Две х хромосомы у мужчин. Синдром Клайнфельтера: мужчина с женской хромосомой

  • Дата: 19.04.2019

Изображение с сайта unc.edu

Каждая женщина - это не просто загадка, а мозаика, состоящая из клеток с разными наборами активных хромосом. У человека 23 пары хромосом, и хромосомы одной пары несут одни и те же наборы генов. Исключение составляет пара половых хромосом. У мужчин одна из них называется X, а другая - Y, и они существенно отличаются своими наборами генов. X-хромосома значительно крупнее, чем Y, и содержит больше генов. Обе половые хромосомы женщин - Х, и они отличаются между собой также, как хромосомы внутри других 22 пар. У каждой женщины по две X-хромосомы, а у каждого мужчины - только по одной, и чтобы они были одинаково активны у женщин и мужчин, организм регулирует их работу. Для этого во всех клетках тела женщины одна из X-хромосом инактивируется. Какая именно из двух половых хромосом будет отключена, для каждой клетки решает случай, так что в части клеток тела женщины работает одна X-хромосома, а в оставшихся - другая.

Как следствие такой мозаичности у женщин редко проявляются болезни, связанные с повреждениями X-хромосом. Даже если у женщины оказывается X-хромосома с дефектом какого-либо гена, другая хромосома пары, работающая в половине клеток, спасает положение и не дает болезни проявиться. Чтобы болезнь, связанная с повреждением X-хромосомы «разыгралась» на полную мощь, женщине должны достаться целых две копии этой хромосомы с дефектом одного и того же гена. Это маловероятное событие. В то же время, если мужчина получает дефектную X-хромосому (она приходит от матери), у нее не будет пары, чтобы скомпенсировать ущерб, и заболевание покажет себя.

X-хромосома, к несчастью для мужчин, несет множество жизненно важных генов, так что ее поломка чревата печальными последствиями. Дальтонизм, гемофилия, миопатия Дюшена, синдром ломкой X-хромосомы, X-сцепленный иммунодефицит - это только самые известные генетические заболевания, от которых страдают почти исключительно мужчины.

Цветовая слепота

Распространено заблуждение, что дальтониками могут быть только мужчины. Это неверно, однако, женщины-дальтоники встречаются намного реже. Сложности с различением некоторых цветов испытывают лишь 0,4 процента женщин и около 5 процентов мужчин. Дальтонизм - это потеря или нарушение работы одного из пигментов, связанных с распознаванием света определенного цвета. Всего таких пигментов три, и они чувствительны к волнам красного, зеленого и синего цвета. Любой сложный цвет можно представить как комбинацию этих трех. В каждой клетке-колбочке, которые находятся в сетчатке и отвечают за распознавание цвета, находится лишь один тип пигмента. По неизвестным пока причинам, неполадки с работой пигментов, с помощью которых мы различаем красный и зеленый цвета, встречаются чаще, чем дефекты пигмента, необходимого, чтобы правильно узнавать синий цвет.

За синтез пигментов отвечают гены, находящиеся на X-хромосоме. Если мужчине досталась хромосома с дефектным геном, определяющим за узнавание, к примеру, красного цвета, то во всех колбочках его сетчатки будет активна лишь эта дефектная X-хромосома - другой у него просто нет. Поэтому у такого мужчины не будет колбочек, способных правильно распознать красный цвет. Сетчатка женщины имеет мозаичное строение, и если даже одна из X-хромосом несет поврежденный ген, эта хромосома будет активна лишь в части колбочек, отвечающих за распознавание соответствующего цвета. В других колбочках будет активна вторая хромосома, которая несет нормальный ген. Восприятие цвета у такой женщины будет немного измененным, но все же она будет способна различать все цвета, которые обычно различают люди.

Гемофилия

Другое известное заболевание, связанное с дефектами генов X-хромосомы - это гемофилия, нарушение свертывания крови. После травмы в крови здорового человека запускается сложная система реакций, приводящая к образованию нитей белка фибрина. Благодаря накоплению этих нитей, в месте повреждения кровь становится более густой и закупоривает рану. Если любая из стадий процесса нарушается, кровь не свертывается вовсе или делает это слишком медленно, так что больной может умереть от кровопотери даже после удаления зуба. Кроме того, больные с гемофилией страдают от спонтанных внутренних кровоизлияний из-за уязвимости стенок сосудов.

Каскад реакций, приводящий с итоге к образованию нитей фибрина и загустению крови, очень сложен, а чем сложнее система, тем больше мест, где она может сломаться. Известно три типа гемофилии, связанных с дефектами трех генов, кодирующих белки-участники каскада. Два из этих генов располагаются на X-хромосоме, поэтому гемофилией страдает один мужчина из 5000, а случаев заболеваний женщин за всю историю было зафиксировано лишь 60.

Миопатия Дюшена

Еще один важный ген, располагающийся на X-хромосоме - ген белка дистрофина, необходимого для поддержания целостности мембран мышечных клеток. При миопатии Дюшена работа этого гена нарушается, и дистрофин не образуется. У мужчин, которым досталась X-хромосома с таким поврежденным геном, развивается прогрессирующая мышечная слабость, в результате чего мальчики с такой болезнью уже к 12 годам не могут самостоятельно ходить. Как правило, больные погибают в возрасте около 20 лет из-за связанных со слабостью мышц нарушений дыхания. У девочек, получивших X-хромосому с неисправным геном дистрофина, из-за мозаичности белок отсутствует лишь в половине клеток тела. Поэтому женщины-носительницы дефектного гена дистрофина страдают лишь легкой мышечной слабостью, и то не всегда.

