Эволюция центральной нервной системы. Развитие нервной системы человека

  • Дата: 21.04.2019

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА

ФОРМИРОВАНИЕ МОЗГА ОТ МОМЕНТА ОПЛОДОТВОРЕНИЯ ДО РОЖДЕНИЯ

После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой – эктодерма, внутренний – эндодерма и между ними – мезодерма. Нервная система развивается из наружного зародышевого листка – эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия (рис. 1.1). В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.

В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) – передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части – спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3–4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной – моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.

В течение первых 2 мес. беременности образуется основной (среднемозговой) изгиб головного мозга: передний мозг и промежуточный мозг загибаются вперед и вниз под прямым углом к продольной оси нервной трубки. Позже формируются еще два изгиба: шейный и мостовой. В этот же период первый и третий мозговые пузыри разделяются дополнительными бороздами на вторичные пузыри, при этом появляется 5 мозговых пузырей. Из первого пузыря образуются большие полушария головного мозга, из второго – промежуточный мозг, который в процессе развития дифференцируется на таламус и гипоталамус. Из оставшихся пузырей формируются мозговой ствол и мозжечок. В течение 5–10-й недели развития начинается рост и дифференцировка конечного мозга: образуются кора и подкорковые структуры. На этой стадии развития появляются мозговые оболочки, формируются ганглии нервной периферической вегетативной системы, вещество коры надпочечников. Спинной мозг приобретает окончательное строение.

В следующие 10–20 нед. беременности завершается формирование всех отделов головного мозга, идет процесс дифференцировки мозговых структур, который заканчивается только с наступлением половозрелости (рис. 1.2). Полушария становятся самой большой частью головного мозга. Выделяются основные доли (лобная, теменная, височная и затылочная), образуются извилины и борозды больших полушарий. В спинном мозге в шейном и поясничном отделах формируются утолщения, связанные с иннервацией соответствующих поясов конечностей. Окончательный вид приобретает мозжечок. В последние месяцы беременности начинается миелинизация (покрытие нервных волокон специальными чехлами) нервных волокон, которая заканчивается уже после рождения.

Головной и спинной мозг покрыты тремя оболочками: твердой, паутинной и мягкой. Головной мозг заключен в черепную коробку, а спинной мозг – в позвоночный канал. Соответствующие нервы (спинномозговые и черепные) покидают ЦНС через специальные отверстия в костях.

В процессе эмбрионального развития головного мозга полости мозговых пузырей видоизменяются и превращаются в систему мозговых желудочков, которые сохраняют связь с полостью спинномозгового канала. Центральные полости больших полушарий головного мозга образуют боковые желудочки довольно сложной формы. Их парные части имеют в своем составе передние рога, которые находятся в лобных долях, задние рога, находящиеся в затылочных долях, и нижние рога, расположенные в височных долях. Боковые желудочки соединяются с полостью промежуточного мозга, которая является III желудочком. Через специальный проток (сильвиев водопровод) III желудочек соединяется с IV желудочком; IV желудочек образует полость заднего мозга и переходит в спинномозговой канал. На боковых стенках IV желудочка находятся отверстия Люшки, а на верхней стенке – отверстие Мажанди. Благодаря этим отверстиям полость желудочков сообщается с подпаутинным пространством. Жидкость, заполняющая желудочки головного мозга, называется эндолимфой и образуется из крови. Процесс образования эндолимфы протекает в специальных сплетениях кровеносных сосудов, (они называются хороидальными сплетениями). Такие сплетения находятся в полостях III и IV мозговых желудочков.

Сосуды головного мозга. Головной мозг человека очень интенсивно снабжается кровью. Это связано, прежде всего, с тем, что нервная ткань одна из наиболее работоспособных в нашем организме. Даже ночью, когда мы отдыхаем от дневной работы, наш мозг продолжает интенсивно работать (подробнее см. раздел «Активирующие системы мозга»). Кровоснабжение головного мозга происходит по следующей схеме. Головной мозг снабжается кровью по двум парам основных кровеносных сосудов: общим сонным артериям, которые проходят в области шеи и их пульсация легко прощупывается, и паре позвоночных артерий, заключенных в латеральных частях позвоночного столба (см. приложение 2). После того как позвоночные артерии покидают шейный последний позвонок, они сливаются в одну базальную артерию, которая проходит в специальной ложбине на основании моста. На основании мозга в результате слияния перечисленных артерий образуется кольцевой кровеносный сосуд. От него кровеносные сосуды (артерии) веерообразно охватывают весь мозг, включая большие полушария.

Венозная кровь собирается в специальные лакуны и покидает пределы головного мозга по яремным венам. Кровеносные сосуды головного мозга вмонтированы в мягкую мозговую оболочку. Сосуды многократно ветвятся и в виде тонких капилляров проникают в мозговую ткань.

Головной мозг человека надежно защищен от проникновения инфекций так называемым гематоэнцефалическим барьером. Этот барьер формируется уже в первую треть срока беременности и включает в себя три мозговые оболочки (самая внешняя – твердая, затем паутинная и мягкая, которая прилежит к поверхности мозга, в ней находятся кровеносные сосуды) и стенки кровеносных капилляров мозга. Другой составляющей частью этого барьера являются глобальные оболочки вокруг кровеносных сосудов, образованные отростками клеток глии. Отдельные мембраны клеток глии тесно прилегают друг к другу, создавая щелевые контакты между собой.

В головном мозге есть участки, где гематоэнцефалический барьер отсутствует. Это район гипоталамуса, полость III желудочка (субфорникальный орган) и полость IV желудочка (area postrema). Здесь стенки кровеносных сосудов имеют специальные места (так называемый фенестрированный, т.е. продырявленный, эпителий сосудов), в которых из нейронов головного мозга в кровеносное русло выбрасываются гормоны и их предшественники. Подробнее эти процессы будут рассмотрены в гл. 5.

Таким образом, с момента зачатия (слияние яйцеклетки со сперматозоидом) начинается развитие ребенка. За это время, которое занимает почти два десятка лет, развитие человека проходит несколько этапов (табл. 1.1).

Вопросы

1. Этапы развития центральной нервной системы человека.

2. Периоды развития нервной системы ребенка.

3. Что составляет гематоэнцефалический барьер?

4. Из какой части нервной трубки развиваются сенсорные и моторные элементы центральной нервной системы?

5. Схема кровоснабжения головного мозга.

Литература

Коновалов А. Н., Блинков С. М., Пуцило М. В. Атлас нейрохирургической анатомии. М., 1990.

Моренков Э. Д. Морфология мозга человека. М.: Изд-во Моск. ун-та, 1978.

Оленев С. Н. Развивающийся мозг. Л., 1979.

Савельев С. Д. Стереоскопический атлас мозга человека. М.: Area XVII, 1996.

Шаде Дж., Форд П. Основы неврологии. М., 1976.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30-60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая

Из книги Реакции и поведение собак в экстремальных условиях автора Герд Мария Александровна

Нейробиологический подход к исследованию нервной системы человека В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Дело в том,

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с

Из книги Основы психофизиологии автора Александров Юрий

Глава 7 ВЫСШИЕ ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ Общепризнано, что нервная высшая деятельность человека и животных обеспечивается целым комплексом совместно работающих мозговых структур, каждая из которых вносит в этот процесс свой специфический вклад. Это означает, что нервная

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ Известно, что центральная нервная система играет ведущую роль как высший интегрирующий орган и ее функциональное состояние имеет решающее значение для общего состояния живых организмов.

Из книги Антропология и концепции биологии автора

Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к

Из книги автора

1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их

Из книги автора

§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного

Из книги автора

§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью

Из книги автора

§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае

Из книги автора

§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых - трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать

Из книги автора

Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей

Из книги автора

8.2. Эволюция нервной системы Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их

Нервная система начинает развиваться на 3-ей неделе внутриутробного развития из эктодермы (наружного зародышевого листка).

На дорсальной (спинной) стороне зародыша происходит утолщение эктодермы. Это формируется нервная пластинка. Затем нервная пластинка изгибается вглубь зародыша и образуется нервная бороздка. Края нервной бороздки смыкаются, формируя нервную трубку. Длинная полая нервная трубка, лежащая сначала на поверхности эктодермы, отделяется от нее и погружается внутрь, под эктодерму. Нервная трубка расширяется на переднем конце, из которого позднее формируется головной мозг. Остальная часть нервной трубки преобразуется в головной мозг (рис. 45).

Рис. 45. Стадии эмбриогенеза нервной системы в поперечном схематическом разрезе, а - медуллярная пластинка; b и с - медуллярная бороздка; d и е- мозговая трубка. 1 - роговой листок (эпидермис); 2 - ганглиозный валик.

