, фибрина и лейкоцитов, образуется медленно при быстром кровотоке, обычно в артериях, между трабекулами эндокарда, на створках клапанов сердца;
  • красный тромб, в состав которого входят эритроциты, тромбоциты и фибрин, возникает быстро в сосудах с медленным током крови, обычно в венах;
  • смешанный mpoмб включает в себя тромбоциты, эритроциты, фибрин, лейкоциты и встречается в любых отделах кровеносного русла, в том числе в полостях сердца и в аневризмах артерий;
  • гиалиновые тромбы, состоящие из преципитированных белков плазмы и агглютинированных форменных элементов крови, образующих гомогенную, бесструктурную массу; они обычно множественные, формируются только в сосудах микроциркуляции при шоке, ожоговой болезни, ДВГ-синдроме, тяжелой интоксикации и т. п.

Структура тромба.

Макроскопически в тромбе определяется небольшая, тесно связанная со стенкой сосуда головка тромба , по строению соответствующая белому тромбу, тело — обычно смешанный тромб и рыхло прикрепленный к интиме хвост тромба, как правило, красный тромб. В области хвоста тромб может отрываться, что служит причиной тромбоэмболии.

По отношению к просвету сосуда выделяют:

  • пристеночные тромбы, обычно белые или смешанные, не закрывают целиком просвет сосуда, хвост их растет против тока крови;
  • обтурирующие тромбы, как правило, красные, полностью закрывающие просвет сосуда, хвост их чаще растет по току крови.

По течению выделяют:

  • локализованный (стационарный) тромб, который не увеличивается в размерах и подвергается замещению соединительной тканью — организации
  • прогрессирующий тромб, который увеличивается в размерах с различной скоростью, его длина иногда может достигать нескольких десятков сантиметров.

Исходы тромбоза принято подразделять на благоприятные и неблагоприятные.

К благоприятным исходам относят организацию тромба, которая начинается уже на 5-6-й день после его образования и заканчивается замещением тромботических масс соединительной тканью. В ряде случаев организация тромба сопровождается его канали зацией, т. е. образованием щелей, через которые в какой-то степени осуществляется кровоток, и васкуляризацией, когда образовавшиеся каналы покрываются эндотелием, превращаясь в сосуды, через которые частично восстанавливается кровоток, обычно через 5-6 нед после тромбоза. Возможно обызвествление тромбов (образование флеболипов).

Неблагоприятные исходы: тромбоэмболия , возникающая при отрыве тромба или его части, и септическое (гнойное) расплавление тромба при попадании в тромботические массы гноеродных бактерий.

Значение тромбоза определяется быстротой образования тромба, его локализацией и степенью сужения сосуда. Так, мелкие тромбы в венах малого таза сами по себе не вызывают каких-либо патологических изменений в тканях, но, оторвавшись, могут превратиться в тромбоэмболы. Пристеночные тромбы, незначительно суживающие просветы даже крупных сосудов, могут не нарушать в них гемодинамику и способствовать развитию коллатерального кровообращения. Обтурирующие тромбы артерий являются причиной ишемии, заканчивающейся инфарктом или гангреной органов. Тромбоз вен (флеботромбоз) нижних конечностей способствует развитию трофических язв голеней, кроме того, тромбы могут стать источником эмболии. Шаровидный тромб, образующийся при отрыве от эндокарда левого предсердия, периодически закрывая атриовентрикулярное отверстие, нарушает центральную гемодинамику, в связи с чем больной теряет сознание. Прогрессирующие септические тромбы, подвергающиеся гнойному расплавлению, могут способствовать генерализации гнойного процесса.

Эмболия - циркуляция в крови или лимфе не встречающихся в норме частиц (эмболов) и закупорка ими просвета сосудов (рис. 18).

По происхождению выделяют экзо- и эндогенные эмболии.

При экзогенных эмболиях эмболы попадают в сосудистое руло из окружающей среды. Различают воздушную, газовую эмболию и эмболию инородными телами.

Воздушная эмболия происходит при попадании воздуха через поврежденные крупные вены шеи (имеющие отрицательное давление по отношению к атмосферному), через зияющие после отторжения плаценты вены матки, при введении воздуха с лекарственными препаратами с помощью шприца или капельницы, при пневмотораксе (попадании воздуха в плевральные полости). Воздушные эмболы обтурируют капилляры легких, головного мозга; воздушные пузыри, скапливающиеся в правых отделах сердца, придают имеющейся в них крови пенистый вид.