X-сцепленный тяжелый иммунодефицит

Больные с тяжелыми иммунодефицитами вынуждены жить в полностью стерильной среде, потому что они крайне уязвимы перед инфекционными заболеваниями. X-сцепленный тяжелый иммунодефицит возникает из-за мутации в гене, который кодирует общий компонент нескольких рецепторов, необходимых для взаимодействия клеток иммунной системы. Как очевидно из названия болезни, этот ген тоже располагается в X-хромосоме. Из-за неработающих рецепторов иммунная система с самого начала развивается неправильно, ее клетки малочислены, плохо функционируют и не могут координировать свои действия. К счастью, это тяжелое заболевание встречается редко: им страдает один мальчик из 100000. У девочек появление этой болезни можно считать практически невероятным.

Синдром ломкой X-хромосомы

Еще один важный ген, расположенный на X-хромосоме - ген FMR1, необходимый для нормального развития нервной системы. Работа этого гена может быть нарушена из-за патологического процесса, при котором в гене увеличивается число повторяющихся фрагментов ДНК. Дело в том, что точное копирование повторяющегося числа единиц всегда представляет собой трудность. Представим себе, что нам нужно аккуратно переписать длинное число, в котором есть много одинаковых цифр подряд - легко ошибиться и написать на несколько цифер больше или меньше. Точно так и в ДНК. При делении клеток, когда ДНК удваивается, число повторов может случайно измениться. Именно из-за увеличения числа повторов в коротком фрагменте ДНК на X-хромосоме может появиться «ломкий» участок, который легко рвется при делении клеток. Ген FMR1 находится рядом с «ломким» участком, и его работа нарушается. В результате такой патологии возникает умственная отсталость, которая проявляется у мужчин с «ломкой» X-хромосомой более явственно, чем у женщин.

Всегда ли лучше иметь две X-хромосомы, чем одну?

Кажется, что иметь две X-хромосомы выгоднее, чем одну: меньше риск заболеваний из-за неудачных генов. Как насчет самцов, имеющих такой состав половых хромосом: XXY? Можно ли ожидать, что они будут иметь преимущество перед самцами с обычным составом половых хромосом XY? Оказывается, состав хромосом XXY - не благо, а совсем наоборот. Мужчины с таким набором хромосом страдают от синдрома Клайнфельтера, при котором наблюдается множество патологии, но нет никаких преимуществ.

Более того, известны заболевания, для которых характерны еще большие количества X-хромосом, вплоть до пяти на генотип. Такие патологии встречаются как у женщин, так и у мужчин. При наличии избыточных X-хромосом все они, кроме одной, инактивируются. Однако, пусть лишние X-хромосомы и не работают, чем их больше, тем тяжелее заболевание. Интересно, что особенно страдает от наличия избыточных X-хромосом интеллект - каждая лишняя хромосома этого типа ведет к понижению IQв среднем примерно на 15 пунктов. Получается, что иметь запасной вариант X-хромосомы хорошо, но не всегда (мужчинам от дополнительной X-хромосомы лучше не становится). Иметь много запасных вариантов этой половой хромосомы - не выгодно ни для женщин, ни для мужчин.

Чем же дополнительные неактивные X-хромосомы вредны, и почему каждая лишняя хромосома усугубляет тяжесть заболевания? Во-первых, лишние X-хромосомы выключаются далеко не сразу, а только спустя первые 16 суток развития эмбриона. А чем раньше во время развития возникает нарушение, тем более разнообразными и многочисленными будут его проявления. Поэтому лишние хромосомы могут успеть «навредить» достаточно фундаментально, так, что патологии будут проявляться в совершенно разных сферах.

Во-вторых, некоторые гены на инактивированных X-хромосомах каким-то образом избегают отключения. Хотя Xи Y-хромосомы очень непохожи, все же они образуют пару и имеют небольшое количество одинаковых генов. Если половых хромосом слишком много, и на всех них эти гены останутся активными, в клетках нарушается генный баланс. Поэтому чем больше лишних хромосом, тем тяжелее болезнь.

X-хромосома несет на себе множество жизненно важных генов, и неудивительно, что ее дефекты имеют крайне неприятные проявления. Женщинам от природы дана возможность «подстраховаться» за счет дополнительной копии хромосомы, которая может уменьшить тяжесть заболевания. Однако такая «запаска» хороша только в единственном числе, а все дополнительные X-хромосомы ведут к развитию тяжелых патологий. Ну а мужчинам, у которых нет второй X-хромосомы, с самого их зачатия достается больше риска. Увы.

Юлия Кондратенко

Елена Шведкина об одном из самых распространенных генетических заболеваний - больные жалуются на бесплодие, эректильную дисфункцию, гинекомастию и остеопороз

Синдром Клайнфельтера  - генетическое заболевание, характеризующееся дополнительной женской половой хромосомой Х (одной или даже несколькими) в мужском кариотипе ХY . При этом в мужских половых железах - яичках - образуется недостаточно половых гормонов.

