Костная проводимость звука — это вредно? Кому нужны такие наушники? Определение воздушной и костной проводимости

  • Дата: 10.04.2019

1. Периферический отдел – это рецепторный аппарат со вставочными образованиями.

2. Проводниковый отдел: от рецепторов нервные импульсы передаются на 1-й нейрон – спиральный ганглий, который залегает в базальной мембране. Аксоны этих клеток идут в составе предверно - улиткового нерва (YIII пара) и заканчиваются синапсами на клетках 2-го нейрона, который залегает вы продолговатом мозге (дно 4-го желудочка мозга – ромбовилная ямка). Из продолговатого мозга аксоны 2-х нейронов идут в средний мозг (нижние бугры четверохолмия) и медиальное коленчатое тело. До коленчатого тела происходит перекрест части волокон. Часть информации дальше не идет, а замыкается на двигательном пути безусловных рефлексов слуховой системы (двигательные реакции на слуховые раздражения).

3-й нейрон находится в таламусе (замыкаются простейшие рефлексы, выделяется главное, группируется информация).

3. Корковый отдел слухового анализатора – кора височной доли больших полушарий. Поступившие нервные импульсы преобразуются в виде звуковых ощущений.

КОСТНАЯ И ВОЗДУШНАЯ ПРОВОДИМОСТЬ ЗВУКОВ. АУДИОМЕТРИЯ

Воздушная и костная проводимость

Барабанная перепонка включается в звуковые колебания и передает их энергию по цепи косточек среднего уха перилимфе вестибулярной лестницы. Звук, передаваемый по этому пути, распространяется в воздушной среде – это воздушная проводимость.

Ощущение звука возникает и тогда, когда колеблющийся предмет, например камертон, помещен непосредственно на череп; в этом случае основная часть энергии передается через кости черепа – это костная проводимость. Для возбуждения внутреннего уха необходимо движение жидкости внутреннего уха. Звук, передаваемый через кости, вызывает такое движение двумя путями:

1. Области сжатия и разрежения, проходящие по костям черепа, перемещают жидкость из объемистого вестибулярного лабиринта в улитку и обратно («компрессионная теория»).

2. Косточки среднего уха обладают некоторой массой, и поэтому колебания косточек из-за инерции задерживаются по сравнению с колебаниями костей черепа.



Тестирование нарушений слуха

Наиболее важным клиническим тестом является пороговая аудиометрия (рис. 32) .

1. Испытуемому через один телефонный наушник предъявляются различные тоны. Врач, начиная с некоторой интенсивности звука, которая определена как подпороговая, постепенно увеличивает звуковое давление до тех пор, пока испытуемый не сообщит, что он слышит звук. Это звуковое давление наносится на график. На аудиографических бланках уровень нормального слухового порога выделяется жирной чертой и помечается «О дБ». В противоположность графику на рис. 31 более высокие значения слухового порога наносятся ниже нулевой линии (что характеризует степень утраты слуха); таким образом, демонстрируется, насколько поро­говый уровень для данного больного (в дБ) отличается от нормального. Отметим, что в этом случае речь идет не об уровне звуко­вого давления, который измеряется в деци­белах УЗД. Когда определено, на сколько дБ слуховой порог у больного ниже нормы, говорят, что утрата слуха составляет столь­ко-то дБ. Например, если заткнуть пальца­ми оба уха, снижение слуха составит при­близительно 20 дБ (при выполнении этого эксперимента не следует, по возможности, создавать шум самими пальцами). С по­мощью телефонных наушников тестируется восприятие звука при воздушной проводимо­сти . Костная проводимость тестируется сходным образом, но вместо наушников ис­пользуется камертон, который помещают на сосцевидный отросток височной кости с проверяемой стороны, так что колебания распространяются через кости черепа. Срав­нивая пороговые кривые для костной и воз­душной проводимости, можно отличить глухоту, связанную с повреждением средне­го уха, от вызванной нарушениями внутрен­него уха.

ОПЫТЫ РИННЕ И ВЕБЕРА

2. С помощью камертонов (с частотой 256 Гц) нарушения проведения очень легко отличить от повреждения внутреннего уха или от ретрокохлеарных повреждений в случае, если известно, какое ухо повреждено.

А. Опыт Вебера.

Ножка звучащего камертона помещается по средней линии черепа; в этом случае больной с поражением внутреннего уха сообщает, что он слышит тон здоровым ухом; у больного с поражением среднего уха ощущение тона смещается на поврежденную сторону.

Существует простое объяснение:

В случае повреждения внутреннего уха: поврежденные рецепторы вызывают более слабое возбуждение в слуховом нерве, поэтому тон кажется более громким в здоровом ухе.

В случае поражения среднего уха: во-первых, пораженное ухо подвергается изменениям вследствие воспаления, при этом вес слуховых косточек увеличивается. Это улучшает условия возбуждения внутреннего уха за счет костной проводимости. Во-вторых, т.к. при нарушениях проведения меньше звуков достигают внутреннего уха и оно адаптируется к более низкому уровню шума, рецепторы становятся более чувствительными, чем на здоровой стороне.

Б. Тест Ринне.

Позволяет сравнить воздушную и костную проводимость в одном и том же ухе. Звучащий камертон помещают на сосцевидный отросток (костная проводимость) и держат там, пока больной не перестанет слышать звук, после этого переносят камертон непосредственно к наружному уху (воздушная проводимость). Люди с нормальным слухом и те, у кого нарушено восприятие. Снова слышат тон (тест Ринне положительный), а те, у кого нарушено проведение – не слышат (тест Ринне отрицательный).