Из клеток, мигрирующих из боковых стенок нервной трубки, закладываются два нервных гребня - нервные тяжи. В дальнейшем из нервных тяжей образуются спинальные и автономные ганглии и шванновские клетки, которые формируют миелиновые оболочки нервных волокон. Кроме того, клетки нервного гребня участвуют в образовании мягкой и паутинной оболочек мозга. Во внутреннем слове нервной трубки происходит усиленное деление клеток. Эти клетки дифференцируются на 2 типа: нейробласты (предшественники нейронов) и спонгиобласты (предшественники глиальных клеток). Одновременно с делением клеток головной конец нервной трубки подразделяется на три отдела - первичные мозговые пузыри. Соответственно они называются передний (I пузырь), средний (II пузырь) и задний (III пузырь) мозг. В последующем развитии мозг делится на конечный (большие полушария) и промежуточный мозг. Средний мозг сохраняется как единое целое, а задний мозг делится на два отдела, включающих мозжечок с мостом и продолговатый мозг. Это 5-ти пузырная стадия развития мозга (рис.46,47).


а - пять мозговых путей: 1 - первый пузырь (конечный мозг); 2 - второй пузырь (промежуточный мозг); 3 - третий пузырь (средний мозг); 4- четвертый пузырь (продолговатый мозг); между третьим и четвертым пузырем - перешеек; б - развитие головного мозга (по Р. Синельникову).

Рис. 46. Развитие головного мозга (схема)

А - формирование первичных пузырей (до 4-й недели эмбрионального развития). Б - Е - формирование вторичных пузырей. Б,В - конец 4-й недели; Г - шестая неделя; Д - 8-9-я недели, завершающиеся формированием основных отделов мозга (Е) - к 14 неделе.

3а -- перешек ромбовидного мозга; 7 конечная пластинка.

Стадия А: 1, 2, 3 -- первичные мозговые пузыри

1 - передний мозг,

2 - средний мозг,

3 - задний мозг.

Стадия Б: передний мозг делится на полушария и базальные ядра (5) и промежуточный мозг (6)

Стадия В: ромбовидный мозг (3а) подразделяется на задний мозг, включающий в себя мозжечок (8), мост (9) стадия Е и продолговатый мозг (10) стадия Е

Стадия Е: образуется спинной мозг (4)

Рис. 47. Развивающийся мозг.

Образование нервных пузырей сопровождается появлением изгибов, обусловленных разной скоростью созревания частей нервной трубки. К 4-ой неделе внутриутробного развития формируются теменной и затылочный изгибы, а в течение 5-ой недели - мостовой изгиб. К моменту рождения сохраняется только изгиб мозгового ствола почти под прямым углом в области соединения среднего и промежуточного мозга (рис 48).


Вид сбоку, иллюстрирующий изгибы в среднемозговой (А), шейной (Б) областях мозга, а также в области моста (В).

1 - глазной пузырь, 2 - передний мозг, 3 - средний мозг; 4 - задний мозг; 5 - слуховой пузырек; 6 - спинной мозг; 7 - промежуточный мозг; 8 - конечный мозг; 9 - ромбическая губа. Римскими цифрами обозначены места отхождения черепно-мозговых нервов.

Рис. 48. Развивающийся мозг (с 3-й по 7-ю неделю развития).

В начале поверхность больших полушарий гладкая, Первыми на 11-12 неделе внутриутробного развития закладывается боковая борозда (Сильвиева), затем центральная (Ролландова) борозда. Довольно быстро происходит закладка борозд в пределах долей полушарий, за счет образования борозд и извилин увеличивается площадь коры (рис.49).

Рис. 49. Вид сбоку на развивающиеся полушария головного мозга.

А- 11-я неделя. Б- 16_ 17 недели. В- 24-26 недели. Г- 32-34 недели. Д - новорожденный. Показано образование боковой щели (5), центральной борозды (7) и других борозд и извилин.

I - конечный мозг; 2 - средний мозг; 3 - мозжечок; 4 - продолговатый мозг; 7 - центральная борозда; 8 - мост; 9 - борозды теменной области; 10 - борозды затылочной области;

II - борозды лобной области.

Нейробласты путем миграции образуют скопления - ядра, формирующие серое вещество спинного мозга, а в стволе мозга - некоторые ядра черепно-мозговых нервов.

Сомы нейробластов имеют округлую форму. Развитие нейрона проявляется в появлении, росте и ветвлении отростков (рис. 50). На мембране нейрона образуется небольшое короткое выпячивание на месте будущего аксона - конус роста. Аксон вытягивается и по нему доставляются питательные вещества к конусу роста. В начале развития у нейрона образуется большее число отростков по сравнению с конечным числом отростков зрелого нейрона. Часть отростков втягивается в сому нейрона, а оставшиеся растут в сторону других нейронов, с которыми они образуют синапсы.

Рис. 50. Развитие веретенообразной клетки в онтогенезе человека. Две последние зарисовки показывают разницу в строении этих клеток у ребенка в возрасте двух лет и взрослого человека

В спинном мозге аксоны имеют небольшую длину и формируют межсегментарные связи. Более длинные проекционные волокна формируются позднее. Несколько позже аксона начинается рост дендритов. Все разветвления каждого дендрита образуются из одного ствола. Количество ветвей и длина дендритов не завершается во внутриутробном периоде.

Увеличение массы мозга в пренатальный период происходит в основном за счет увеличения количества нейронов и количества глиальных клеток.

Развитие коры связано с образование клеточных слоев (в коре мозжечка - три слоя, а в коре полушарий большого мозга - шесть слоев).

В формировании корковых слоев большую роль играют так называемые глиальные клетки. Эти клетки принимают радиальное положение и образуют два вертикально ориентированных длинных отростка. По отросткам этих радиальных глиальных клеток происходит миграция нейронов. Вначале образуются более поверхностные слои коры. Глиальные клетки принимают также участи в образовании миелиновой оболочки. Иногда одна глиальная клетка участвует в образовании миелиновых оболочек нескольких аксонов.

В таблице 2 отражены основные этапы развития нервной системы зародыша и плода.

Таблица 2.

Основные этапы развития нервной системы в пренатальный период.

Возраст зародыша (недели)

Развитие нервной системы

Намечается нервная бороздка

Образуется нервная трубка и нервные тяжи

Образуются 3 мозговых пузыря; формируются нервы и ганглии

Формируются 5 мозговых пузырей

Намечаются мозговые оболочки

Полушария мозга достигают большого размера

В коре появляются типичные нейроны

Формируется внутренняя структура спинного мозга

Формируются общие структурные черты головного мозга; начинается дифференцировка клеток нейроглии

Различимы доли головного мозга

Начинается миелинизация спинного мозга (20 неделя), появляются слои коры (25 недель), формируются борозды и извилины (28-30 недель), начинается миелинизация головного мозга (36-40 недель)

Таким образом, развитие головного мозга в пренатальный период происходит непрерывно и параллельно, однако характеризуется гетерохронией: скорость роста и развития филогенетически более древних образований больше, чем филогенетически более молодых образований.

Ведущую роль в росте и развитии нервной системы во внутриутробный период играют генетические факторы. Вес мозга новорожденного в среднем составляет примерно 350 г.

Морфо-функциональное созревание нервной системы продолжается в постнатальный период. Уже к концу первого года жизни вес мозга достигает 1000 г, тогда как у взрослого человека вес мозга составляет в среднем - 1400 г. Следовательно, основное прибавление массы мозга приходится на первый год жизни ребенка.

Увеличение массы мозга в постнатальный период происходит в основном за счет увеличения количества глиальных клеток. Количество нейронов не увеличивается, так как они теряют способность делиться уже в пренатальном периоде. Общая плотность нейронов (количество клеток в единице объема) уменьшается за счет роста сомы и отростков. У дендритов увеличивается количество ветвлений.

В постнатальном периоде продолжается также миелинизация нервных волокон как в центральной нервной системе, так и нервных волокон, входящих в состав периферических нервов (черепно-мозговых и спинномозговых.).

Рост спинномозговых нервов связан с развитием опорно-двигательного аппарата и формированием нервно-мышечных синапсов, а рост черепно-мозговых нервов с созреванием органов чувств.

Таким образом, если в пренатальном периоде развитие нервной системы происходит под контролем генотипа и практически не зависит от влияния внешней окружающей среды, то в постанатальном периоде все большую роль приобретают внешние стимулы. Раздражение рецепторов вызывает афферентные потоки импульсов, которые стимулируют морфо-функциональное созревание мозга.

Под влиянием афферентных импульсов на дендритах корковых нейронов образуются шипики - выросты, представляющие собой особые постсинаптические мембраны. Чем больше шипиков, тем больше синапсов и тем большее участие принимает нейрон в обработке информации.

На протяжении всего постнатального онтогенеза вплоть до пубертатного периоде также как и в пренатальный период развитие мозга происходит гетерохронно. Так, окончательное созревание спинного мозга происходит раньше, чем головного мозга. Развитие стволовых и подкорковых структур, раньше, чем корковых, рост и развитие возбудительных нейронов обгоняет рост и развитие тормозных нейронов. Это общие биологические закономерности роста и развития нервной системы.

Морфологическое созревание нервной системы коррелирует с особенностями ее функционирования на каждом этапе онтогенеза. Так, более раннее дифференцирование возбудительных нейронов по сравнению с тормозными нейронами обеспечивает преобладание мышечного тонуса сгибателей над тонусом разгибателей. Руки и ноги плода находятся в согнутом положении - это обуславливает позу, обеспечивающую минимальный объем, благодаря чему плод занимает меньшее место в матке.

Совершенствование координации движений, связанных с формированием нервных волокон, происходит на протяжении всего дошкольного и школьного периодов, что проявляется в последовательном освоении позы сидения, стояния, ходьбы, письма и т.д.