Как известно, генетический набор человека насчитывает 46 хромосом, из которых 22 пары называются соматическими, а 23‑я пара - половая. Женщины имеют пару половых хромосом ХХ , а мужчины - ХY . Для синдрома Клайнфельтера обязательно наличие мужской Y-хромосомы, поэтому, несмотря на дополнительные Х -хромосомы, пациенты всегда являются мужчинами.

Классификация: виды кариотипов при синдроме Клайнфельтера

По количеству дополнительных Х-хромосом различают следующие варианты синдрома Клайнфельтера:

  • 47,ХХY  - наиболее часто встречающийся
  • 48,ХХХY
  • 49,ХХХХY

Кроме того, к синдрому Клайнфельтера также относят мужские кариотипы, включающие, помимо дополнительных Х -хромосом, дополнительную Y -хромосому - 48,ХХYY . И, наконец, среди пациентов с этим синдромом встречаются лица с мозаичным кариотипом 46,ХY /47,ХХY (то есть часть клеток имеет нормальный хромосомный набор).

История открытия синдрома

Синдром получил свое название в честь Гарри Клайнфельтера - врача, в 1942 году впервые описавшего клиническую картину болезни. Клайнфельтер с коллегами опубликовали отчет об обследовании 9 мужчин, объединенных общими симптомами, такими как слабое оволосение тела, евнухоидный тип телосложения, высокий рост и уменьшенные в размерах яички. Позднее, в 1956 г., генетики Планкетт и Барр (Е. R. Plankett, М. L. Barr) обнаружили у мужчин с синдромом Клайнфельтера тельца полового хроматина в ядрах клеток слизистой оболочки полости рта, а в 1959 году Полани и Форд (P. E. Polanyi, S. E. Ford) с сотрудниками показали, что у больных в хромосомном наборе имеется лишняя Х -хромосома.

Активные исследования данной патологии велись в 70‑х годах в США. Тогда всех новорожденных мальчиков подвергали кариотипированию, в результате чего удалось достоверно выявить распространенность и генетические особенности синдрома Клайнфельтера.

Любопытно, что мыши также могут иметь синдром трисомии по половым хромосомам XXY, что позволяет эффективно использовать их в качестве моделей для исследования синдрома Клайнфельтера.

Распространенность заболевания

Синдром Клайнфельтера является одним из наиболее распространенных генетических заболеваний: на каждые 500 новорождённых мальчиков приходится 1 ребёнок с данной патологией.

Кроме того, синдром Клайнфельтера - третья по распространенности эндокринная патология у мужчин (после сахарного диабета и патологии щитовидной железы) и наиболее частая причина врожденного нарушения репродуктивной функции у мужчин.

На сегодняшний день около половины случаев синдрома Клайнфельтера остаются нераспознанными. Часто такие пациенты обращаются за помощью по поводу бесплодия, эректильной дисфункции, гинекомастии, остеопороза, анемии и пр. без установленного ранее диагноза.

Этиология и причины нарушения

Синдром Клайнфельтера относится к генетическим заболеваниям, не передающимся по наследству, поскольку больные, за редким исключением, бесплодны. Патология, как правило, возникает в результате нарушения расхождения хромосом на ранних стадиях формирования яйцеклеток и сперматозоидов. При этом синдром Клайнфельтера, возникающий за счет нарушения в женских половых клетках, встречается в три раза чаще. Мозаичные формы обусловлены патологией деления клеток на ранних стадиях эмбриогенеза, поэтому часть клеток у таких пациентов имеет нормальный кариотип. Причины нерасхождения половых хромосом и нарушения деления клеток на самых ранних стадиях эмбриогенеза до сих пор малоизучены. В отличие от других хромосомных заболеваний, влияние возраста родителей отсутствует или выражено незначительно.

Ранние признаки

В отличие от большинства заболеваний, связанных с нарушением количества хромосом, внутриутробное развитие детей с синдромом Клайнфельтера проходит нормально, склонности к преждевременному прерыванию беременности не наблюдается. Так что в младенческом и раннем детском возрасте заподозрить патологию практически невозможно. Более того, клинические признаки классического синдрома Клайнфельтера проявляются, как правило, только в подростковом периоде. Однако есть симптомы, которые позволяют заподозрить наличие синдрома Клайнфельтера в препубертатном периоде:

  • высокий рост (пик прибавки роста приходится на период между 5–8 годами);
  • длинные ноги (непропорциональное телосложение);
  • высокая талия.

У части пациентов наблюдается некоторая задержка в развитии речи.

В подростковом возрасте синдром часто проявляется гинекомастией, которая при данной патологии имеет вид двустороннего симметричного безболезненного увеличения грудных желез. Так как такого рода гинекомастия часто наблюдается у совершенно здоровых подростков, этот симптом часто остается без внимания. В норме подростковая гинекомастия бесследно исчезает в течение нескольких лет, у пациентов же с синдромом Клайнфельтера обратной инволюции грудных желез не происходит. В некоторых случаях гинекомастия может не развиваться вовсе, и тогда патология проявляется признаками андрогенной недостаточности уже в постпубертатный период.

Симптомы андрогенной недостаточности при синдроме Клайнфельтера

Андрогенная недостаточность при синдроме Клайнфельтера связана с постепенной атрофией яичек, что приводит к снижению синтеза тестостерона. Степень недостаточности андрогенов резко варьирует.

В первую очередь обращают на себя внимание внешние признаки гипогонадизма:

  • скудная растительность на лице или же полное ее отсутствие;
  • рост волос на лобке по женскому типу;
  • волосы на груди и других частях тела отсутствуют;
  • маленький объем яичек (2–4 мл) и их плотная консистенция (патогномоничный признак).