46. ПАТОЛОГИЧЕСКИЕ НАРУШЕНИЯ СЛУХА И ИХ ОПРЕДЕЛЕНИЕ Глухота – частая патология. Причины ухудшения слуха:

1. Нарушение проведения звука. Повреждение среднего уха – аппарата проведения звука. Например, при воспалении слуховые косточки не передают нормального количества звуковой энергии на внутреннее ухо.

2. Нарушение восприятия звука (нейросенсорная утрата слуха). В этом случае повреждены волосковые рецепторы кортиева органа. В результате нарушается передача информации из улитки в ЦНС. Такое поражение может произойти при звуковой травме при действии звука высокой интенсивности (более 130 дБ) или при действии ототоксических веществ (происходит поражение ионного аппарата внутреннего уха) – это антибиотики, некоторые диуретики.

3. Ретрокохлеарные повреждения. При этом внутреннее и среднее ухо не повреждены. Поражены либо центральная часть первичных афферентных слуховых волокон, либо другие компоненты слухового тракта (например, при опухоли мозга).


Что такое костная проводимость?

Упрощенно наша слуховая система делится на три части: наружное ухо, среднее и внутреннее. Когда мы слышим чужую речь или музыку, мы воспринимаем звук с помощью воздушной проводимости — он проходит по наружному слуховому проходу к среднему, а затем к внутреннему уху.

При костной проводимости звук, преобразованный в вибрацию, минует внешний проход и средний, отправляясь напрямую к внутреннему уху.

Это какие-то нанотехнологии?

Ничего нового в данном способе передачи звука нет, однако достоянием широкой общественности костная проводимость была не всегда. До последнего десятилетия с этим способом работали исключительно в медицине, так как при определенных патологиях костная проводимость была единственным способом для человека услышать звуки. Исторический пример использования костной проводимости — творчество «глухого» Бетховена, который прикладывал специальные отводящие трубки к инструменту и к костям черепа.


Где еще применяется костная проводимость?


Наука. Например, при изучении подводного мира аквалангисты для связи с поверхностью используют данный тип передачи звуков. Это обусловлено строением костюмов и тем, что подобные динамики хорошо поддаются герметизации.

Армия. Гарнитуры с костной проводимостью звука не закрывают уши: можно принимать команды, но при этом реагировать на окружающие звуки.

Любительский спорт и туризм. Причины те же — гарнитуры с костной проводимостью позволяют слышать больше: и звуки музыки, и все, что происходит вокруг, за счет того, что уши остаются открытыми для воздушной проводимости. Это позволяет обезопасить себя от внешних опасностей и при этом поддерживать постоянную связь с другими участниками турнира, забега или туристического похода.

А это не вредно?

Нет, костная проводимость звука — биологическая способность организма, и восприятие звуков таким способом не «вскипятит» ваш мозг и не нанесет никакого вреда костям черепа. Это легко проверить: заткните уши, скажите что-нибудь — вы прекрасно слышите себя. С первых дней жизни звук собственного голоса мы воспринимаем через кости — используем костную проводимость звука.

Так, а что с музыкой?


Первыми, кто открыл костную проводимость для простых пользователей, была компания Google. В первой версии Google Glass был встроенный в дужку динамик, который обеспечивал передачу звука таким способом. Сегодня гарнитуры, которые позволяют «слышать больше», стали доступнее и их действительно используют для прослушивания музыки или аудиокниг. Международная компания Aftershokz производит целый ряд наушников, чья работа строится на основе костной проводимости звука.


Сейчас в линейке четыре основные модели: флагманская новинка Aftershokz Trekz Air, Aftershokz Trekz Titanium, Aftershokz Bluez 2S и модель Sportz. Все модели кроме Sportz — беспроводные.

Звук совсем не отличается?

Восприятие звука действительно будет отличаться от того, что вы привыкли слышать в обычных наушниках. Это происходит из-за неполной изоляции — из-за этого звук слегка «рассеивается». С другой стороны — такой способ восприятия бережет барабанные перепонки. Они, поверьте, гораздо более хрупкие, чем кости.

Еще одно отличие — в басах. Динамик в гарнитурах Aftershokz — это металлическая пластина, которая преобразует звук в колебания или вибрации. То есть глубокие басы вы не слышите, а ощущаете. Это похоже на ощущения, которые человек испытывает во время концерта — вибрации передаются тактильно и вы ощущаете легкое подрагивание. В наушниках эффект будет похожим, но в несколько раз слабее.

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).

Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.


4. Слуховые косточки. Строение и участие в формировании слуха.

СЛУХОВЫЕ КОСТОЧКИ - комплекс из мелких косточек в среднем ухе. Находятся в барабанной полости три маленькие слуховые косточки - молоточек, наковальня и стремя. Колебания барабанной перепонки (в барабанной полости) улавливаются молоточком, усиливаютсядвижениями наковальни и передаются на стремечко,

которое соединено с овальным окном в УЛИТКЕ внутреннего уха.

1.Молоточек снабжен округлой головкой, которая при посредстве шейки, соединяется с рукояткой.

2. Наковальня, имеет тело, и два расходящихся отростка, из которых один более короткий, направлен назад и упирается в ямку, а другой - длинный отросток, идет параллельно рукоятке молоточка медиально и кзади от нее и на своем конце имеет небольшое овальное утолщение, сочленяющееся со стременем.