Увеличение скорости движений обуславливается в основном процессами миелинизации периферических нервных волокон и увеличения скорости проведения возбуждения нервных импульсов.

Более раннее созревание подкорковых структур по сравнению с корковыми, многие из которых входят в состав лимбической структуры, обуславливают особенности эмоционального развития детей (большая интенсивность эмоций, неумение их сдерживать связана с незрелостью коры и ее слабым тормозным влиянием).

В пожилом и старческом возрасте происходят анатомические и гистологические изменения мозга. Часто происходит атрофия коры лобной и верхней теменной долей. Борозды становятся шире, желудочки мозга увеличиваются, объем белого вещества уменьшается. Происходит утолщение мозговых оболочек.

С возрастом нейроны уменьшаются в размерах, при этом количество ядер в клетках может увеличиться. В нейронах уменьшается также содержание РНК, необходимой для синтеза белков и ферментов. Это ухудшает трофические функции нейронов. Высказывается предположение, что такие нейроны быстрее утомляются.

В старческом возрасте нарушается также кровоснабжение мозга, стенки кровеносных сосудов утолщаются и на них откладываются холестериновые бляшки (атеросклероз). Это также ухудшает деятельность нервной системы.

Нервная система начинает развиваться на 3-й неделе внутриутробного развития из эктодермы (наружного зародышевого листка).

На дорсальной (спинной) стороне зародыша исходит утолщение эктодермы. Это формируется нервная пластинка . Затем нервная пластинка изгибается вглубь зародыша и образуется нервная бороздка . Края нервной бороздки смыкаются, формируя нервную трубку . Длинная полая нервная трубка, лежащая сначала на поверхности эктодермы, отделяется от нее и погружается внутрь, под эктодерму. Нервная трубка расширяется на переднем конце, из которого позднее формируется головной мозг. Остальная часть нервной трубки преобразуется в спинной мозг (рис.) .

Из клеток, мигрирующих из боковых стенок нервной трубки, закладываются два нервных гребня- нервные тяжи . В дальнейшем из нервных тяжей образуются спинальные и автономные ганглии и шванновские клетки , которые формируют миелиновые оболочки нервных волокон. Кроме того, клетки нервного гребня участвуют в образовании мягкой и паутинной оболочек мозга. Во внутреннем слое нервной трубки происходит усиленное деление клеток. Эти клетки дифференцируются на два типа: нейробласты (предшественники нейронов) и спонгиобласты (предшественники глиальных клеток). Одновременно с делением клеток головной конец нервной трубки подразделяется на три отдела - первичные мозговые пузыри. Соответственно они называются передний (I пузырь), средний (II пузырь) и задний (III пузырь) мозг. Передний мозговой пузырь является родоначальником боль­ших полушарий головного мозга. Средний мозговой пузырь форми­рует подкорковые образования, включая такие крупные, как таламус, гипоталамус, а также средний мозг, который представляет собой ножки мозга, соединяющие большие полушария со стволом. Задний мозговой пузырь является предшественником ствола го­ловного и спинного мозга.

К концу 4-й недели стенка нервной трубки состоит из трех слоев: наружного, мантийного (среднего) и эпендимного (внутреннего). Нарастание клеточной массы в нервной трубке происходит за счет внутреннего эпендимного слоя, содержащего нейробласты и спонгиобласты. Размножение и созревание вновь образованных нейробластов и глиоцитов происходит в мантийном слое, а в тонком наружном слое располагаются волокна и верхушечные дендриты созревающих нейронов.

Нервные узлы черепных нервов, так же, как и сенсорные узлы спинно­мозговых нервов, образуются из нервного гребня - длинного тяжа, располо­женного по обеим сторонам крыльных пластинок нервной трубки и состоя­щего из клеток нейроэктодермы. Нервный гребень, доходящий в краниаль­ном отделе нервной трубки до среднего мозга, дает начало периферическим постганглионарным нейронам ресничного, крылонебного, подчелюстного и подъязычного вегетативных узлов и их нервным сплетениям, а также сенсор­ным нейронам в составе узлов сенсорного (VIII пара) и бранхиогенных (V, VII, IX, X пары) черепных нервов.

Соматомоторные (III, IV, VI, XII пары) черепные нервы, а также двига­тельные волокна в составе бранхиогенных черепных нервов (V, VII, IX, X, XI пары), иннервирующих мышцы жаберного происхождения, формируются аксонами нейронов, развивающихся из клеток базальной пластинки средне­го и заднего мозговых пузырей. Парасимпатические преганглионарные нейроны вегетативных ядер III, VII, IX и X пар черепных нервов развиваются из межуточной зоны, расположенной между крыльной и базальной частями стенок среднего и заднего мозговых пузырей.

К концу 3-й недели эмбриогенеза, еще до завершения нейруляции и фор­мирования мозговых пузырей в результате быстрого роста краниального отдела нервной трубки происходит ее изгиб вперед и вверх. Затем формиру­ются и другие изгибы нервной трубки.

В последующем развитии передний мозг делится на конечный (большие полушария) и промежуточный мозг. Средний мозг сохраняется как единое целое, а задний мозг делится на два отдела, включающих мозжечок с мостом и продолговатый мозг. Это 5-пузырная стадия развития мозга.

Рис. . Стадии эмбриогенеза нервной системы в поперечном схематическом разрезе:

a - медулярная пластина; б, г - медулярная бороздка; в, д - мозговая трубка;

1 - роговой листок (эпидермис); 2- ганглиозный валик.

Схема развития головного мозга

Наименование отделов Трехпузырная стадия Пятипузырная стадия Наименование отделов

Структуры, составляющие данные отделы

Передний мозг

1-й мозговой пузырь (передний)

1-й мозговой пузырь Конечный мозг Большие полушария головного мозга Кора больших полушарий, белое вещество больших полушарий, базальные ганглии, боковые желудочки

2-й мозговой пузырь

Промежуточный мозг

Зрительные бугры, надбугорная область, забугорная область, подбугорная область

Глазные пузыри

Глазные бокалы, сетчатка глаза, зрительный нерв

Средний мозг 2-й мозговой пузырь (средний) 3-й мозговой пузырь Средний мозг

Ножки мозга (из вентральной части), четверохолмия (из дорсальной части)

Ромбовидный мозг

3-й мозговой пузырь (задний или ромбовидный)

4-й мозговой пузырь Задний мозг

Верхние ножки мозжечка (из передней части), мост (из вентральной части), мозжечок (из дорсальной части)

5-й мозговой пузырь Продолговатый мозг

Продолговатый мозг

Последующее развитие мозговых пузырей имеет свои особенности. В начале 5-й недели продолговатый мозг почти не отличается от спинно­мозгового отдела нервной трубки: он имеет крыльную и базальную пла­стинки. В толще базальной и крыльной пластинок происходит закладка ядер V-XII пар черепных нервов, причем моторные ядра формируются из материала базальной пластинки, поэтому располагаются медиальнее по отношению к сенсорным ядрам - производным крыльной пластинки. Формирующиеся вегетативные ядра черепных нервов занимают промежу-

Развитие отделов головного мозга

Первичный отдел Вторичный отдел Полости мозга Нервы Области иннервации
Нервная трубка Спинной мозг Центральный канал Спинно­мозговые (31 пара) Туловище: кожный покров, мышцы, внутренние органы

Ромбовид­ный мозг

Продолговатый мозг

IV желудочек

Черепные XII ,X, XI, IX пары Глотка, язык и его мышцы, гортань, другие органы

Задний мозг Мост

Мозжечок

VIII, VII, VI, V пары Кожный покров лица и головы, жевательные мышцы, мимические мышцы, орган слуха
- -
Средний мозг Средний мозг Водопровод мозга III, IV пары Мышцы глазного яблока

Передний мозг

Промежу­точный мозг III желудочек II пара Орган зрения
Конечный мозг Боковые желудочки I пара Орган обоняния

точное положение между моторными и сенсорными. Одновременно с закладкой ядер, а также дифференцировкой клеток нервного гребня проис­ходит развитие самих черепных нервов.

В развитии заднего мозга прослеживаются те же изменения в расположе­нии пластинок нервной трубки, что и в продолговатом мозге. Вследствие расхождения крыльных пластинок в стороны здесь также происходит истон­чение крыши нервной трубки.

Миграция клеток крыльной пластинки в область крыши заднего мозга приводит к формированию на 12-16-й неделях червя и полушарий мозжеч­ка. Под мозжечком просматривается полость будущего IV желудочка, дно которой образует ромбовидная ямка.

Средний мозг обособляется относительно рано, на 4-й неделе развития. Клетки крыльной пластинки в области среднего мозга мигрируют в дорсаль­ном и вентральном направлениях. На дорсальной поверхности они дают начало ядрам верхних и нижних холмиков пластинки будущего четверохол­мия. Клетки, смещающиеся вентрально, формируют красные ядра и ретику­лярные ядра среднего мозга. Из базальной пластинки образуется также ядро

глазодвигательного нерва (III пара), хорошо выраженное на 12-й неделе внутриутробного развития.