Поскольку дегенерация половых желез, как правило, развивается в постпубертатный период, у большинства пациентов размеры мужских половых органов, за исключением яичек, соответствуют возрастным нормам.

Пациенты могут жаловаться на ослабление либидо и снижение потенции. У многих мужчин с синдромом Клайнфельтера половое влечение вовсе не возникает, а некоторые - напротив, заводят семью и живут нормальной половой жизнью. Наиболее постоянный признак патологии - бесплодие, именно оно чаще всего становится причиной обращения таких пациентов к врачу. У 10 % мужчин с азооспемией обнаруживают синдром Клайнфельтера.

Всем пациентам с нарушениями сперматогенеза необходимо определять кариотип для исключения или подтверждения диагноза синдрома Клайнфельтера.

Недостаток андрогенов приводит к развитию остеопороза, анемии и слабости скелетной мускулатуры. У трети больных можно наблюдать варикозное расширение вен голеней.

Андрогены влияют на обмен веществ, поэтому больные с синдромом Клайнфельтера склонны к ожирению, нарушению толерантности к глюкозе и сахарному диабету второго типа.

Доказана предрасположенность таких пациентов к аутоиммунным заболеваниям (ревматоидный артрит, системная красная волчанка, аутоиммунные заболевания щитовидной железы и другие).

Психологические особенности

Коэффициент интеллекта у больных с классическим синдромом Клайнфельтера варьирует от значений ниже среднего до показателей, значительно превышающих средний уровень. Однако во всех случаях отмечается диспропорция между общим уровнем интеллекта и вербальными способностями, так что нередко пациенты с достаточно высоким IQ испытывают трудности при восприятии больших объемов материала на слух, а также при построении фраз, содержащих сложные грамматические конструкции. Такие особенности причиняют пациентам много неприятностей в период обучения и нередко продолжают сказываться на профессиональной деятельности.

Данные о психологических особенностях больных с синдромом Клайнфельтера достаточно противоречивы, однако большинство специалистов оценивают пациентов как скромных, робких людей с несколько заниженной самооценкой и повышенной чувствительностью. Есть данные, свидетельствующие о склонности пациентов с синдромом Клайнфельтера к гомосексуализму, алкоголизму и наркомании. Сложно сказать, вызваны ли особенности психики у таких больных непосредственным влиянием хромосомной аномалии, или же это реакция на проблемы в сексуальной сфере.

В отношении разных цитогенетических вариантов синдрома Клайнфельтера справедливо правило, что с увеличением количества дополнительных Х -хромосом увеличивается количество и выраженность патологических симптомов.

Диагностика синдрома Клайнфельтера

Во многих странах синдром Клайнфельтера часто диагностируется ещё до рождения ребёнка, так как многие женщины позднего детородного возраста, в связи с высоким риском генетических дефектов у будущего потомства, используют пренатальную генетическую диагностику плода. Нередко пренатальное выявление синдрома Клайнфельтера является поводом для прерывания беременности, в том числе и по рекомендации врачей. В России анализ кариотипа будущего ребёнка проводится крайне редко.

При подозрении на синдром Клайнфельтера проводят лабораторный анализ крови для определения уровня мужских половых гормонов. Необходима дифференциальная диагностика с другими заболеваниями, протекающими с проявлениями андрогенной недостаточности. Точный диагноз синдрома Клайнфельтера ставят на основании изучения кариотипа (набора хромосом) больного.

Исследования, необходимые для подтверждения диагноза

У всех мужчин с резко повышенными концентрациями гонадотропинов необходимо исключить синдром Клайнфельтера, так как нередко первый лабораторный признак этой генетической патологии - повышение в крови концентрации гонадотропинов при нормальном содержании общего тестостерона.

Синдром Клайнфельтера необходимо дифференцировать от других форм первичного гипогонадизма. В любом случае при повышении уровня ФСГ в крови необходимо определение кариотипа для исключения в первую очередь синдрома Клайнфельтера.

Лечение

Цели лечения синдрома Клайнфельтера:

  • Восстановление нормального содержания тестостерона
  • Восстановление сексуальной функции
  • Ликвидация метаболических нарушений

При клинически выраженной патологии необходима пожизненная заместительная терапия препаратами тестостерона. Адекватная терапия позволяет не только улучшить внешний вид и общее самочувствие больного, но и вернуть способность к нормальной половой жизни. Кроме того, заместительная терапия предупреждает развитие остеопороза, купирует мышечную слабость. В юном возрасте лечение необходимо начинать сразу же после постановки диагноза. При синдроме Клайнфельтера лучше использовать препараты тестостерона длительного действия:

  • смесь эфиров тестостерона в виде масляного раствора, инъекции которого необходимо делать 2–3 раза в месяц;
  • тестостерона ундеканоат в виде масляного раствора - препарат-депо с замедленным высвобождением действующего вещества - инъекции 1 раз в 3 месяца.

Гормонолечение при наличии Х хромосомы у мужчин должно носить постоянный характер. Дозу препарата подбирают индивидуально под контролем уровня тестостерона и ЛГ в сыворотке крови.

Уже развившаяся гинекомастия при синдроме Клайнфельтера не подвергается инволюции даже в случае адекватного лечения, поэтому часто приходится прибегать к хирургической коррекции (мастэктомии).