3. Стремя, по своей форме оправдывает свое название и состоит из маленькой головки, несущей сочленовную поверхность для наковальни и двух ножек: передней, более прямой, и задней, более изогнутой, которые соединяются с овальной пластинкой, вставленной в окно преддверия. В местах сочленений слуховых косточек между собой образуются два настоящих сустава с ограниченной подвижностью. Пластинка стремени соединяется с краями при посредстве соединительной ткани.

Слуховые косточки укреплены, кроме того, еще несколькими отдельными связками. В целом все три слуховые косточки представляют более или менее подвижную цепь, идущую поперек барабанной полости от барабанной перепонки к лабиринту. Подвижность косточек постепенно уменьшается в направлении от молоточка к стремечку, что предохраняет спиральный орган, расположенный во внутреннем ухе, от чрезмерных сотрясений и резких звуков.

Цепь косточек выполняет две функции:

1) костную проводимость звука

2) механическую передачу звуковых колебаний к овальному окну преддверия.


5. Строение внутреннего уха. Звуковой и вестибулярный анализатор. Анатомия, физиология. Ототопика.

Внутреннее ухо, или лабиринт, располагается в толще пирамиды височной кости между барабанной полостью и внутренним слуховым проходом, через который выходит из лабиринта.

Костный лабиринт состоит из: вестибулярный лабиринта, костного лабиринта, перепончатого лабиринта, улитки; преддверия; полукружных каналов.

У современного человека улитка находится впереди, а полукружные каналы сзади, между ними расположена полость неправильной формы - преддверие. Внутри костного лабиринта находится перепончатый лабиринт, который имеет точно такие же три части, но меньших размеров, а между стенками обоих лабиринтов находится небольшая щель, заполненная прозрачной жидкостью - перилимфой.

Улитка. Каждая часть внутреннего уха выполняет определенную функцию. Улитка является органом слуха: звуковые колебания, которые из наружного слухового прохода через среднее ухо попадают во внутренний слуховой проход, в виде вибрации передаются жидкости, заполняющей улитку. Внутри улитки находится основная мембрана (нижняя перепончатая стенка), на которой расположен Кортиев орган - скопление разнообразных опорных клеток и особых сенсорно-эпителиальных волосковых клеток, которые через колебания перилимфы воспринимают слуховые раздражения в диапазоне 16-20000 колебаний в секунду, преобразуют их и передают на нервные окончания VIII пары черепных нервов - преддверно-улиткового нерва; дальше нервный импульс поступает в корковый слуховой центр головного мозга.

Преддверие и полукружные каналы - органы чувства равновесия и положения тела в пространстве. Расположены в трёх взаимно перпендикулярных плоскостях и заполнены полупрозрачной студенистой жидкостью; внутри каналов находятся чувствительные волоски, погруженные в жидкость, и при малейшем перемещении тела или головы в пространстве жидкость в этих каналах смещается, надавливая на волоски и порождая импульсы в окончаниях вестибулярного нерва - в мозг мгновенно поступает информация об изменении положения тела. Работа вестибулярного аппарата позволяет человеку точно ориентироваться в пространстве при самых сложных движениях - например, прыгнув в воду с трамплина и при этом несколько раз перевернувшись в воздухе, в воде ныряльщик мгновенно узнаёт, где находится верх, а где - низ.

Различают костный и перепончатый лабиринты, причем последний лежит внутри первого. Костный лабиринт, представляет ряд мелких сообщающихся между собой полостей, стенки которых состоят из компактной кости. В нем различают три отдела: преддверие, полукружные каналы и улитку; улитка лежит спереди, медиально и несколько книзу от преддверия, а полукружные каналы - кзади, латерально и кверху от него.

Преддверие , образующее среднюю часть лабиринта, - небольшая, приблизительно овальной формы полость, сообщающаяся сзади пятью отверстиями с полукружными каналами, а спереди - более широким отверстием с каналом улитки. На латеральной стенке преддверия, обращенной к барабанной полости, имеется отверстие, занятое пластинкой стремени. Другое отверстие, затянутое находится у начала улитки. Посредством гребешка, проходящего на внутренней поверхности медиальной стенкипреддверия, полость последнего делится на два углубления, из которых заднее, соединяющееся с полукружными каналами. Под задним концом гребешка на нижней стенке преддверия находится небольшая ямка, соответствующая началу перепончатого хода улитки.

Костные полукружные каналы , - три дугообразных костных хода, располагающихся в трех взаимно перпендикулярных плоскостях. Передний полукружный канал, расположен вертикально под прямым углом к оси пирамиды височной кости, задний полукружный канал, также вертикальный, располагается почти параллельно задней поверхности пирамиды, а латеральный канал, лежит горизонтально, вдаваясь в сторону барабанной полости. У каждого канала две ножки, которые, однако, открываются в преддверии только пятью отверстиями, так как соседние концы переднего и заднего каналов соединяются в одну общую ножку. Одна из ножек каждого канала перед своим впадением в преддверие образует расширение, называемое ампулой.