Газовая эмболия развивается при быстрой декомпрессии (у водолазов при быстром подъеме с глубины, при разгерметизации кабины самолета, барокамеры), приводящей к высвобождению из крови азота. Газовые эмболы поражают различные органы, в том числе головной и спинной мозг, вызывая кессонную болезнь.

Эмболия инородными телами возникает при попадании в травмированные крупные сосуды частиц инородных предметов - медицинских катетеров, осколков ампул, кусочков одежды или осколков пуль и снарядов при огнестрельных ранениях.

При эндогенных эмболиях эмболами являются собственные ткани организма: тромбоэмболия, жировая, тканевая и микробная эмболия.

Тромбоэмболия развивается при отрыве тромба или его части и является наиболее частой эмболией. Ее источником могут быть тромбы любой локализации - артерий, вен. полостей и створок клапанов сердца. Самой распространенной является тромбоэмболия легочной артерии, возникающая обычно у больных в послеоперационном периоде, при варикозном расширении вен нижних конечностей, тромбофлебите или флеботромбозе у больных, страдающих сердечно-сосудистой недостаточностью, онкологическими заболеваниями.

Рис. 18. Схема направления движения эмболов (по Я. Л. Рапопорту). Из венозной системы эмболы заносятся в правую половину сердца, а оттуда в легочный ствол и легкие (область распространения эмболов из венозной сети заштрихована). Из левых отделов сердца эмболы заносятся по артериям в разные органы (указано стрелками).

При этом тромбоэмболы попадают в легочный ствол илилегочные артерии из вен нижних конечностей, жировой клетчатки малого таза, иногда из печеночных вен, нижней и верхней полых вен илиправых отделов сердца с пристеночными тромбами, что, как правило, заканчивается смертью. Механизм смерти связан с пульмоно-коронарным рефлексом который возникает при ударе тромбоэмбола в рефлексогенную зону, расположенную в интиме области разветвления легочного ствола. При этом остро возникает спазм сосудов сердца, легких, а также бронхов и наступает остановка сердца. Определенную роль играет и закрытие тромбоэмболом просвета легочного ствола. Мелкие тромбоэмболы могут проходить легочный ствол и обтурировать мелкие ветви легочной артерии, вызывая инфаркты легких. В случае массивной тромбоэмболии мелких ветвей легочных артерий может развиться острое падение артериального давления - коллапс. Оторвавшиеся тромбы створок клапанов или пристеночные тромбы эндокарда, образующиеся при эндокардитах, инфаркте миокарда, в хронической аневризме сердца, с током крови попадают по большому кругу кровообращения в различные органы, вызывая тромбоэмболический синдром.

Жировая эмболия возникает при переломах трубчатых костей, размозжении подкожной жировой клетчатки при травмах, при ошибочном введении в кровяное русло масляных лекарственных растворов. Жировые эмболы закупоривают мелкие ветви легочных артерий, причем если обтурировано больше 2 / 3 этих сосудов, то может развиться острая правожелудочковая недостаточность, что, однако, бывает очень редко. Чаще жировая эмболия легких вызывает пневмонию в пораженных участках.

Тканевая эмболия является результатом разрушения тканей при заболеваниях и травмах, например эмболия опухолевыми клетками, лежащая в основе формирования метастазов опухоли, эмболия околоплодными водами у родильниц, разрушенными тканями у новорожденных с тяжелыми родовыми травмами.

По механизму распространения выделяют эмболии большого ималого круга кровообращения, орто- и ретроградную, парадоксальную (рис. 18).

Эмболии большого круга кровообращения - эмбол из левых отделов сердца, аорты или других крупных артерий, перемещаясь по току крови, обтурирует органные артерии, в результате чего в этих органах возникают инфаркты или гангрена. Эмболы, образующиеся в венах большого круга кровообращения, по току крови обтурируют либо воротную вену, либо попадают в правые отделы сердца и оттуда - в малый круг кровообращения.

При эмболии малого круга кровообращения эмбол из правых отделов сердца проходит в малый круг кровообращения, вызывая либо эмболию легочного ствола, ведущую к остановке сердца, либо инфаркты легких.

При ортоградной эмболии эмбол перемещается по току крови или лимфы - наиболее частый вид эмболии.