Для профилактики таких сопутствующих заболеваний, как ожирение и сахарный диабет второго типа, больным рекомендуют придерживаться диеты и следить за собственным весом.

Мониторинг пациентов с синдромом Клайнфельтера следует осуществлять не реже 1 раза в 6–12 месяцев. Он должен включать следующие исследования:

  • общий анализ крови для оценки уровня гемоглобина и гематокрита;
  • гормональный анализ крови, включающий определение тестостерона и ЛГ (проводится на фоне лекарственной терапии за 1–2 дня до очередной инъекции тестостерона);

Y -хромосома

В организме каждого мужчины присутствует так называемая Y -хромосома, которая и делает мужчину мужчиной. Обычно хромосомы в ядре любой клетки располагаются попарно. Для Y- хромосомы парной является Х -хромосома. При зачатии будущий новый организм наследует всю свою генетическую информацию от родителей (половину хромосом от одного родителя, половину – от другого). От матери он может унаследовать только X- хромосому, от отца – либо X , либо Y . Если в яйцеклетке оказываются две Х- хромосомы, родится девочка, а если Х- и Y- хромосомы – мальчик.

В течение почти 100 лет генетики считали, что крохотная хромосома (а Y -хромосома действительно самая маленькая, заметно меньше Х -хромосомы) является просто «заглушкой». Первые догадки, что хромосомный набор мужчин отличается от такового у женщин, были выдвинуты в 1920-х гг. Y -хромосома стала первой хромосомой, обнаруженной с помощью микроскопа. Но определить наличие каких-либо генов, локализованных в Y- хромосоме, оказалось невозможным.

В середине XX в. генетики преположили, что несколько весьма специфических генов могут содержаться в Y- хромосоме. Однако в 1957 г., на собрании Американского общества генетики человека, эти гипотезы подверглись критике. Y -хромосома была официально признана «пустышкой», не несущей никакой важной наследственной информации. Утвердилась точка зрения, что «Y -хромосома, безусловно, несет в себе какой-то ген, определяющий пол человека, но больше на нее не возложено никаких функций».

Еще 15 лет назад Y- хромосома не вызывала у ученых особого интереса. Теперь расшифровка Y- хромосомы входит в проект по расшифровке генома человека, который осуществляется международной группой генетиков. В ходе исследования стало понятно, что Y -хромосома далеко не так проста, как казалось вначале. Информация о генетической карте этой хромосомы крайне важна, т.к. именно в ней лежат ответы на вопросы о причинах мужского бесплодия.

Исследования Y- хромосомы, возможно, дадут ответ и на многие другие вопросы: Где появился человек? Как шло развитие языка? Что отличает нас от обезьян? Действительно ли «война полов» запрограммирована в наших генах?

Сейчас генетики стали понимать, что Y -хромосома – нечто уникальное в мире хромосом. Она чрезвычайно узко специализирована: все гены, содержащиеся в ней (а их там оказалось около двух дюжин), отвечают либо за производство спермы организмом мужчины, либо за «сопутствующие» процессы. И, естественно, самый важный ген в этой хромосоме – SRY – при наличии которого человеческий зародыш развивается по мужскому пути.

Примерно 300 млн лет назад в природе не существовало Y- хромосомы. У большинства животных была пара Х- хромосом, и пол определялся другими факторами, такими как температура (у некоторых рептилий, таких как крокодилы и черепахи, и в настоящее время из одного и того же яйца, в зависимости от температуры, может вылупиться как самец, так и самка). Затем в организме некоего млекопитающего произошла мутация, и появившийся при этом новый ген стал определять «мужской тип развития» для носителей этого гена.

Ген выжил в естественном отборе, но для этого ему нужно было заблокировать процесс замещения аллельным геном из Х -хромосомы. Эти давние события и определили уникальность Y- хромосомы: она есть только в организмах мужского пола. Исследуя мутации в Y- хромосоме, ученые могут оценить, насколько мужчины из двух этнических групп отдалены (в генетическом смысле) от нашего общего предка. Некоторые из полученных таким способом результатов оказались весьма удивительными.

В ноябре прошлого года отрасль биологии под названием «археогенетика» совершила большой шаг вперед. Ведущий научный журнал, Nature Genetics , предложил новую версию генеалогического древа человечества, основанную на до сих пор неизвестных вариациях, так называемых гаплотипах Y- хромосомы. Эти данные подтвердили, что предки современных людей мигрировали из Африки.

Получалось, что «генетическая Ева», прародительница всего человечества, на 84 тыс. лет старше «генетического Адама», если измерять возраст по Y- хромосоме. Женский эквивалент Y- хромосомы, т.е. генетическая информация, передаваемая только от матери к дочери, известна, как м-ДНК. Это ДНК митохондрий, которые являются источником энергии в клетке.
В течение последних нескольких лет было общепринято, что «митохондриальная Ева» жила около 143 тыс. лет назад, что никак не согласовывалось с предполагаемым возрастом «Адама» 59 тыс. лет.

На самом деле противоречия здесь нет. Эти данные говорят лишь о том, что различные хромосомы, найденные в геноме человека, появились в разное время. Около 143 тыс. лет назад в генофонде наших предков появилась новая разновидность м-ДНК. Она, как всякая удачная мутация, распространялась все шире, пока не вытеснила все прочие разновидности из генофонда. Вот почему в настоящее время все женщины несут в себе эту новую, улучшенную, версию м-ДНК. Это же произошло с Y- хромосомой у мужчин, только эволюции понадобилось еще 84 тыс. лет, чтобы создать версию, которая смогла вытеснить всех конкурентов.