Перепончатый лабиринт, лежит внутри костного и повторяет более или менее точно его очертания. Он содержит в себе периферические отделы анализаторов слуха и гравитации. Стенкиего образованы тонкой полупрозрачной соединительнотканной перепонкой. Внутри перепончатый лабиринт наполнен прозрачной жидкостью - эндолимфой.Т.К.перепончатый лабиринт несколько меньше костного, то между стенками того и другого остается промежуток - перилимфатическое пространство, наполненное перилимфой. В преддверии костного лабиринта заложены две части перепончатого лабиринта: эллиптический мешочек и сферический мешочек. Перепончатый лабиринт в области полукружных протоков подвешен на плотной стенке костного лабиринта сложной системой нитей и мембран. Этим предотвращается смещение перепончатого лабиринта при значительных движениях. Ни перилимфатическое, ни эндолимфатическое пространства «не закрыты намертво» от окружающей среды. Перилимфатическое пространство имеет связь со средним ухом через окна улитки и преддверия, которые эластичны и податливы. Эндолимфатическое пространство связано через эндолимфатический проток с эндолимфатическим мешочком, лежащим в полости черепа; он является эластичным резервуаром, который сообщается с внутренним пространством полукружных протоков и остальным лабиринтом.

Уже не одну статью я посвятил замечательному явлению костной звукопроводимости, а точнее технологии, использующей этот феномен. Об истории и сути явления можно почитать здесь, а подробные обзоры и - наушников от Aftershokz - ещё больше проливают свет на происходящее. Казалось бы, что ещё можно добавить? Я восторжено люблю «bone conduction», считаю её полезной и удобной фичей и всячески рекомендую читателям с ней ознакомиться. Однако, как и всё новое и незнакомое, костная проводимость будоражит мысли людей (и мои в том числе): не вредно ли? Не опасно? Не лишусь ли я слуха через пару лет использования таких наушников?

Присущая человеческому существу ксенофобия ядовито шепчет: «ещё как опасно! Того и гляди, уши отвалятся!». А интуиция вкупе со здравым смыслом подсказывают, что волноваться не о чем. Тем не менее, современная наука не водит дружбы с абстрактным «здравым смыслом», требуя аргументации и доказательной базы. Вопрос осложняется тем, что какого-либо научного исследования, посвящённого костной проводимости, мне найти не удалось. Поэтому всё что нам остаётся сейчас - попытаться разобраться в вопросе самостоятельно.

Физика

Для начала следует разоблачить следующее утверждение, которое часто можно видеть в некоторых авторских текстах: «в отличие от обычных наушников, посылающих звуковую волну в ушной канал, устройство с технологией костной проводимости (далее КП) транслирует звук через кости посредством вибрации». Ничего глупее выдать, наверное, нельзя, когда говоришь о звуке: просто потому, что звук в узком смысле - это и есть звуковая волна, и никаким другим образом он не может быть доставлен к внутреннему уху.

Я поясню. Звуковая волна - это физическое возмущение в виде колебаний атомов вещества. Неважно, какого вещества: воздуха, воды, бетонной стены (привет соседу-пианисту) или кости черепа. Звуковая волна, прежде чем достичь ушной раковины, может пройти долгий путь, «пробравшись» сквозь жидкости и твёрдые тела. Те есть, с физической точки зрения нет никакой разницы, передаются ли колебания в разреженных атомах воздуха или в плотной среде кристалла алмаза. Здесь имеет место быть одно и то же явление под названием «звуковая волна», и никакие «вибрации» нельзя ей противопоставить.

Через твёрдые тела звук проходит даже быстре, чем по воздуху

Корректнее было бы саму волну сравнить с вибрацией или колебанием, но это лишь вопрос терминов. Резюмирую: обычно звуковая волна проходит к внутреннему уху через воздушное пространство в ушном канале и твёрдые тела в виде барабанной перепонки и костей среднего уха - то есть просто меняется вещество, по которому транслируется звук.

Костная проводимость - это упрощённая «доставка» звука к улитке через скуловые кости. Эти кости менее чувствительны, чем, например, наковальня и стремечко (кости среднего уха), и в том числе поэтому, звук, «полученный» благодаря КП, не такой отчётливый и явный.

Путаница же с «вибрацией» возникает, потому что в наушниках с технологией костной звукопроводимости на низких частотах отчётливо ощущаются физические колебания. Причины тому следующие: во-первых, чаши устройства плотно прилегают к вискам (если приложить диафрагмы обычных наушников к коже, вибрацию тоже можно ощутить), и во-вторых, такие гаджеты оснащены пьезоэлектрическими излучателями.

Как раз от «ощутимой вибрации» проиводители стараются избавиться (в почти получилось) как от неприятного (не более того) эффекта. Что же касается типа излучателя, здесь мы это рассматривать не будем, поскольку слабые электромагнитные поля практически безвредны для организма, да и присутствуют во всех типах наушников.

Медицина

Когда речь заходит о вреде здоровью, медстуденты знают: полностью доказать, что феномен безвреден, невозможно - можно доказать, что он причиняет вред. Поэтому за отсутствием научной исследовательской базы будем плясать от обратного.

Мы знаем, что технология костной проводимости звука пришла в потребительский сегмент из медицины (первыми её позаимствовали военные). В широком смысле ничего не изменилось с начала XX века - КП успешно используют в слуховых аппаратах для людей с индуктивной глухотой или тугоухостью (в случаях когда повреждена, например, барабанная перепонка, а внутреннее ухо здорово). Мединженеры применяют даже более «агрессивное» (чем у наушников) вторжение в организм: такие аппараты представляют собой титановый штифт, вкручивающийся в височную кость наподобие болта (остеоигтегрированный имплантат).