Промежуточный мозг обособляется от переднего мозгового пузыря на 5-й неделе. В ростральной (передней) части нервной трубки, дающей начало конечному и промежуточному мозгу, идет интенсивное увеличение числа нервных клеток. Здесь отсутствует деление на крыльную и базальную пла­стинки, не происходит формирования черепных нервов, а вся масса нервных клеток идет на развитие многочисленных ядер и коры головного мозга.

В промежуточном мозге на 5-й неделе наблюдается начало интенсивного роста мантийного (пролиферативного) слоя, что приводит к значительному утолщению его латеральных стенок; здесь образуются закладки правого и ле­вого таламусов. Еще до обособления промежуточного мозга в задней части переднего мозгового пузыря на его вентролатеральной поверхности появля­ются парные глазные пузыри, которые растут в сторону эктодермы в форме бокалов. Из стенки глазного бокала сформируются светочувствительные и нервные элементы сетчатки глаза, а из эктодермы в области глазных плакод и окружающей мезенхимы - все остальные структуры глаза. В силу этого зрительный нерв (II пара) не является типичным черепным нервом, а пред­ставляет собой специальное образование, связывающее сетчатку с головным мозгом, а сама сетчатка фактически является частью стенки нервной трубки, отделившейся от нее в процессе развития и выселившейся на периферию.

Одновременно с развитием конечного мозга начинают формироваться их ростральные выросты, из которых впоследствии образуются обонятельные луковицы и обонятельные тракты (I пара черепных нервов). Они также не являются типичными черепными нервами, а представляют собой проводни­ковый отдел обонятельного анализатора.

Конечный мозг с самого начала развития закладывается как парное обра­зование в виде двух будущих полушарий. Внутри полушарий образуются парные полости - боковые желудочки мозга.

В период с 6-й до 12-й недели эмбриогенеза полушария головного мозга интенсивно растут, значительно опережая в росте все другие отделы головно­го мозга. В результате полушария, как плащ, покрывают эти другие отделы. Часть нейробластов мигрирует к поверхности стенки переднего мозгового пузыря, образуя в дальнейшем кору мозга.

К началу 4-го месяца внутриутробной жизни (т. е. чуть более, чем через 100 дней с момента начала развития организма) интенсивное деление ней­робластов внутреннего плаща (коры большого мозга) приводит к тому, что у зародыша человека чис­ло нервных клеток уже приближается к их числу в коре у новорожденного.

Слой, в котором происходит размножение нейробластов, располагается наиболее глубоко, поэтому в процессе развития вновь образованные ней-робласты мигрируют наружу в мантийный слой, где они постепенно приоб­ретают типичную для себя форму и занимают определенное положение в формирующейся коре мозга. Миграцию нейробластов направляют клетки радиальной глии, образующиеся из спонгиобластов эпендимы. Ней­роны в процессе миграции как бы «скользят» вдоль отростков этих глиальных клеток из глубины мантийного слоя по направлению к поверхности моз­гового пузыря. Нейробласты, мигрировавшие первыми, заполняют сначала

глубинные слои будущей коры, а клетки, образовавшиеся позднее, распола­гаются в более верхних слоях. Таким образом, кора головного мозга форми­руется как бы «изнутри кнаружи». При этом время образования нейрона определяет его принадлежность к определенным слоям коры, а значит и его

Созревание нейробластов происходит гораздо медленнее, чем их проли­ферация (накопление количества), и продолжается после рождения в тече­ние первых лет жизни. В коре мозга раньше всего созревают крупные пира­мидные клетки ее нижнего этажа (проекционные нейроны), связывающие кору с нижележащими отделами головного и спинного мозга. Их можно наблюдать уже на 8-й неделе эмбриогенеза.

К 25-й неделе внутриутробного развития в корковой пластинке плаща (коры) можно различить цитоархитектонические слои. Рост и развитие плаща при­водит к образованию борозд и извилин (складок) на поверхности конечного мозга, которые формируются на 28-30-й неделях. Окончательное заверше­ние формирования рельефа полушарий наблюдается в постнатальном пери­оде примерно к 7-8 годам жизни ребенка. Последовательность и степень раз­вития рельефа полушарий (борозд и извилин) программируется генетически, однако его строение в значительной степени зависит также от внешних вли­яний окружающей среды (соотношения благоприятных и неблагоприятных факторов существования, степени защищенности от влияния неблагоприят­ных условий, степени вынужденной активности индивидуума, информаци­онной обогащенности среды и т. д.) и от состояния внутренней среды орга­низма (уровня энергетического обмена, соотношения и уровня гормонов в крови и т. д.). Это обусловливает существенные индивидуальные различия в величине площади коры в разных долях и извилинах мозга.

Вначале поверхность больших полушарий гладкая. Первыми на 11 -12 неделе внутриутробного развития закладывается боковая борозда (Сильвиева), затем центральная (Ролландова) борозда. Довольно быстро происходит закладка борозд в пределах долей полуша­рий, за счет образования борозд и извилин увеличива­ется площадь коры.

Нейробласты путем миграции образуют скопле­ния - ядра, формирующие серое вещество спинно­го мозга, а в стволе мозга - некоторые ядра череп­но-мозговых нервов.

Сомы нейробластов имеют округлую форму. Развитие нейрона проявляется в появлении, росте и вет­влении отростков. На мембране нейрона об­разуется небольшое короткое выпячивание на месте будущего аксона - конус роста. Аксон вытягивает­ся, и по нему доставляются питательные вещества к конусу роста. В начале развития у нейрона образует­ся большее число отростков по сравнению с конеч­ным числом отростков зрелого нейрона. Часть отро­стков втягивается в сому нейрона, а оставшиеся растут в сторону других нейронов, с которыми они образуют синапсы.

В спинном мозге аксоны имеют небольшую длину и формируют межсегментарные связи. Более длинные проекционные волокна формируются позднее. Не­сколько позже аксона начинается рост дендритов. Все разветвления каждого дендрита образуются из одного ствола. Количество ветвей и длина дендритов не завер­шаются во внутриутробном периоде.

Увеличение массы мозга в пренатальный период происходит в основном за счет увеличения количества нейронов и количества глиальных клеток.

Развитие коры связано с образованием клеточных слоев (в коре мозжечка - три слоя, а в коре полушарий большого мозга - шесть слоев).

В формировании корковых слоев большую роль играют так называемые глиальные клетки. Эти клет­ки принимают радиальное положение и образуют два вертикально ориентированных длинных отрос­тка. По отросткам этих радиальных глиальных кле­ток происходит миграция нейронов. Вначале обра­зуются более поверхностные слои коры. Глиальные клетки принимают также участие в образовании миелиновой оболочки. Иногда одна глиальная клетка участвует в образовании миелиновых оболочек не­скольких аксонов.

Таким образом, развитие головного мозга в пренатальный период происходит непрерывно и параллельно, однако характеризуется гетерохронией: скорость роста и развития филогенетически более древних образований больше, чем филогенетически более молодых образований.

Ведущую роль в росте и развитии нервной системы во внутриутробный период играют генетические факторы. Морфо-функциональное созревание нервной системы продолжается в постнатальный период.

Основное прибавление массы моз­га приходится на первый год жизни ребенка. Увеличение массы мозга в постнатальный период происходит в основном за счет увеличения количества глиальных клеток. Количество нейронов не увеличи­вается, так как они теряют способность делиться уже в пренатальном периоде. Общая плотность нейронов (количество клеток в единице объема) уменьшается за счет роста сомы и отростков. У дендритов увеличива­ется количество ветвлений.

В постнатальном периоде продолжается также миелинизация нервных волокон как в центральной нервной системе, так и нервных волокон, входящих в состав периферических нервов (черепно-мозговых и спинномозговых).

Рост спинномозговых нервов связан с развитием опорно-двигательного аппарата и формированием нервно-мышечных синапсов, а рост черепно-мозговых нервов с созреванием органов чувств.

Таким образом, если в пренатальном периоде раз­витие нервной системы происходит под контролем генотипа и практически не зависит от влияния внеш­ней окружающей среды, то в постнатальном периоде все большую роль играют внешние стимулы. Раздра­жение рецепторов вызывает афферентные потоки им­пульсов, которые стимулируют морфо-функциональное созревание мозга.

Под влиянием афферентных импульсов на дендритах корковых нейронов образуются шипики - вы­росты, представляющие собой особые постсинаптические мембраны. Чем больше шипиков, тем больше си­напсов и тем большее участие принимает нейрон в обработке информации.

На протяжении всего постнатального онтогенеза вплоть до пубертатного периода, так же как и в пренатальный период, развитие мозга происходит гетерохронно. Так, окончательное созревание спинного моз­га происходит раньше, чем головного мозга. Развитие стволовых и подкорковых структур раньше, чем кор­ковых, рост и развитие возбудительных нейронов об­гоняет рост и развитие тормозных нейронов. Это об­щие биологические закономерности роста и развития нервной системы.

Морфологическое созревание нервной системы коррелирует с особенностями ее функционирования на каждом этапе онтогенеза. Так, более раннее дифферен­цирование возбудительных нейронов по сравнению с тормозными нейронами обеспечивает преобладание мышечного тонуса сгибателей над тонусом разгибателей. Руки и ноги плода находятся в согнутом положении - это обусловливает позу, обеспечивающую ми­нимальный объем, благодаря чему плод занимает мень­шее место в матке.