Пока не ясно, на чем был основан успех этих новых версий: возможно, на увеличении способности к воспроизведению потомства их носителей.

Исследования Y -хромосомы не только позволяют проследить миграции древних народов, но и могут рассказать, какую часть генома разделяет какой-либо мужчина с другим носителем той же фамилии (поскольку и фамилия человека, и его Y -хромосома наследуются по мужской линии). Эту методику можно применять и для установления предполагаемой фамилии преступника по следам его ДНК на месте преступления.

Данные, полученные при исследовании Y -хромосомы, подтверждают, что «война полов» запрограммирована в генах. То, что мужчины и женщины имеют разные жизненные программы, сейчас общеизвестно. В то время как мужчина теоретически может иметь почти неограниченное число родных детей, женщины ограничены в этом.

Особое положение Y- хромосомы дает возможность генам, расположеннм в ней, влиять только на мужскую особь и «не беспокоиться» о том, как они влияют на особей женского пола.

Было обнаружено, что гены, ответственные за производство белков спермы, очень быстро видоизменяются, по-видимому, из-за интенсивной конкуренции. Y -хромосома содержит большое количество этих генов, и исследователи сейчас пытаются понять, какие из них вовлечены в эту конкуренцию.

Наличие Y- хромосомы является фактором риска для плода из-за иммунной реакции матери. Этим могут быть объяснены некоторые интересные закономерности. Например, по статистике, чем больше у мужчины старших братьев (именно братьев, а не сестер), тем с большей вероятностью в нем могут проявиться гомосексуальные наклонности. Одно из возможных объяснений этого факта заключается в том, что в Y- хромосоме существует ген, ответственный за выработку маскулинизирующего гормона, названного АМН. Этот гормон останавливает развитие желез, которые при его отсутствии превращаются в матку и яичники. Кроме того, АМН вызывает иммунную реакцию со стороны организма матери, и вырабатываемые при этом антитела не дают выполнить гормону еще одну важную функцию, а именно – направить развитие головного мозга плода по мужскому типу.

Изолированность – одна из важнейших особенностей Y- хромосомы. Копирование генов сопровождается ошибками. При образовании яйцеклеток и сперматозоидов части парных хромосом меняются местами, и при этом поврежденные участки выбраковываются. Но Y -хромосома закрыла свои границы, и это создает «заброшенные земли» там, где не происходит ремонта и обновления генов. Поэтому генные структуры постепенно приходят в упадок, и некогда функциональные гены становятся бесполезными.

Распространенная картина, представляющая копирование ДНК чем-то наподобие ксерокопирования, не может передать истинного динамизма генома. Хотя природа постаралась обеспечить максимальную точность этой процедуры, всего лишь один кусок ДНК, подобно астероиду вторгшийся в чужую хромосому, может мгновенно изменить тщательно сохраняемую в течение многих тысяч поколений последовательность. Эти незваные гости называются прыгающими генами, или транспозонами.

Подавляющее большинство генов никогда не покидают родную хромосому. В отличие от них прыгающие гены – это «странники генома». Иногда они «выпрыгивают» из одной хромосомы и «приземляются» в случайном месте на другой. Они могут встроиться в середину гена, вызывая хаос, а могут «пришвартоваться» с края, слегка видоизменяя его функцию. Из обычных хромосом пришельцы обычно «изгоняются» вследствие бесконечного смешивания генов, но попав на Y -хромосому они сохраняются в нем миллионы лет. Иногда совершенно случайно это позволяет им сделать что-то замечательное. «Прыгающие эмигранты» могли превратить Y -хромосому в стартовую кнопку, запускающую эволюцию. Первым из таких Y- иммигрантов был DAZ , обнаруженный Д.Пэйджем (США).

В то время, когда Д.Пэйдж начал заниматься Y -хромосомой, о ней было известно только то, что она содержит ген SRY , который в нужный момент запускает развитие мужских органов у эмбриона. Теперь известно, что Y -хромосома содержит более двадцати генов (сравните с 2 тыс. генов в Х -хромосоме). Большинство этих генов вовлечены в производство спермы или помогают клетке синтезировать белки. Ген DAZ , вероятно, прибыл в Y- хромосому около 20 или 40 млн лет назад, примерно тогда, когда появились первые приматы (возможно, причиной их появления и был DAZ ). Отсутствие этого гена в организме у мужчины приводит к понижению или полному отсутствию сперматогенеза. По статистике, у одной из шести пар есть проблемы с зачатием ребенка, и для 20% из них ключевой фактор – именно мужская сперма.

В настоящее время технология внематочного оплодотворения частично решает эту проблему. Но обход законов природы не проходит даром. Бесплодие, как это ни парадоксально звучит, становится наследственным.

Недавно британские исследователи выдвинули смелое предположение: критическим фактором в возникновении речи у людей был именно некий «прыгающий ген», вторгшийся в Y -хромосому.

Ген DAZ за счет усиления сперматогенеза позволил приматам процветать, но какой ген послужил толчком для отделения человека от линии приматов? Прямой способ найти его – геномы человека и шимпанзе. Более элегантный способ – представить, какие последствия должны быть у таких мутаций и где эти мутации могут быть найдены.