Ретроградная эмболт характеризуется движением эмбола против тока или лимфы и возникает обычно при эмболии тяжелыми инородными телами или при ретроградном лимфогенном метастазировании рака желудка.

Парадоксальная эмболия развивается при проникновении эмбола из венозного отдела большого круга кровообращения в артериальный отдел, минуя легкие. Это редкий вид эмболии, которая наблюдается при незаращении межжелудочковой или межпредсердной перегородки в сердце (например, при незаращении овального окна), при артериовенозных анастомозах, прежде всего при открытом артериальном (боталловом) протоке или при травматическом образовании артериовенозного соустья.

Значение эмболии определяется ее видом, распространенностью и локализацией. Особенно опасны эмболии головного мозга, сердца, легочного ствола, часто заканчивающиеся смертью больного, тогда как поражение почек, печени, селезенки, скелетных мышц имеет меньшее значение. Однако в любом случае эмболия кровеносных сосудов приводит к нарушению кровообращения в тканях, вызывает их ишемию и некроз. Эмболия лимфатических сосудов, особенно нижних конечностей, может приводить к лимфатическому отеку тканей, их склерозу и снижению функции органа, например значительное увеличение размеров нижней конечности при слоновости.

НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ

Причины расстройств микроциркуляции:

  • нарушения центрального и регионарного кровообращения -
  • развиваются при сердечной недостаточности, артериальной и венозной гиперемии, при ишемии;
  • изменения вязкости и объема крови (лимфы) - наблюдаются при уменьшении объема жидкости в плазме (гипогидратация), увеличении количества форменных элементов (полицитемия) или белков плазмы, агрегации и агглютинации клеток крови;
  • гемодилюция, или разжижение крови, - возникает в результате значительного поступления тканевой жидкости в кровь (гипергидратация), снижения общего числа форменных элементов крови (панцитопения), уменьшения содержания белков плазмы (гипопротеинемия).

По локализации первично возникающих нарушений расстройства микроциркуляции разделяют на внутрисосудистые, трансмуральные ивнесосудистые.

Внутрисосудистые нарушения ликроциркуляции проявляются следующим образом:

  • замедление, вплоть до прекращения (стаза), тока крови или лимфы наиболее часто возникает при сердечной недостаточности, ишемии, венозной гиперемии, сгущении крови (при профузном поносе, неукротимой рвоте, ожоговой болезни и т. п.):
  • чрезмерное ускорение кровотока наблюдается при артерио-ловенулярных шунтах, гемодилюции, почечной недостаточности;
  • нарушение ламинарности (турбулентность) тока крови или лимфы возникает при образовании препятствия микроциркуляции в виде образования агрегатов из клеток крови (при по-лицитемии), формировании микротромбов, атипичном строении микрососудистого русла (капиллярная гемангиома).

Транс муральные нарушения микроциркуляции связаны с изменениями в самой стенке микрососудов, через которую в норме проходит плазма крови и ее форменные элементы, поступают продукты метаболизма и регулирующие обмен веществ биологически активные вещества. В патологии наиболее существенную роль играют две группы нарушений трансмуральной микроциркуляции:

  • изменение объема транспорта плазмы (лимфы), который может возрастать (при артериальной гиперемии, аллергических реакциях, лимфостазе) или уменьшаться (при спазме артериол, кальцификации стенок микрососудов);
  • увеличение транспорта клеток крови через стенки микрососудов, что может быть при значительном повышении их проницаемости (например, при гипоксии) или при нарушении целостности (эритроцитов).

Внесосудистые нарушения микроциркуляции заключаются в замедлении вплоть до прекращения тока межклеточной жидкости и обусловлены изменениями влияний на микроциркуляцию внесосудистых факторов, например нервно-трофической регуляции метаболизма, появлением в окружающих тканях медиаторов воспаления (гистамин, серотонин и др.), которые резко усиливают микровезикулярный транспорт, но могут и способствовать тромбированию сосудов микроциркуляции; при скоплении в интерстициальной ткани жидкости, например, транссудата при отеках или экссудата при воспалении, повышается давление тканевой жидкости и она сдавливает сосуды микроциркуляции.

НАРУШЕНИЯ МИКРОЦИРКУЛЯЦИИ

Нарушения микроциркуляции, имеющие нередко самостоятельное клиническое значение и возникающие при многих заболеваниях, - сладж-феномен, стаз, ДВС-синдром.