Зачем нужен имплант? Таким образом достигается более плотное взаимодействие источника звука с костями черепа. Я перечитал всё, что можно было найти об истории развития таких аппаратов, и не нашёл ни единого случая ухудшения слуха после их вживления. На заре развития этого направления в мединженерии было немало проблем во время интеграции самих имплантов: нередко организм «отказывался» их принимать. Однако, как я и сказал, слух (как и что-либо другое) у пациентов не нарушался.

У пионера и лидера в производстве слуховых аппаратов с КП - компании Baha более ста тысяч пациентов, носящих в данный момент костные импланты. Среди побочных эффектов хирургического вмешательства и последующего использования устройств с КП называют: раздражение кожи вокруг штифта, возникновение гематомы из-за неаккуратной интеграции, отмирание частиц кожи и, как самое опасное, занесение инфекции или нанесение травмы при неудачной операции. Как видим, все неприятности связаны исключительно с хирургическим вживлением импланта.

Во-вторых, аппараты с КП назначаются не только людям с хронической индуктивной тугоухостью, но и как временная мера при ослаблении слуха от инфекций. То есть, даже люди с «целыми» ушами носят такие аппараты во время болезни среднего уха, а по выздоровлении возвращаются к обычному способу восприятия звука. Никаких ухудшений слуха у них также не возникает.

И наконец, мой самый любимый аргумент - дети. Слуховые аппараты с КП назначаются и вживляются детям так же успешно, как и взрослым людям - а мы знаем, что детский слух (это справедливо для всех млекопитающих) гораздо чувствительнее «окрепшего» слуха взрослого дядьки. Противопоказаны импланты лишь больным синдромом Дауна (не только детям) и малышам, у которых толщина черепа ещё не достигла 2,5 мм.

Что же делать, если слух нарушен у маленького ребёнка? Малышам назначают - барабанная дробь - слуховые аппараты с КП без вживления импланта (то есть устройства, технически аналогичные потребительским КП-наушникам). Детские аппараты крепятся к мягкому бандажу: это нужно для того, чтобы излучатели плотнее прилегали к вискам ребёнка. Такие аппараты делает и Baha и, например, компания Oticon. Как видим, даже самым маленьким КП не противопоказана. А ограничения в данном случае полностью соответствуют классическому предостережению: не слушайте громко музыку - так повредить слух можно хоть с КП, хоть без неё.

Голоса в голове

Главные доказательства я уже привёл, поэтому несущественные аспекты, вроде «мы слышим собственный голос через кости черепа постоянно» оставим для другой темы (хотя не без них, конечно). Подведу итог:

  1. Физически костная и «ушная» звукопроводимости не отличаются. При КП звуковые волны проходят через кости черепа таким же образом, как и при трансляции через кости среднего уха.
  2. Слуховые аппараты с технологией КП успешно применяются для помощи людям с нарушениями внутреннего уха. Никаких ухудшений слуха при этом не выявлено.
  3. Слуховые устройства с КП назначаются также людям с временными инфекционными заболеваниями. Впоследствии импланты им удаляют, то есть при лечении учитывается, что человек вернётся к естественному способу восприятия звука.
  4. Детям тоже успешно вживляют штифты. Самые маленькие пациенты (с тонкими костями черепа) носят аппараты с КП без вживления импланта.

Для научной дискуссии эти аргументы, вероятно, нуждались бы в более обширном изложении (во много раз вревосходящем формат популярной статьи), но для вашего (и моего) успокоения, как мне кажется, этого вполне достаточно. Если вы несогласны, буду рад увидеть комментарии к материалу.

И не забывайте заходить на наш Telegram-канал: именно там мы впервые публикуем всё самое интересное - не менее интересное, чем технология костной проводимости!

Костная проводимость — способ восприятия звука не ухом, а черепом, обычно для этой цели используются скуловые кости.

Человеческое ухо довольно сложный орган, его можно разделить на три части, на три функциональных элемента: внешнее ухо, среднее и внутреннее. Рецепторы, которые отвечают за улавливание вибраций и преобразование их в понятный нашему мозгу сигнал, находятся во внутреннем ухе. В обычном случае вибрацию воздуха во внутреннее ухо передаёт барабанная перепонка, которая находится во внешнем ухе. Но внутреннее ухо также способно преобразовывать колебания кости черепа в звуковые сигналы, именно так стало возможным создать наушники, которые не надеваются на уши и которые не издают привычный нам звук.

Как работает костная проводимость звука

Костная проводимость звука — это способность человека слышать вибрации черепа, с помощью внутреннего уха. Звук — это вибрация газа, т.е. окружающего нас воздуха и наш орган слуха прежде всего настроен на улавливание этих колебаний. Однако, наше внутреннее ухо не находится в изоляции от черепа, оно к нему крепится и с ним неразрывно связано, а раз оно регистрирует колебания, то и колебания кости воспринимает как звук. Особенности колебаний кости заключаются в отличных свойствах, так низкочастотные колебания через передаёт быстрее и эффективнее, чем воздух, а вот высокочастотные наоборот гораздо хуже. Именно поэтому нам наш собственный голос всегда кажется более низким и полным, чем как его слышат окружающие нас люди. В этом легко убедится, если послушать запись собственного голоса сделанную с помощью микрофона. Именно в этом заключается разница воздушной и костной проводимости звука. Конечно, есть и иные различия, однако для нас важно знать, что череп может создавать вибрации достаточной силы, чтобы мы слышали их собственным ухом.