Совершенствование координации движений, связанных с формированием нервных волокон, происхо­дит на протяжении всего дошкольного и школьного периодов, что проявляется в. последовательном освоении позы сидения, стояния, ходьбы, письма и т.д.

Увеличение скорости движений обусловливается в основном процессами миелинизации периферичес­ких нервных волокон и увеличения скорости проведе­ния возбуждения нервных импульсов. Более раннее созревание подкорковых структур по сравнению с корковыми, многие из которых входят в состав лимбической структуры, обусловливают особенности эмоци­онального развития детей (большая интенсивность эмоций, неумение их сдерживать связаны с незрелостью коры и ее слабым тормозным влиянием).

В пожилом и старческом возрасте происходят ана­томические и гистологические изменения мозга. Часто происходит атрофия коры лобной и верхней теменной долей. Борозды становятся шире, желудочки мозга уве­личиваются, объем белого вещества уменьшается. Происходит утолщение мозговых оболочек.

С возрастом нейроны уменьшаются в размерах, при этом количество ядер в клетках может увеличить­ся. В нейронах уменьшается также содержание РНК, необходимой для синтеза белков и ферментов. Это ухудшает трофические функции нейронов. Высказыва­ется предположение, что такие нейроны быстрее утом­ляются.

В старческом возрасте нарушается также крово­снабжение мозга, стенки кровеносных сосудов утол­щаются и на них откладываются холестериновые бляшки (атеросклероз). Это ухудшает деятельность нервной системы.

Органогенез головного мозга представ­лен на рис. . Антенатальное развитие ЦНС разделяется на три процесса: органогенез - формирование макроструктурных отде­лов мозга; гистогенез - развитие мозга от зарождения клеток; миграции дифференции. Конечным этапом является созревание ЦНС. Последнее характеризуется формированием синаптических контактов, нейронных сетей и миелинизацией, начинается на 36-й неделе внутриутробного развития и продолжается наиболее интенсивно до 5 лет. Созревание различных отделов ЦНС идет неравномерно. К концу антенатального периода лишь нервные клетки спинного мозга и глиальная ткань морфологически впол­не развиты. Что касается полного структурного и функционально­го развития ЦНС, то оно завершается в постнатальном периоде. Для функциональной зрелости ЦНС большое значение имеет ми-елинизация проводящих путей, от степени развития которой за­висят изолированное проведение в нервных волокнах и скорость проведения возбуждения. Именно миелинизация способствует уве­личению объема головы с 37 см в окружности у новорожденного до 58-60 см - у взрослого.

Миелинизация различных путей в ЦНС обычно происходит в таком же порядке, в каком они развиваются в филогенезе. Например, миелинизация вестибулоспинального пути, являющегося наиболее примитивным, начинается с 4-го месяца, а руброспинального- с 5-8-го месяца внутриутробного развития. В спинном мозге и стволе мозга к моменту рождения основные проводящие пути миелинизированы. Исключение составляют пирамидный и оливоспинальный пути. В период внутриутробного развития начинается синтез большинства медиаторов, выделяемых в синапсах в ответ на раздражение клеток.

Рис. . Органогенез мозга:

а - нервная пластинка: 1 - эктодерма; 2 - мезодерма; 3 - энтодерма; 4 - нервная пластинка; б - нервный желобок: 1 - хорда; 2 - эктодер­ма; 3 - нервный желобок; в - нервная трубка: 1 - хорда; 2 - цент­ральный канал; 3 - нервная трубка; г - образование мозговых пузы­рей; д - образование желудочков мозга: 1 - четвертый желудочек; е - формирование полушарий мозга; ж - увеличение массы и объема моз­га: 1 - большие полушария; 2 - мозжечок; 3 - мост; 4 - продолго­ватый мозг

Наиболее интенсивное образование структур центральной нервной системы у плода происходит на 15-25-й день (табл.). Структурное оформление отделов мозга тесно связано с происходящими в них процессами дифференцировки нервных элементов и установлением между ними морфологических и функциональных связей, а также с развитием периферических нервных аппаратов (рецепторов, афферентных и эфферентных путей и др.). К концу эмбрионального периода у плода обнаруживаются первые проявления нервной деятельности, которые выражаются в элементарных формах двигательной активности.

Функциональное созревание ЦНС происходит в этот период в каудо-краниальном направлении, т. е. от спинного мозга к коре головного мозга. В связи с этим функции организма плода регулируются преимущественно структурами спинного мозга.

К 7-10-й неделе внутриутробного периода функциональный контроль над более зрелым спинным мозгом начинает осуществлять продолговатый мозг. С 13-14-й недели появляются признаки контроля нижележащих отделов ЦНС со стороны среднего мозга.

Мозговые пузыри образуют полушария головного мозга. До четырехмесячного возраста плода их поверхность гладкая, затем появляются первичные борозды сенсорных полей коры, на шестом месяце - вторичные, а третичные продолжают формироваться и после рождения. В ответ на стимуляцию коры больших полушарий плода до 7 месяцев его развития никаких реакций не возникает. Следовательно, на этом этапе кора больших полушарий не определяет поведение плода.

На протяжении эмбрионального и фетального периодов онтогенеза строение и дифференцировка нейронов и глиальных постепенно усложняются.

Развитие мозга в антенатальном периоде

Зародыш/плод

Особенности развития мозга

Возраст, нед. Длина,мм
2,5 1,5 Намечается нервная бороздка
3,5 2,5 Хорошо выраженная нервная бороздка быстро закрывается; нервный гребень имеет вид сплошной ленты
4,0 5,0 Нервная трубка замкнута; образовались 3 первичных мозговых пузыря; формируются нервы и ганглии; закончилось образование эпендимного, мантийного и краевого слоев
5,0 8,0 Формируются 5 мозговых пузырей; намечаются полушария большого мозга; нервы и ганглии выражены отчетливее (обособляется кора надпочечника)
6,0 12,0 Образуются 3 первичных изгиба нервной трубки; нервные сплетения сформированы; виден эпифиз (шишковидное тело); симпатические узлы образуют сегментарные скопления; наме­чаются мозговые оболочки
7,0 17,0 Полушария мозга достигают большого размера; хорошо выра­жены полосатое тело и зрительный бугор; воронка и карман Ратке смыкаются; появляются сосудистые сплетения (мозговое вещество надпочечника начинает проникать в кору)
8,0 23,0 В коре мозга появляются типичные нервные клетки; заметны обонятельные доли; отчетливо выражены твердая, мягкая и паутинная оболочки мозга; возникают хромаффинные тельца
10,0 40,0 Формируется дефинитивная внутренняя структура спинного мозга
12,0 56,0 Появляются общие структурные черты головного мозга; в спинном мозге видны шейное и поясничное утолщения; форми­руются конский хвост и концевая нить спинного мозга, начи­нается дифференцировка клеток нейроглии
16,0 112,0 Полушария покрывают большую часть мозгового ствола; ста­новятся различимыми доли головного мозга; появляются бугорки четверохолмия; более выраженным становится мозжечок
20-40 160-530 Завершается формирование комиссур мозга (20 нед.); начинается миелинизация спинного мозга (20 нед.); появляются типичные слои коры головного мозга (25 нед.); быстро развиваются борозды и извилины головного мозга (28 - 30 нед.); происходит миелинизация головного мозга (36 - 40 нед.)

Неокортекс уже у 7-8-месячного плода разделен на слои, но наибольшие темпы роста и дифференцировки клеточных элементов коры отмечаются в последние два месяца созревания плода и в пер­вые месяцы после рождения ребенка. Пирамидная система, обеспе­чивающая произвольные движения, созревает позже, чем экстрапи­рамидная система, контролирующая непроизвольные движения. Показателем степени зрелости нервных структур является уровень миелинизации ее проводников ЦНС. Этот процесс в мозге эмбрио­на начинается на четвертом месяце внутриутробной жизни с пере­дних корешков спинного мозга, подготавливая моторную активность плода; затем миелинизируются задние корешки, проводящие пути спинного мозга, афференты акустической и лабиринтной систем. В головном мозге основная часть проводниковых структур миелинизируется в первые 2 года жизни ребенка. Процесс миелинизации нервных волокон продолжается и в более старшем- даже зрелом возрасте.

Из рефлексов наиболее рано (7,5 недель) у плода появляется рефлекс на раздражение губ. Он хорошо выражен и локален. Рефлексогенная зона сосательного рефлекса к 24-й неделе внутриутробного развития значительно расширяется и вызывается со всей поверхности лица, кистей, предплечий. В постнатальном онтогенезе она вновь уменьшается до зоны поверхности губ.

На 8-й неделе раздражение периоральной области лица вызывает элементарную защитную реак­цию - контралатеральное сгибание шеи, ведущее к отстранению стимулируемой поверхности головы от раздражителя (элементар­ный защитный рефлекс). При раздражении кожи можно наблю­дать быстрое движение рук и туловища плода. При более сильном раздражении кожи часто возникает генерализованная реакция, в основе которой лежит одновременное сокращение мышц - сги­бателей и разгибателей.

В возрасте 9,5 недель возможны двигательные реакции плода при раздражении проприорецепторов, т.е. при растяжении мышц и сухожилий.