СЛАДЖ-ФЕНОМЕН

Сладж-феномен (от англ. sludge - тина, густая грязь) характеризуется адгезией и агрегацией форменных элементов крови, прежде всего эритроцитов, что вызывает значительные гемодинамические нарушения. Клетки в состоянии сладжа имеют вид «монетных столбиков», сохраняя при этом свои цитомембраны (рис. 19).

Рис. 19. Агрегация эритроцитов как проявление сладж-феномена. В просвете капилляра несклеиваюшиеся эритроциты (Эр) в виде монетного столбика.

Причишит сладжа являются нарушения центральной и регионарной гемодинамики, повышение вязкости крови и повреждение стенок микрососудов (см. выше). В основе сладж-феномена лежат следующие механизмы:

  • активация клеток крови и выделение ими веществ, способствующих агрегации эритроцитов. - АДФ. тромбоксана А2. кининов, гистамина, простагландинов и др.;
  • смена поверхностного заряда клеток крови с отрицательного на положительный в результате избытка катионов, поступающих из поврежденных клеток;
  • уменьшение величины поверхностного заряда мембран клеток крови при избытке макромолекул белка (гиперпротеинемии), особенно за счет увеличения концентрации иммуноглобулинов, фибриногена, аномальных белков.

Рис. 20. Стаз в капиллярах мозга (при малярии). Капилляры резко расширены, в их просветах склеившиеся эритроциты и пигмент гемомеланин. Ткань мозга отечна.

Последствия сладжа

  • замедление кровотока в микроциркуляторном русле, вплоть до его остановки;
  • нарушения транскапиллярного обмена;
  • гипоксия, ацидоз и нарушение метаболизма окружающих тканей.

Значение сладжа.

Изменения, сопровождающие сладж-феномен, приводят к повышению проницаемости стенок капилляров и венул, пропитыванию их плазмой крови (плазморрагия), отеку и нарастающей ишемии окружающих тканей. В целом, совокупность указанных изменений обозначается как синдром капилляро-трофической недостаточности. Сладж может быть обратимым, и тогда постепенно восстанавливается микроциркуляция, но сладж может предшествовать полной остановке крови (стазу), а также агглютинации и распаду форменных элементов крови в «монетных столбиках» с образованием в капиллярах гиалиновых тромбов.

СТАЗ

Стаз - остановка кровотока в сосудах микроциркуляторного русла, прежде всего в капиллярах, реже - в венулах (рис. 20). Остановке крови предшествует ее замедление - престаз,вплоть до развития сладж-феномена.

Причинами стаза являются инфекции, интоксикации, шок, длительное искусственное кровообращение, воздействие физических, в том числе температурных, факторов (например, «холодовый стаз» при отморожениях).

Механизмы стаза во многом схожи с механизмами сладж-феномена:

  • утрата эритроцитами способности находиться во взвешенном состоянии и образование их агрегатов, что затрудняет ток крови по микрососудам и вызывает остановку кровотока в капиллярах:
  • изменения реологических свойств крови, аналогичных тем, которые возникают при сладж-феномене;
  • гипоксия, ацидоз, нарушения и прекращение метаболизма;
  • дистрофические или некротические изменения окружающих тканей в зависимости от длительности стаза крови.

Исход стаза. После устранения причины, вызвавшей стаз, кровоток в сосудах микроциркуляторного русла может восстановиться. а в окружающих тканях какое-то время сохраняются дистрофические изменения, которые, однако, в этих условиях также обратимы. Если же стаз капилляров устойчив, то гипоксия в окружающих тканях приводит к их некрозу.

Значение стаза определяется его локализацией и продолжительностью. Острый стаз в большинстве случаев приводит к обратимым изменениям в тканях, но в головном мозге он может способствовать развитию тяжелого, иногда смертельного отека ткани мозга с дислокацией его стволовой части в большое затылочное отверстие, что наблюдается, например, при коме. В случаях длительного стаза возникают множественные микронекрозы и иные кровоизлияния.