Наше внутреннее ухо способно преобразовывать в звук не только колебание барабанной перепонки, но и вибрацию, которая доходит до неё через кости черепа. Удивительно тут то, что таким образом можно миновать барабанную перепонку и передавать звук непосредственно во внутреннее ухо, сразу на главный звуковой сенсор. Это позволяет слышать звук в довольно высоком качестве даже тем людям, у которых барабанная перепонка по тем или иным причинам перестала функционировать. Они не слышат обычные звуки, а вот если надеть наушники с костной проводимостью, они снова начнут слышать мир и окружающих людей.

Технология костной проводимости известна достаточно давно, но как и любая другая технология ей нужно было время для того, чтобы из экспериментальной превратиться в военную, затем в медицинскую и только потом появится на потребительском рынке.

Самые первые образцы приборов нуждались в хирургической операции по внедрению специального титанового импланта. Но довольно быстро от этой технологии отказались в виду её сложности, не универсальности и необходимости инвазивного вмешательства в организм человека, что всегда влечёт за собой определённые риски.

Сегодня наушники с костной проводимостью достаточно надеть на голову, как и любые другие, и включить их. Требований ни больше, чем от обычных моделей, зато эффект очень любопытный.

Где применяются наушники с костной проводимостью звука

Люди со слабым слухом. Конечно, прежде всего такие наушники нужны людям с повреждённой барабанной перепонкой. Наверняка вы видели много людей с ушными протезами или слуховыми аппаратами. Многие из них это видоизменённые наушники с костной проводимостью звука. Такие слуховые аппараты очень эффективны, а главное недорогие и практичные. С 1977 года, когда начали применять подобные слуховые аппараты и до наших дней более 100000 человек в США имеют подобные протезы и продолжают жить полноценной жизнью не чувствуя себя неполноценными.

Военные. Конечно, военные не могли пройти мимо столь заманчивой технологии. В первую очередь наушники военные применяют по прямому назначению — для радиосвязи между оперативниками во время боевых операций. Одним из главных преимуществ подобных наушников является возможность одновременно слышать что происходит вокруг и продолжать общение. К тому же громкие звуки выстрелов и взрывов почти не влияют на эффективность радиопереговоров, т.к. наушники с костной проводимостью минуют барабанную перепонку. Также военные ценят универсальность подобных наушников и их надёжность.

Спорт. Наушники с костной проводимостью звука отлично подходят для спортсменов во время тренировок. Во время бега, выполнения активных упражнений или даже игры в футбол главное преимущество заключается в том, что спортсмен продолжает отлично слышать то, что происходит вокруг ни в чём себя не ограничивая. Например, футбольные команды во время тренировок используют подобные наушники, чтобы слышать указания тренера, его рекомендации и критику ошибок каждого из игроков. Эта возможность значительно увеличила эффективность тренировок, их скорость и удобство проведения. Ну, а для обычных граждан, которые решили заняться вечерними пробежками или ездой на велосипеде такие наушники станут незаменимы, т.к. на улице могут возникнуть разные ситуации, на которые нужно реагировать мгновенно услышав подозрительный или предупреждающий звук. Например, звук приближающегося автомобиля или лай собаки.

Подводные операции.

Думаю, многие не задумывались о том как общаются водолазы между собой. До момента создания специальных подводных наушников с костной проводимостью единственной возможностью общения были жесты. Но теперь есть несколько моделей подводных наушников с помощью которых несколько водолазов могут сказать друг другу несколько слов. Конечно, звук будет нечётный из-за того, что человеку приходится говорить с шлангом во рту. Но если водолазы являются сработанной командой и договорились общаться краткими командами, возможности гаджетов и человека вполне достаточны, чтобы понять друг друга и действовать сообща. Наверное, это один из самых необычных способов применения костной проводимости звука.

Каким будет звук в наушниках костной проводимости

Как я уже писал, звук генерируется путём вибрации специальных генераторов, которые соприкасаются с вашей головой в местах, где прослойка кожи, мышц и жира минимальна, чтобы вибрация наиболее эффективна передавалась на кость и достигала внутреннего уха.

По этой причине звук будет иной, не такой к какому вы привыкли, но всё же он узнаваем. А если послушать такие наушники пару часов, вы привыкните к его особенностям и сможете использовать как обычные наушники. С той лишь разницей, что ваши уши не будут ничем закрыты и вы будете прекрасно слышать то, что происходит вокруг вас.

Обычно вибрацию создаёт специальный пьезодинамик, который способен создавать вибрацию необходимой частоты и амплитуды, чтобы ваши уши могли принять её за звук.

В целом эти наушники считаются более безопасными для слуха, чем традиционные модели, т.к. передать достаточную энергию через кости для того, чтобы повредить внутренее ухо текущие бытовые модели просто не способны. Поэтому такие наушники можно смело давать детям и пожилым людям, которые слабо разбираются в технологиях. Они просто не смогут себе навредить.

Однако, помните, что в будущем могут появится новые модели с более мощным пьезодинамиком, которые уже смогут при длительном прослушивании на максимальной громкости негативно влиять на слух.

Зачем нужны наушники костной проводимости, если вы не спортсмен, не военный и не водолаз?

Наушники с костной проводимостью дают одно большое преимущество перед любыми традиционными наушниками — они не перекрывают ваш слух для окружающего звука. А это значит, что их возможно применять в очень широком спектре видов деятельности.