Именно это и было сделано в Оксфорде. Сначала исследователи допустили, что существует некий ген, который так повлиял на развитие мозга, что стала возможной речь. Более того, предположили, что этот ген принимает разную форму у мужчин и женщин.

На конференции в Лондоне в 1999 г. другая исследовательская группа объявила, что в Y -хромосоме обнаружен ген PCDH , деятельность которого скорее всего сказывается на функционировании мозга человека, но не приматов. Это делает его хорошим кандидатом на роль гена речи. Приматы имеют его Х -версию (PCDHX ), но в некоторый момент эволюции он перескочил в Y- хромосому.

Ученым удалось проследить связь Y -версии этого гена (PCDHY ) с двумя переломными моментами в эволюции человека. Первый из них произошел около 3 млн лет тому назад, когда увеличился размер человеческого мозга и появились первые орудия труда. Но это еще не все. Отрезок ДНК, несущий PCDHY , снова трансформировался, разделившись на две части, так что получившиеся отрезки перевернулись на своих местах. По оценкам ученых, это случилось 120–200 тыс. лет назад, т.е. как раз в то время, когда произошли большие изменения в изготовлении орудий труда.

У африканских предков человека появилась способность к передаче информации с помощью символов. Косвенные доказательства – это, конечно, хорошо, но как этот ген функционирует на самом деле? На данный момент здесь больше вопросов, чем ответов, но имеющиеся данные не противоречат теории о связи этого гена с появлением речи. Вероятно, это один из семейства генов, известных как cadhedrins . Они синтезируют белки, из которых создается оболочка нервных клеток, и таким образом вовлечены в передачу информации. Гены PCDHX /Y активны в некоторых участках головного мозга у человеческого плода.

Но за всеми этими открытиями кроется одна большая загадка. Y- хромосому можно представить как модель капиталистической экономики. Победители – гены, которые дают преимущество, берут все, потому что не смешиваются с генами из других хромосом. Аутсайдеры, т.к. они обычно влияют на плодовитость, почти мгновенно становятся банкротами. То есть выжившие здесь гены должны делать что-то действительно ценное для организма.

Скорее всего, Y -хромосома потеряла большинство своих генов в процессе эволюции, но все оставшиеся в ней гены процветают. Они, должно быть, выполняют некую неуловимую, непонятную для нас функцию. Вероятно, для выяснения этой функции нужно исследовать связь генетических маркеров, позволяющих проследить родословную человека, с его способностями. Идея опасная в плане этической корректности, но она даст возможность Y- хромосоме еще не раз удивить нас.

Хромосомы заключают в себе генетическую информацию в форме генов. Ядро каждой клетки человека, за исключением яйцеклетки и сперматозоида, содержит 46 хромосом, образующих 23 пары. Одна хромосома в каждой паре получена от матери, а другая - от отца. У обоих полов 22 из 23 пар хромосом одинаковые, отличается только оставшаяся пара половых хромосом. У женщин имеется две Х-хромосомы (XX), а у мужчин - одна Х- и одна Y-хромосома (XY). Следовательно, нормальный набор хромосом (кариотип) мужчины - 46, XY, а женщины - 46, XX.

Хромосомные аномалии

Если ошибка происходит во время особой разновидности клеточного деления, при котором образуются яйцеклетки и сперматозоиды, то возникают аномальные половые клетки, что ведет к рождению потомства с хромосомной патологией. Хромосомный дисбаланс может быть как количественным, так и структурным.

Развитие пола ребенка

В обычных условиях наличие Y-хромосомы приводит к развитию плода мужского пола вне зависимости от количества Х-хромосом, а отсутствие Y-хромосомы - к развитию плода женского пола. Аномалии половых хромосом оказывают менее деструктивное влияние на физические характеристики индивида (фенотип), нежели аномалии аутосомных. Y-хромосома содержит малое количество генов, поэтому ее лишние копии оказывают минимальное влияние. Как у мужчин, так и у женщин требуется наличие только одной активной Х-хромосомы. Лишние Х-хромосомы почти всегда являются полностью неактивными. Этот механизм минимизирует эффект аномальных Х-хромосом, поскольку лишние и структурно аномальные копии инактивируются, оставляя «рабочей» только одну нормальную Х-хромосому. Однако существуют на Х-хромосоме некоторые гены, которым удается избежать инактивации. Считается, что наличие одной или более двух копий таких генов является причиной аномальных фенотипов, ассоциированных с дисбалансом половых хромосом. В лаборатории анализ хромосом проводится под световым микроскопом при 1000-кратном увеличении. Хромосомы становятся видны только при делении клетки на две генетически идентичные дочерние клетки. Для получения хромосом используют клетки крови, которые культивируют в специальной среде, богатой питательными веществами. На определенной стадии деления клетки обрабатывают раствором, который вызывает их набухание, что сопровождается «распутыванием» и разделением хромосом. Затем клетки помещают на предметное стекло микроскопа. По мере их высыхания происходит разрыв клеточной мембраны с выходом хромосом во внешнюю среду. Хромосомы окрашивают таким образом, чтобы на каждой из них появились светлые и темные диски (полоски), порядок которых специфичен для каждой пары. Форму хромосом и характер дисков тщательно изучают с целью идентификации каждой хромосомы и выявления возможных аномалий. Количественные аномалии имеют место при недостатке или избытке хромосом. Некоторые синдромы, развивающиеся в результате таких дефектов, имеют очевидные признаки; другие бывают почти незаметны.