СИНДРОМ ДИССЕМИНИРОВАННОГО ВНУТРИСОСУДИСТОГО СВЕРТЫВАНИЯ КРОВИ (ДВС-СИНДРОМ)

Синдром диссеминированного внутрисосудистого свертывания крови (ДВС-синдром) характеризуется образованием множественных тромбов в сосудах микроциркуляторного русла различных органов и тканей вследствие активации факторов свертывания крови и развивающимся в связи с этим их дефицитом, что приводит к усилению фибринолиза. падению свертываемости крови и многочисленным кровоизлияниям. ДВС-синдром часто развивается при шоке любого происхождения (травматическом, анафилактическом, геморрагическом, кардиальном и др.), при переливании несовместимой крови, злокачественных опухолях, после хирургических вмешательств, при тяжелой интоксикации и инфекции, в акушерской патологии, при трансплантации органов, использовании аппаратов искусственной почки и искусственного кровообращения и др.

В своем развитии ДВС-синдром проходит 4 стадии.

  • 1-я стадия - гиперкоагуляции и тромбообразования - характеризуется внутрисосудистой агрегацией форменных элементов, диссеминированным (т. е. во многих микрососудах одновременно) свертыванием крови и формированием множественных тромбов в микрососудах разных органов и тканей. Эта стадия длится всего 8-10 мин.
  • 2-я стадия - нарастающая коагулопатия потребления , особенностью которой является значительное снижение числа тромбоцитов и уровня фибриногена, израсходованных на образование тромбов в предыдущей стадии. Поэтому свертываемость крови снижается и в результате развивается геморрагический диатез, т. е. множественные мелкие кровоизлияния.
  • 3-я стадия - глубокой гипокоагуляции и активации фибринолиза , которая наступает через 2-8 ч от начала ДВС-синдрома. Название стадии говорит о том, что в этом периоде практически прекращаются процессы свертывания крови вследствие истощения всех свертывающих факторов и одновременно резко активизируются процессы фибринолиза (т. е. растворения фибрина, тромбов). Поэтому возникает полная несвертываемость крови, развиваются кровотечения и множественные кровоизлияния.
  • 4-я стадия - восстановительная, или остаточных проявлений , заключается в дистрофических, некротических и геморрагических изменениях тканей многих органов. При этом примерно в 50 % случаев может наступить полиорганная недостаточность (почечная, печеночная, надпочечниковая, легочная, сердечная), приводящая больных к смерти. При благоприятном исходе заболевания наступает восстановление поврежденных тканей и восстанавливаются функции органов.

В зависимости от распространенности выделяют варианты ДВС-синдрома: генерализованный и местный.

В зависимости от продолжительности ДВС-синдрома выделяют следующие формы:

  • острую (от нескольких часов до нескольких суток), протекающую наиболее тяжело, развивается при шоке, характеризуется генерализованным некротическим и геморрагическим поражением органов с развитием полиорганной недостаточности;
  • подострую (от нескольких дней до недели), развивается чаще при поздних гестозах, лейкозах, злокачественных опухолях. характеризуется локальными или мозаичными тромбогеморрагическими повреждениями тканей;
  • хроническую (несколько недель и даже месяцев), которая чаще развивается при аутоиммунных заболеваниях, длительной интоксикации, при злокачественных опухолях: у больных отмечаются обычно локальные или мигрирующие изменения в органах с развитием их медленно прогрессирующей недостаточности.

Патологическая анатомия ДВС-синдрома заключается в образовании в капиллярах и венулах множественных микротромбов, как правило, состоящих из фибрина, стаза в капиллярах, кровоизлияний, дистрофических и некротических изменений в различных органах.

НАРУШЕНИЯ ПРОНИЦАЕМОСТИ СТЕНОК СОСУДОВ

При повреждении стенок сосудов или полостей сердца, а также при повышении сосудистой проницаемости вытекает содержащаяся в сосудах или в сердце кровь. Исходя из особенностей и последствий кровопотери выделяют кровотечение и кровоизлияние.

Кровотечение (haemorrhagia) - выход крови за пределы сосудистого русла или сердца в окружающую среду (наружное кровотечение) ,а также в полости тела или в просвет полого органа (внутреннее кровотечение) . Примером наружного кровотечения являются кровотечение из полости матки (метроррагия ), из кишечника (мелена) , кровотечения при травмах конечностей или тканей поверхности тела. Внутренними являются кровотечения в полость перикарда (гемоперикард) , в полости грудной клетки (гемоторакс) , в брюшную полость (гемоперитонеум) .

По источнику кровотечения выделяют:

  • артериальное;
  • венозное;
  • артериально-венозное (смешанное);
  • капиллярное;
  • паренхиматозное кровотечение (капиллярное из паренхиматозных органов);
  • сердечное кровотечение.