  • В офисе. Вам нужно слышать собеседников через Skype, но при этом оставаться в курсе того, что происходит вокруг вас и быть доступным для сотрудников. Согласитесь, неприятно, когда вам кто-то нужен, он сидит в трёх метрах от вас, но вы не можете просто обратиться к нему, т.к. он сидит в обычных наушниках и вас не слышит.
  • Просмотр фильмов. Молодые родители должны особенно оценить эту возможность: вы можете смотреть фильм в то время, пока ваш ребёнок спит, но в то же время вы сразу же услышите если он проснётся.
  • Слушать музыку или разговаривать за рулём. Конечно, если вы за рулём, то лучше всего вообще не разговаривать по телефону, однако, не всегда наши желания совпадают с реальностью. Очень часто случаются срочные звонки на которые нужно ответить здесь и сейчас. Для таких случаев наушники с костной проводимостью подойдут отлично, т.к. вы будете слышать всё, что происходит вокруг вас и одновременно разговаривать по телефону так, словно ваш собеседник сидит рядом с вами на соседнем кресле. Руки свободны, уши свободны — безопасность максимальна.
  • Путешествие по городу. Гулять или кататься по улицам города приятно и весело, но всегда нужно помнить о том, что это может быть опасно. Вы должны слышать что происходит вокруг вас и подобные наушники это могут обеспечить. Вы слушаете музыку, подкаст или разговариваете по телефону, при этом слышите всё вокруг. На первый взгляд это кажется пустяком, однако, привыкнув к такому уровню свободы вы уже не сможете обходится без него.
  • Риск для слуха. Если слушать обычные наушники во время езды в общественном транспорте или в метро, есть риск ухудшить слух. Как мы обычно поступаем если музыку слышно плохо? Правильно, увеличиваем громкость. Так мы будем делать до тех пор, пока музыка не начнёт звучать приемлемо для нас, но в этом кроется опасность повреждения слуха, ведь в абсолютном значении подобная громкость может быть вредной для слуха. Наушники с костной проводимостью частично решают эту проблему — вы просто не сможете сделать их достаточно громкими для того, чтобы вызвать повреждение слуха.

Часто задаваемые вопросы о наушниках с костной проводимостью звука

  1. Помогут ли мне наушники с костной проводимостью, если у меня повреждён слух и обычные наушники я слышу очень плохо?

    Возможно, костная проводимость поможет, всё зависит от того какая часть уха была повреждена. Если повреждена барабанная перепонка или органы среднего уха, наушники могут значительно улучшить восприятие звука. Если же пострадало внутреннее ухо, такие наушники будут не сильно эффективнее обычных моделей. В любом случае нужно обратиться к врачу для получения более точного ответа.

  2. Какие наушники с костной проводимостью лучшие на данный момент?

    На момент написания статьи мы считаем, что для обычного слушателя с нормальным слухом, лучшей моделью станут AfterShokz Trekz Air.

  3. Будут ли наушники с костной проводимостью звучать также хорошо, как обычные наушники?

    Нет, они не будут звучать также хорошо. Звук будет другим, не хуже и не лучше, просто он будет восприниматься вашим слухом иначе. Например, низкие частоты вы будете слышать больше не как звук, а как вибрацию. Тяжело описать это чувство, но, фактически, вы будете все звуки слышать от вибрации кости, а потому все они будут звучать несколько иначе. Например, среднечастотные звуки будут звучать довольно похоже, а вот низкие и высокие частоты вы будете слышать иначе. Вообще, если рассматривать такие наушники с точки зрения аудиофила, они, конечно, не могут тягаться с обычными. Но у них есть множество других преимуществ, и качества их звучания вполне хватает для того, чтобы слушать музыку в фоновом режиме. Согласитесь, когда вы совершаете получасовую пробежку вас меньше всего будет волновать насколько чисто играют низкие частоты или насколько достоверно звучит вокал певицы. Вам просто нужна музыка, чтобы держать ритм и драйв, а для этого костной проводимости хватит.

  4. В чём разница между обычными наушниками и наушниками с костной проводимостью в техническом смысле для конечного пользователя?

    Вся разница в методе создания вибрации. Обычные наушники создают вибрацию воздуха, т.е. газа, которая улавливается барабанной перепонкой и уже её вибрацию воспринимает внутреннее ухо и переводит в сигнал для мозга. Эти наушники должны не просто сотрясать воздух, а наводить вибрацию на кость черепа, т.е. в них должен быть весьма мощный излучатель вибраций, который в свою очередь требует хороший источник питания. По этой причине все наушники с костной проводимостью имеют собственный источник питания, даже если они не .

  5. Могут ли наушники с костной проводимостью вызвать нарушение слуха?

    Теоретически, да, если слушать их продолжительное время на максимальной громкости, как и в случае с обычными наушниками. Но на наше счастье бытовые модели на это не способны, их максимальная громкость находится на нормальном уровне, злоупотребить которой просто не получится. Тем не менее, в будущем вполне могут выйти модели с очень высокой громкостью, поэтому вы должны знать, что очень громко слушать их тоже не стоит. Всё таки, ваш слух важнее, чем любая музыка, пусть даже та, которая очень вам нравится.

  6. Можно ли использовать наушники с костной проводимостью одновременно с слуховым аппаратом?

    Да, если конструкция слухового аппарата не мешает наушникам, их возможно использовать одновременно. В этом нет никаких трудностей.