Хватательная реакция обнаружена у плода в возрасте 11,5 недель. В поздние сроки внутриутробного развития плод способен реаги­ровать мимическими движениями на вкусовые и обонятельные раздражители, что можно наблюдать у недоношенных детей. Кро­ме названных двигательных реакций наблюдается и спонтанная активность скелетной мускулатуры плода.

Рефлексы на тактильную стимуляцию кожи верхних конечностей появляются у плода к 11-й неделе. Наиболее четко кожный рефлекс в этот период вызывается с ладонной поверхности, проявляется он изолированными движениями пальцев. К этому же времени движения пальцев сопровождаются сгибанием запястья, предплечья, пронацией руки. К 15-й неделе стимуляция ладони приводит к сгибанию и фиксированию в этом положении пальцев, ранее генерализованная реакция исчезает. К 23-й неделе хватательный рефлекс усиливается, становится строго локальным. К 25-й неделе все сухожильные рефлексы рук становятся отчетливыми.

Рефлексы при стимулировании нижних конечностей появляются к 10-11-й неделе развития плода. Первым появляется флексорный рефлекс пальцев ног на раздражение подошвы. К 12- 13-й неделе флексорный рефлекс на это же раздражение сменяется веерообразным разведением пальцев. После 13 недель это же движение на раздражение подошвы сопровождается движениями стопы, голени, бедра. В более зрелом возрасте плода (22-23 недели) раздражение подошвы вызывает преимущественно флексию пальцев стопы.

К 18-й неделе появляется рефлекс сгибания туловища при раздражении нижней части живота. К 20-24-й неделе появляются рефлексы мышц брюшной стенки. К 23-й неделе у плода раздражением различных участков кожной поверхности можно вызвать дыхательные движения. К 25-й неделе плод может самостоятельно дышать, однако дыхательные движения, обеспечивающие выживание плода, устанавливаются только после 27 недель его развития.

Спонтанная активность мускулатуры плода характеризуется тремя основными формами:

1) тоническим сокращением мышц-сгибателей, обеспечиваю­щим ортотоническую позу плода (согнутая шея, туловище и ко­нечности), благодаря чему плод занимает в матке минимальный объем. Циркулирующие в полости амниона околоплодные воды и афферентная импульсация с проприорецепторов скелетных мышц поддерживают такое положение раздражением кожных рецепторов;

2) периодическими фазными (относительно короткими) со­кращениями мышц-разгибателей, имеющими генерализованный характер. Шевеление плода начинается в 4,5 -5 месяцев беременности, и мать ощущает эти движения. Шевеления наблюдаются обычно 4-8 раз в течение часа. Их частота увеличивается при обеднении крови матери питательными веществами и при физических на­грузках беременной;

3) дыхательными движениями. Они начинаются на 14-й неде­ле внутриутробного развития и в конце беременности занимают 40-60 % всего времени. Частота дыхания очень высока: 40-70 в минуту. На 6-м месяце внутриутробного развития все основные части центральной регуляции дыхания уже достаточно зрелы, что­бы поддерживать ритмическое дыхание в течение 2-3 дней, а начиная с 6,5 -7-го месяца плод может дышать неопределенно долгое время.

Таким образом, рефлексы кожного, двигательного и вестибулярного анализаторов проявляются уже на ранних этапах внутриутробного развития. В поздние сроки внутриутробного развития плод способен реагировать мимическими движениями на вкусовые и обонятельные раздражения.

В течение трех последних месяцев внутриутробного развития у плода созревают рефлексы, необходимые для выживания новорож­денного ребенка: начинает реализовываться корковая регуляция ориентировочных, защитных, пищевых и других рефлексов (у новорожденного эти рефлексы уже имеются); рефлексы с мышц и кожи становятся более локализованными и целенаправленными. У плода и новорожденного в связи с малым количеством тормозных медиа­торов в ЦНС легко возникает генерализованное возбуждение - даже при очень небольших раздражениях. Сила тормозных процес­сов нарастает по мере созревания мозга.

Стадия генерализации ответных реакций и распространения воз­буждения по структурам мозга сохраняется вплоть до рождения и некоторое время после него, но она не препятствует развитию слож­ных жизненно важных рефлексов. Например, к 21-24-й неделе хо­рошо развиты сосательный и хватательный рефлексы.

У плода уже на четвертом месяце хорошо развита проприоцептивная мышечная система, четко вызываются сухожильные и вес­тибулярные рефлексы, с этого же времени появляются лабиринт­ные и шейные тонические рефлексы положения: наклон и поворот головы сопровождается разгибанием конечностей той стороны, в которую повернута голова.

Рефлекторная функция у плода обеспечивается преимуществен­но механизмами спинного мозга и ствола головного мозга. Однако сенсомоторная кора уже реагирует возбуждением на раздражения рецепторов тройничного нерва на лице, рецепторов кожной поверх­ности конечностей; у 7-8-месячного плода в зрительной коре воз­никают реакции на световые стимулы, но в этот период кора, вос­принимая сигналы, возбуждается локально и не передает значимые сигналы на другие (кроме двигательной коры) структуры мозга.

В последние недели внутриутробного развития у плода появля­ется цикличность сна: происходит чередование быстрого и медлен­ного сна, причем быстрый сон занимает от 30 до 60% общего време­ни сна.


Развитие нервной системы в фило- и онтогенезе

Развитие – это качественные изменения в организме, заключающиеся в усложнении его организации, а также их взаимоотношений и процессов регуляции.

Рост – это увеличение длины, объема и массы тела организма в онтогенезе, связанное с увеличением числа клеток и количества составляющих их органических молекул, то есть рост – это количественные изменения.

Рост и развитие, то есть количественные и качественные изменения, тесно взаимосвязаны и обуславливают друг друга.

В филогенезе развитие нервной системы связано как с двигательной активностью, так и со степенью активности ВНД.

1. У простейших одноклеточных способность отвечать на стимулы присуща одной клетке, которая функционирует одновременно как рецептор и как эффектор.

2. Простейший тип функционирования нервной системы – диффузная или сетевидная нервная система. Диффузная нервная система отличается тем, что здесь имеет место изначальная дифференциация нейронов на два вида: нервные клетки, которые воспринимают сигналы внешней среды (рецепторные клетки) и нервные клетки, которые осуществляют передачу нервного импульса на клетки, выполняющие сократительные функции. Эти клетки образуют нервную сеть, которая обеспечивает простые формы поведения (реагирования), дифференциацию продуктов потребления, манипуляции ротовой областью, изменение формы организма, выделение и специфические формы передвижения.

3. От животных с сетевидной нервной системой произошли две ветви животного мира с различным строением нервной системы и различной психикой: одна ветвь вела к образованию червей и членистоногих с ганглиозным типом нервной системы, которая способна обеспечить только врожденное инстинктивное поведение.

4. Вторая ветвь вела к образованию позвоночных с трубчатым типом нервной системы. Трубчатая нервная система функционально обеспечивает достаточно высокую надежность, точность и быстроту реакций организма. Эта нервная система предназначена не только для сохранения наследственно сформированных инстинктов, но и обеспечивает научение, связанное с приобретением и использованием новой прижизненной информации (условно-рефлекторная деятельность, память, активное отражение).

Эволюция диффузной нервной системы сопровождалась процессами централизации и цефализации нервных клеток.

Централизация представляет собой процесс скопления нервных клеток, при котором отдельные нервные клетки и их ансамбли стали выполнять специфические регулятивные функции в центре и образовали центральные нервные узлы.

Цефализация – это процесс развития переднего конца нервной трубки и формирования головного мозга, связанный с тем, что нервные клетки и окончания стали специализироваться на приеме внешних раздражителей и распознавании средовых факторов. Нервные импульсы от внешних раздражителей и воздействий среды оперативно передавались в нервные узлы и центры.

В процессе саморазвития нервная система последовательно проходит критические этапы усложнения и дифференцировки, как в морфологическом, так и в функциональном отношении. Общая тенденция эволюции мозга в онтогенезе и филогенезе осуществляется по универсальной схеме: от диффузных, слабо дифференцированных форм деятельности к более специализированным, локальным формам функционирования.

На основании фактов о связи между процессами онтогенетического развития потомков и филогенеза предков был сформулирован биогенетический закон Мюллера-Геккеля: онтогенетическое (особенно зародышевое) развитие индивида сокращенно и сжато повторяет (рекапитулирует) основные этапы развития всего ряда предковых форм – филогенеза. При этом в большей степени рекапитулируют те признаки, которые развиваются в форме «надстроек» конечных стадий развития, то есть более близких предков, признаки же отдаленных предков в значительной степени редуцируются.

Развитие любой структуры в филогенезе происходило с увеличением предъявляемой нагрузки к органу или системе. Эта же закономерность наблюдается и в онтогенезе.

В пренатальном периоде у человека выделяют четыре характерных стадии развития нервной деятельности мозга:

· Первичные локальные рефлексы – это «критический» период в функциональном развитии нервной системы;

· Первичная генерализация рефлексов в форме быстрых рефлекторных реакций головы, туловища и конечностей;

· Вторичная генерализация рефлексов в виде медленных тонических движений всей мускулатуры тела;

· Специализация рефлексов, выражающаяся в координированных движениях отдельных частей тела.