Кровоизлияние - частный вид кровотечения, при котором вышедшая из сосудов кровь накапливается в окружающих тканях. Выделяют 4 разновидности кровоизлияния:


Механизмы развития кровотечений и кровоизлияний:

  • разрыв сосуда или стенки сердца (haemorrhagia per rexin) при травме, некрозе (инфаркте), аневризме;
  • разъедание стенки сосуда (haemorrhagia per diabrosin), что происходит при воспалении ткани или при злокачественном росте, например в дне язвы желудка или в опухоли, при прорастании ворсинами хориона сосудов маточной трубы при внематочной беременности и др.;
  • диапедез (haemorrhagia per diapedesin, от греч. dia - через, pedao - скачу) характеризуется выходом крови из сосуда в результате повышения проницаемости его стенки без нарушения ее целостности. Это один из наиболее частых механизмов кровоизлияния наблюдается при гипоксии, интоксикациях, инфекциях, различных коагулопатиях, геморрагических диатезах, при гипертоническом кризе, гемофилии и др. (рис. 21).

Исход кровоизлияния может быть благоприятным когда излившаяся кровь рассасывается, как, например, при кровоподтеке, или организовывается, что бывает при гематомах, но может быть и неблагоприятным, если кровоизлияние происходит в жизненно важные органы - головной мозг, надпочечники. В этом случае больной может погибнуть или становится инвалидом.

Значение кровотечения обусловлено его видом, выраженностью и продолжительностью. Так, больной может погибнуть при небольшом кровоизлиянии в область ствола головного мозга и при острой массивной артериальной кровопотере. Вместе с тем повторяющиеся в течение длительного времени, но небольшие кровотечения, например при геморрое или из язвы желудка, обусловливают лишь развитие постгеморрагической анемии, сопровождающейся жировой дистрофией паренхиматозных органов. Большое значение имеет скорость кровотечения - быстрая кровопотеря даже относительно небольших объемов крови (300- 350 мл) приводит больного к смерти, в то время как потеря значительно больших объемов крови, но на протяжении длительного времени (маточные или геморроидальные кровотечения) не вызывает тяжелых осложнений, так как в организме успевают развиться компенсаторные процессы.

НАРУШЕНИЯ ЛИМФООБРАЩЕНИЯ

Патологические изменения функций лимфатической системы тесно связаны с нарушениями кровообращения и усугубляют возникающие при этом изменения в тканях. Среди нарушений лимфообращения основную роль играют лимфатическая недостаточность и лимфостаз.

ЛИМФАТИЧЕСКАЯ НЕДОСТАТОЧНОСТЬ

Лимфатическая недостаточность - состояние при котором интенсивность образования лимфы превышает способность лимфатических сосудов транспортировать ее в венозную систему. Выделяют следующие виды недостаточности лимфатической системы: механическую, динамическую и резорбционную.

При механической недостаточности возникает органическое или функциональное препятствие току лимфы, что происходит при закупорке лимфатических сосудов опухолевыми клетками, сидерофагами, сдавлении лимфатических путей опухолью, а также при венозном застое.

Динамическая недостаточность наблюдается при несоответствии между количеством тканевой жидкости и возможностями лимфатических путей для ее отведения, что имеет место при значительном повышении проницаемости кровеносных сосудов в связи с воспалением, аллергическими реакциями, при выраженных отеках тканей.

Резорбционная недостаточность обусловлена уменьшением проницаемости стенок лимфатических капилляров или изменением дисперсных свойств тканевых белков.

Лимфостаз - остановка тока лимфы, что происходит при недостаточности лимфатической системы вне зависимости от механизма ее развития. Выделяют общий и регионарный лимфостаз.

Общий лимфостаз возникает при общем венозном застое, так как при этом уменьшается перепад давления между кровью и лимфой - один из главных факторов, определяющих отток лимфы из лимфатических сосудов в венозную систему.

Регионарный лимфостаз развивается при местной венозной гиперемии, при закупорке регионарных лимфатических сосудов или при сдавлении их опухолью.

Последствием лимфостаза является лимфатический отек - лимфедема. Длительный застой лимфы способствует активации фибробластов и разрастанию соединительной ткани, что приводит к склерозу органов. Лимфатический отек и склероз тканей вызывают стойкое увеличение объема органа либо той или иной части тела - нижних конечностей, половых органов и др., и развивается заболевание, которое называется слоновостью.