Рейтинг Топ-10 самых лучших наушников с костной проводимостью звука

Хочу сделать небольшое отступление и объяснить почему о каждой модели в рейтинге написано довольно мало текста с описанием и свойствами. На текущий момент разница в звучании между наушниками, конечно, есть, но это совсем не та разница, которую мы оцениваем при прослушивании традиционных наушников, поэтому описывать характер звучания не имеет смысла. Просто запомните, что самый лучший звук у наушников компании AfterShokz, все остальные наушники звучат чуть хуже. Но даже у AfterShokz звук нельзя наградить такими эпитетами, как волшебный, потрясающий или невероятный. Он просто хороший для моделей с костной проводимостью и не больше. Отлично подойдёт для звонков и фонового прослушивания музыки, но никак для наслаждение музыкой сидя дома в удобном кресле с пледом и чашечкой горячего какао.

Дизайн почти всех наушников очень схож и отличается в небольших деталях, т.к. у них есть очень жёстко ограниченный просто для вариаций. Пьезодинамик должен плотно прилегать к кости и все современные производители сошлись на том, что удобнее и эффективнее всего прижимать его к выступающей части скулы. По этой причине форма и стиль наушников почти одинаков у всех производителей. Нельзя сделать квадратный самолёт, он просто не полетит вопреки законам аэродинамики, точно также и наушники с костной проводимостью — их внешний вид и стиль жёстко задан требованиями для возможности проигрывания звука.

Поэтому мы выстроили наушники в соответствиями с нашими личными впечатлениями от наушников, а не столько от объективных их свойств. Таковы реалии современного положения дел на этом рынке.

AfterShokz TREKZ Air

Мы долго думали какую модель от AfterShokz поставить на первое место, и решили, что это будут AfterShokz TREKZ Air. Это одна из последних моделей, в которой инженеры компании постарались учесть все пожелания пользователей и применить весь личный опыт полученный во время проектирования предыдущих моделей. Получились лёгкие, гибкие и красивые наушники.

Модель выпускается в трёх цветах:

  • Лесной зелёный;
  • Полночный голубой;
  • Насыщенный серый.

Наушники оснащены современным модулем Bluetooth 4.2 и поддерживает одновременное подключение с двумя устройствами, например, вы можете подсоединить наушники к ноутбуку и телефону в одно и тоже время.

Время автономной работы наушников до 6 часов.

Основным отличием от модели AfterShokz TREKZ Titanium, которая занимает второе место — наличие дополнительных микрофонов для шумоподавления при разговоре по телефону, чтобы ваш голос звучат ясно и чисто.

Плюсы:

  • Малый вес;
  • Хорошее качество звука;
  • 2 микрофона для шумоподавления;
  • Долгая автономная работа — до 6 часов;
  • Возможность одновременного подключения к нескольким устройствам;
  • Гибкий и надёжный корпус;
  • Защита от брызг и пота.

Минусы:

  • При длительном прослушивании в течении нескольких часов возможен дискомфорт в районе контакта пьезодинамика с головой.


Эта модель является ближайшим родственником победителя нашего рейтинга и его предшественником.

Наушники доступны в трёх цветах:

  • Океанский голубой;
  • Цвет плюща;
  • Насыщенно серый.

Наушники AfterShokz TREKZ Titanium имеют на борту модуль Bluetooth 4.1 и могут одновременно подключаться к двум источникам звука.

Крепление, конструкция и внешний вид наушников являются почти полным совершенством, существенных недостатков у модели нет. Можно, конечно, придраться к тому, что при использовании наушников неудобно задирать голову вверх, но вспомните хоть один случай когда вам это было необходимо? Даже во время занятий в тренажёрном зале эти наушники совершенно не мешают.

Когда вы только начнете использовать наушники у вас будут странные и непривычные ощущения от процесса прослушивания музыки, но уже через несколько дней вы к этому привыкните и совершенно перестанете замечать наушники на голове.

Плюсы:

  • Стильный внешний вид;
  • Защита от брызг и пота;
  • Высокое качество сборки и материалов;
  • Удобное управление;
  • Долгая автономная работа — до 6 часов.

Минусы:

  • Высокая стоимость;
  • Неудобно поднимать голову вверх при прослушивании наушников.

Vibrabeats Vidonn


Vibrabeats Vidonn это весьма достойные вашего внимания наушники с костной проводимостью звука.

Качество звука находится на уровне лидеров на этом рынке, возможно, оно чуть хуже, но заметно это лишь при прямом сравнении, а потому не стоит заострять на этом внимание.

Одной из главных особенностей модели является их внешний вид и очень лёгкий вес.

Любопытно, что в инструкции написано, что сигнал от Bluetooth может быть нестабильным, если вы держите телефон в левом кармане джинс, а если в правом, то всё будет в порядке. Однако, при личном общении с наушниками никаких проблем я не заметил, сигнал был стабилен из любого кармана. Возможно, производитель просто подстраховался.

В прошлом, когда наушники только выходили на потребительский рынок, они все страдали одной проблемой — большим весом из-за встроенных аккумулятором. Поэтому долго носить их было неудобным. Сегодня эта проблема уходит в прошлое, например эти наушники весят всего 28 граммов. Благодаря хорошей эргономике на голове Vibrabeats Vidonn почти не ощущаются.

Плюсы:

  • Хорошее соотношение цена/качество;
  • Приятный внешний вид;
  • Качественные материалы, хорошее качество сборки;
  • Защита от пыли, брызг и пота;
  • Долгое время автономной работы — до 6 часов;
  • Удобное управление музыкой.

Минусы:

  • Производитель предупреждает о нестабильном Bluetooth сигнале. В моём случае всё было в порядке, но предупредить об этом стоит.