В постнатальном онтогенезе также отчетливо выступают четыре последовательных стадии развития нервной деятельности:

· Безусловно-рефлекторная адаптация;

· Первичная условно-рефлекторная адаптация (формирование суммационных рефлексов и доминантных приобретенных реакций);

· Вторичная условно-рефлекторная адаптация (образование условных рефлексов на основе ассоциаций – «критический» период), с ярким проявлением ориентировочно-исследовательских рефлексов и игровых реакций, которые стимулируют образование новых условно-рефлекторных связей типа сложных ассоциаций, что является основой для внутривидовых (внутригрупповых) взаимодействий развивающихся организмов;

· Формирование индивидуальных и типологических особенностей нервной системы.

Созревание и развитие ЦНС в онтогенезе происходит по тем же закономерностям, что и развитие других органов и систем организма, в том числе и функциональных систем. Согласно теории П.К.Анохина, функциональная система – это динамическая совокупность различных органов и систем организма, формирующаяся для достижения полезного (приспособительного) результата.

Развитие головного мозга в фило- и онтогенезе идет согласно общим принципам системогенеза и функционирования.

Системогенез – это избирательное созревание и развитие функциональных систем в пренатальном и постнатальном онтогенезе. Системогенез отражает:

· развитие в онтогенезе различных по функции и локализации структурных образований, которые объединяются в полноценную функциональную систему, обеспечивающую новорожденному выживание;

· и процессы формирования и преобразования функциональных систем в ходе жизнедеятельности организма.

Принципы системогенеза:

1. Принцип гетерохронности созревания и развития структур: в онтогенезе раньше созревают и развиваются отделы головного мозга, которые обеспечивают формирование функциональных систем, необходимых для выживания организма и дальнейшего его развития;

2. Принцип минимального обеспечения: Вначале включается минимальное число структур ЦНС и других органов и систем организма. Например, нервный центр формируется и созревает раньше, чем закладывается иннервируемый им субстрат.

3. Принцип фрагментации органов в процессе антенатального онтогенеза: отдельные фрагменты органа развиваются неодновременно. Первыми развиваются те, которые обеспечивают к моменту рождения возможность функционирования некоторой целостной функциональной системы.

Показателем функциональной зрелости ЦНС является миелинизация проводящих путей, от которой зависят скорость проведения возбуждения в нервных волокнах, величина потенциалов покоя и потенциалов действия нервных клеток, точность и скорость двигательных реакций в раннем онтогенезе. Миелинизация различных путей в ЦНС происходит в таком же порядке, в каком они развиваются в филогенезе.

Общее число нейронов в составе ЦНС достигает максимума в первые 20-24 недели антенатального периода и остается относительно постоянным вплоть до зрелого возраста, лишь незначительно уменьшается в период раннего постнатального онтогенеза.

Закладка и развитие нервной системы человека

I. Стадия нервной трубки. Центральный и периферический отделы нервной системы человека развиваются из единого эмбрионального источника – эктодермы. В процессе развития зародыша она закладывается в виде так называемой нервной пластинки. Нервная пластинка состоит из группы высоких, быстро размножающихся клеток. На третьей неделе развития нервная пластинка погружается в нижележащую ткань и принимает форму желобка, края которого приподнимаются над эктодермой в виде нервных валиков. По мере роста зародыша нервный желобок удлиняется и достигает каудального конца зародыша. На 19-ый день начинается процесс смыкания валиков над желобком, в результате чего образуется длинная трубка – нервная трубка. Она располагается под поверхностью эктодермы отдельно от нее. Клетки нервных валиков перераспределяются в один слой, в результате чего образуется ганглиозная пластинка. Из нее формируются все нервные узлы соматической периферической и вегетативной нервной системы. К 24-му дню развития трубка замыкается в головной части, а сутками позже – в каудальной. Клетки нервной трубки носят название медуллобластов. Клетки ганглиозной пластинки называются ганглиобластами. Медуллобласты затем дают начало нейробластам и спонгиобластам. Нейробласты отличаются от нейронов значительно меньшим размером, отсутствием дендритов, синаптических связей и вещества Ниссля в цитоплазме.

II. Стадия мозговых пузырей. В головном конце нервной трубки после ее замыкания очень быстро образуется три расширения – первичные мозговые пузыри. Полости первичных мозговых пузырей сохраняются в мозгу ребенка и взрослого в видоизмененной форме, образуя желудочки мозга и сильвиев водопровод. Существует две стадии мозговых пузырей: стадия трех пузырей и стадия пяти пузырей.

III. Стадия формирования отделов мозга. Сначала образуются передний, средний и ромбовидный мозг. Затем из ромбовидного мозга образуются задний и продолговатый мозг, а из переднего образуются конечный мозг и промежуточный. Конечный мозг включает в себя два полушария и часть базальных ядер.

Нейроны различных отделов нервной системы и даже нейроны в пределах одного центра дифференцируются асинхронно: а) дифференцировка нейронов вегетативной нервной системы значительно отстает от таковой соматической нервной системы; б) дифференцировка симпатических нейронов несколько отстает от развития парасимпатических. Раньше всего созревают продолговатый и спинной мозг, позже развиваются ганглии ствола головного мозга, подкорковые узлы, мозжечок и кора больших полушарий.

Развитие отдельных областей мозга

1. Продолговатый мозг. На начальных этапах формирования продолговатый мозг имеет сходство со спинным мозгом. Затем в продолговатом мозге начинают развиваться ядра черепных нервов. Количество клеток в продолговатом мозге начинает уменьшаться, но их размеры увеличиваются. У новорожденного ребенка продолжается процесс уменьшения количества нейронов и увеличение из размеров. Вместе с этим увеличивается дифференцировка нейронов. У полуторагодовалого ребенка клетки продолговатого мозга организованы в четко определяемые ядра и имеют почти все признаки дифференцировки. У ребенка 7 лет нейроны продолговатого мозга неотличимы от нейронов взрослого даже по тонким морфологическим признакам.

2. Задний мозг включает в себя мост и мозжечок. Мозжечок частично развивается из клеток крыловидной пластинки заднего мозга. Клетки пластинки мигрируют и постепенно образуют все отделы мозжечка. К концу 3-его месяца клетки-зерна мигрируя, начинают преобразовываться в грушевидные клетки коры мозжечка. На 4-ом месяце внутриутробного развития появляются клетки Пуркинье. Параллельно и чуть отставая от развития клеток Пуркинье идет формирование борозд коры мозжечка. У новорожденного мозжечок лежит выше, чем у взрослого. Борозды неглубокие, слабо обрисовано древо жизни. С ростом ребенка борозды становятся глубже. До трехмесячного возраста в коре мозжечка сохраняется зародышевый слой. В возрасте от 3 месяцев до 1 года происходит активная дифференцировка мозжечка: увеличение синапсов грушевидных клеток, увеличение диаметра волокон в белом веществе, интенсивный рост молекулярного слоя коры. Дифференцировка мозжечка происходит и в более поздние сроки, что объясняется развитием двигательных навыков.

3. Средний мозг, так же как и спинной, имеет крыловидную и базальную пластинки. Из базальной пластинки к концу 3-го месяца пренатального периода развивается одно ядро глазодвигательного нерва. Крыловидная пластинка дает начало ядрам четверохолмия. Во второй половине внутриутробного развития появляются основания ножек мозга и сильвиев водопровод.

4. Промежуточный мозг образуется из переднего мозгового пузыря. В результате неравномерной пролиферации клеток образуются таламусы и гипоталамус.

5. Конечный мозг также развивается из переднего мозгового пузыря. Пузыри конечного мозга, разрастаясь за короткий промежуток времени, покрывают собой промежуточный мозг, затем средний мозг и мозжечок. Наружная часть стенки мозговых пузырей растет значительно быстрее внутренней. В начале 2-го месяца пренатального периода конечный мозг представлен нейробластами. С 3-его месяца внутриутробного развития начинается закладка коры в виде узкой полоски густо расположенных клеток. Затем идет дифференцировка: образуются слои и дифференцируются клеточные элементы. Основными морфологическими проявлениями дифференцировки нейронов коры большого мозга являются прогрессивный рост количества и ветвлений дендритов, коллатералей аксонов и, соответственно, увеличение и усложнение межнейронных связей. К 3-ему месяцу образуется мозолистое тело. С 5-го месяца внутриутробного развития в коре уже видна цитоархитектоника. К середине 6-го месяца неокортекс имеет 6 нечетко разделенных слоев. II и III слои имеют между собой четкую границу только после рождения. У плода и новорожденного нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается в белом веществе. По мере роста ребенка концентрация клеток снижается. Мозг новорожденного имеет большую относительную массу – 10% от общей массы тела. К концу полового созревания его масса составляет всего около 2% от массы тела. Абсолютная же масса мозга с возрастом увеличивается. Мозг новорожденного незрелый, причем кора больших полушарий является наименее зрелым отделом нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточный и средний мозг. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друг друга претерпевают достаточно заметные изменения. Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой – в дифференцировке нервных клеток, характерных для каждого коркового слоя. Образование шестислойной коры заканчивается к моменту рождения. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще остается не завершенной. Наиболее интенсивны дифференциация клеток и миелинизация аксонов в первые два года постнатальной жизни. К 2-летнему возрасту заканчивается формирование пирамидных клеток коры. Установлено, что именно первые 2-3 года жизни ребенка являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. К 4-7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10-12 годам. Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других созревают корковые концы обонятельного анализатора, находящиеся в древней, старой и межуточной коре. В новой коре прежде всего развиваются корковые концы двигательного и кожного анализаторов, а также лимбическая область, связанная с интерорецепторами, и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором. Наконец, в последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти.

Миелинизация нервных волокон необходима:

1) для уменьшения проницаемости клеточных мембран,

2) совершенствования ионных каналов,

3) увеличения потенциала покоя,

4) увеличения потенциала действия,

5) повышения возбудимости нейронов.

Процесс миелинизации начинается еще в эмбриогенезе. Миелинизация черепных нервов осуществляется в течение первых 3-4 месяцев и заканчивается к 1 году или 1 году и 3 месяцам постнатальной жизни. Миелинизация спинальных нервов завершается несколько позднее – к 2-3 годам. Полная миелинизация нервных волокон завершается в возрасте 8-9 лет. Миелинизация филогенетически более древних путей начинается раньше. Нервные проводники тех функциональных систем, которые обеспечивают выполнение жизненно важных функций миелинизируются быстрее. Созревание структур ЦНС контролируется гормонами щитовидной железы.

Нарастание массы мозга в онтогенезе

Масса головного мозга новорожденного составляет 1/8 массы тела, то есть около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды и извилины, но глубина их мала. К 9-месячному возрасту первоначальная масса мозга удваивается и к концу 1-го года жизни составляет 1/11 – 1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам она составляет 1/13-1/14 массы тела. К 20 годам первоначальная масса мозга увеличивается в 4-5 раз и составляет у взрослого человека всего 1/40 массы тела.

Функциональное созревание

В спинном мозге, стволе и гипоталамусе у новорожденных обнаруживают ацетилхолин, γ-аминомасляную кислоту, серотонин, норадреналин, дофамин, однако их количество составляет лишь 10-50% от содержания у взрослых. В постсинаптических мембранах нейронов уже к моменту рождения появляются специфические для перечисленных медиаторов рецепторы. Электрофизиологические характеристики нейронов имеют ряд возрастных особенностей. Так, например, у новорожденных ниже потенциал покоя нейронов; возбуждающие постсинаптические потенциалы имеют большую длительность, чем у взрослых, более продолжительную синаптическую задержку, в итоге нейроны новорожденных и детей первых месяцев жизни менее возбудимы. Кроме этого постсинаптическое торможение нейронов новорожденных менее активно, так как мало еще тормозных синапсов на нейронах. Электрофизиологические характеристики нейронов ЦНС у детей приближаются к таковым у взрослых в возрасте 8-9 лет. Стимулирующую роль в ходе созревания и функционального становления ЦНС играют афферентные потоки импульсов, поступающие в структуры мозга при действии внешних раздражителей.



Онтогенез (оntogenesis; греч. оп, ontos - сущее + genesis - зарождение, происхождение) - процесс индивидуального развития организма от момента его зарождения (зачатия) до смерти. В основе онтогенеза лежит цепь строго определенных последовательных биохимических, физиологических и морфологических изменений, специфичных для каждого из периодов индивидуального развития организма конкретного вида. В соответствии с этими изменениями выделяют:
эмбриональный (зародышевый, или пренатальный) - время от оплодотворения до рождения
постэмбриональный (послезародышевый, или постнатальный) периоды - от рождения до смерти:

Развитие ЦНС человека (по Ф.Булум А. Луйзерсонин и Л. Хофстендер, 1988):

Согласно биогенетическому закону, в онтогенезе нервная система повторяет этапы филогенеза. Вначале происходит диффереицировка зародышевых листков, затем из клеток эктодермалыюго зародышевого листка образуется мозговая, или медуллярная, пластинка. Ее края в результате неравномерного размножения ее клеток сближаются, а центральная часть, наоборот, погружается в тело зародыша. Затем края пластинки смыкаются - образуется медуллярная трубка:

Образование нервной трубки из эктодермы:

В дальнейшем из задней ее части, отстающей в росте, образуется спинной мозг, из передней, развивающейся более интенсивно, - головной мозг. Канал медуллярной трубки превращается в центральный канал спинного мозга и желудочки головного мозга.

Нервная трубка представляет собой эмбриональный зачаток всей нервной системы человека. Из нее в дальнейшем формируется головной и спинной мозг, а также периферические отделы нервной системы. При смыкании нервного желобка по бокам в области его приподнятых краев (нервных валиков) с каждой стороны выделяется группа клеток, которая по мере обособления нервной трубки от кожной эктодермы образует между нервными валиками и эктодермой сплошной слой - ганглиозную пластинку. Последняя служит исходным материалом для клеток чувствительных нервных узлов (сигнальных и краниальных) и узлов вегетативной нервной системы, иннервирующей внутренние органы.

Нервная трубка на ранней стадии своего развития состоит из одного слоя клеток цилиндрической формы, которые в дальнейшем интенсивно размножаются митозом и количество их увеличивается; в результате стенка нервной трубки утолщается. В этой стадии развития в ней можно выделить три слоя: внутренний эпендимный слой, характеризующийся активным митотическим делением клеток; средний слой - мантийный (плащевой), клеточный состав которого пополняется как за счет митотического деления клеток этого слоя, так и путем перемещения их из внутреннего эпендимного слоя; наружный слой, называемый краевой вуалью. Последний слой образуется отростками клеток двух предыдущих слоев. В дальнейшем клетки внутреннего слоя превращаются в эпендимоциты, выстилающие центральный канал спинного мозга. Клеточные элементы мантийного слоя дифференцируются в двух направлениях: часть их превращается в нейроны, другая часть - в глиальные клетки:

Схема дифференцировки нервной системы человека :

Вследствие интенсивного развития передней части медуллярной трубки образуются мозговые пузыри: вначале появляются два пузыря, затем задний пузырь делится еще на два. Образовавшиеся три пузыря дают начало переднему, среднему и ромбовидному мозгу. Впоследствии из переднего пузыря развиваются два пузыря, дающие начало конечному и промежуточному мозгу. А задний пузырь, в свою очередь, делится на два пузыря, из которых образуется задний мозг и продолговатый, или добавочный, мозг.

Таким образом, в результате деления нервной трубки и образования пяти мозговых пузырей с последующим их развитием формируются следующие отделы нервной системы:
передний мозг, состоящий из конечного и промежуточного мозга;
ствол мозга, включающий в себя ромбовидный и средний мозг.

Конечный, или большой, мозг представлен двумя полушариями (в него входят кора большого мозга, белое вещество, обонятельный мозг, базальные ядра).
К промежуточному мозгу относят эпиталамус, передний и задний тадамус, метапамус, гипоталамус.
Ромбовидный мозг состоит из продолговатого мозга и заднего, включающего в себя мост и мозжечок, средний мозг - из ножек мозга, покрышки и крышки среднего мозга. Из недифференцированной части медуллярной трубки развивается спинной мозг.
Полость конечного мозга образуют боковые желудочки, полость промежуточного мозга - III желудочек, среднего мозга - водопровод среднего мозга (сильвиев водопровод), ромбовидного мозга - IV желудочек и спинного мозга - центральный канал.

В дальнейшем идет быстрое развитие всей центральной нервной системы, но наиболее активно развивается конечный мозг, который начинает делиться продольной щелью большого мозга на два полушария. Затем на поверхности каждого из них появляются борозды, определяющие будущие доли и извилины.

На 4-м месяце развития плода человека появляется поперечная щель большого мозга, на 6-м - центральная борозда и другие главные борозды, в последующие месяцы - второстепенные и после рождения - самые мелкие борозды.

В процессе развития нервной системы важную роль играет миелинизация нервных волокон, в результате которой нервные волокна покрываются защитным слоем миелина и значительно вырастает скорость проведения нервных импульсов. К концу 4-го месяца внутриутробного развития миелин выявляется в нервных волокнах, составляющих восходящие, или афферентные (чувствительные), системы боковых канатиков спинного мозга, тогда как в волокнах нисходящих, или эфферентных (двигательных), систем миелин обнаруживается на 6-м месяце. Приблизительно в это же время наступает миелинизация нервных волокон задних канатиков. Миелинизация нервных волокон корково-спинномозговых путей начинается на последнем месяце внутриутробной жизни и продолжается в течение года после рождения. Это свидетельствуются о том, что процесс миелинизации нервных волокон распространяется вначале на филогенетически более древние, а затем - на более молодые структуры. От последовательности миелинизации определенных нервных структур зависит очередность формирования их функций. Формирование функции и также зависит и от дифференциации клеточных элементов и их постепенного созревания, которое длится в течение первого десятилетия.

В постнатальном периоде постепенно происходит окончательное созревание всей нервной системы, в частности ее самого сложного отдела - коры большого мозга, играющей особую роль в мозговых механизмах условно-рефлекторной деятельности, формирующейся с первых дней жизни. Еще один важный этап в онтогенезе это период полового созревания, когда проходит и половая дифференцировка мозга.