Различают четыре основные количественные хромосомные аномалии, каждая из которых ассоциирована с определенным синдромом: 45, X - синдром Тернера. 45, X, или отсутствие второй половой хромосомы, - самый распространенный кариотип при синдроме Тернера. Индивиды с этим синдромом имеют женский пол; часто заболевание диагностируют при рождении благодаря таким характерным признакам, как кожные складки на задней поверхности шеи, отечность кистей рук и стоп и низкая масса тела. К другим симптомам относятся низкорослость, короткая шея с крыловидными складками, широкая грудная клетка с широко расположенными сосками, пороки сердца и патологическое отклонение предплечий. Большинство женщин с синдромом Тернера бесплодны, у них отсутствуют менструации и не развиты вторичные половые признаки, в частности молочные железы. Практически все пациентки, однако, имеют нормальный уровень умственного развития. Частота встречаемости синдрома Тернера составляет от 1:5000 до 1:10 000 женщин.

■ 47, XXX - трисомия Х-хромосомы.

Приблизительно 1 из 1000 женщин имеет кариотип 47, XXX. Женщины с этим синдромом обычно высокие и худые, без каких-либо явных физических отклонений. Однако нередко у них отмечается снижение коэффициента интеллекта с определенными проблемами в обучении и поведении. Большинство женщин с трисомией Х-хромосомы фертильны и способны иметь детей с нормальным набором хромосом. Синдром редко выявляется благодаря нерезкой выраженности фенотипических признаков.

■ 47, XXY - синдром Клайнфельтера. Приблизительно 1 из 1000 мужчин имеет синдром Клайнфельтера. Мужчины с кариотипом 47, XXY выглядят нормальными при рождении и в раннем детстве, за исключением небольших проблем в обучении и поведении. Характерные признаки становятся заметными в период полового созревания и включают высокий рост, маленький размер яичек, отсутствие сперматозоидов, а иногда и недостаточное развитие вторичных половых признаков с увеличением грудных желез.

■ 47, XYY - XYY-синдром. Дополнительная Y-хромосома присутствует примерно у 1 из 1000 мужчин. Большинство мужчин с XYY-синдромом внешне выглядят нормально, но при этом имеют очень высокий рост и сниженный уровень интеллекта. Хромосомы по форме отдаленно напоминают букву X и имеют два коротких и два длинных плеча. Для синдрома Тернера типичны следующие аномалии: изохромосома по длинному плечу. В ходе образования яйцеклеток или сперматозоидов происходит разделение хромосом, при нарушении расхождения которых может появиться хромосома с двумя длинными плечами и полным отсутствием коротких; кольцевая хромосома. Образуется вследствие утраты концов коротких и длинных плеч Х-хромосомы и соединения оставшихся участков в кольцо; делеция (утрата) части короткого плеча одной из Х-хромосом. Аномалии длинного плеча Х-хромосомы обычно вызывают дисфункцию репродуктивной системы, например преждевременную менопаузу.

Y-хромосома

Ген, отвечающий за развитие зародыша по мужскому типу, находится на коротком плече Y-хромосомы. Делеция короткого плеча приводит к формированию женского фенотипа, часто с некоторыми признаками синдрома Тернера. Гены на длинном плече ответственны за фертильность, поэтому любые делеции здесь могут сопровождаться мужским бесплодием.

Вполне логично, что любую пару, ожидающую или планирующую продолжение рода, интересует, от чего зависит пол ребенка. К сожалению, вопрос половой принадлежности малыша окружен нелогичными мифами, противоречащими здравому смыслу и законам биологии и физиологии.

В нашей статье мы развеем эти мифы и разберемся, от чего зависит пол ребенка у человека, а также рассмотрим, от кого именно зависит – от мужчины или от женщины. Отдельно коснемся вопроса, от чего зависит пол ребенка при зачатии ребенка, и как можно повлиять на этот процесс.

Вконтакте

В каждой соматической клетке человека содержится 23 пары хромосом, которые несут в себе генетическую информацию – такой набор хромосом называется диплоидным (46 хромосом). 22 пары называются аутосомами и не зависят от пола человека, следовательно, они одинаковы у мужчин и у женщин.

Хромосомы 23-й пары называются половыми, так как именно они определяют половую принадлежность. Эти хромосомы могут отличаться по форме, и их принято обозначать буквами X или Y. Если у человека в 23-й паре наблюдается сочетание Х- и Y-хромосомы, это особь мужского пола, если это две одинаковые Х-хромосомы – женского. Следовательно, клетки женского организма имеют набор 46ХХ (46 хромосом; одинаковые половые Х-хромосомы), а мужского – 46XY (46 хромосом; разные половые Х- и Y-хромосомы).

Половые клетки человека, сперматозоиды и яйцеклетки, содержат 23 хромосомы вместо 46-ти – такой набор называется гаплоидным. Такой набор хромосом необходим для образования уже диплоидной зиготы – клетки, образуемой при слиянии сперматозоида и яйцеклетки, которая является первой стадией развития эмбриона. Но всё же пол ребенка зависит от мужчины. Почему? Сейчас разберемся.

Хромосомный набор мужчины и женщины

От кого зависит больше – от женщины или мужчины?

Многие все еще задаются вопросом «От кого зависит пол ребенка: от женщины или мужчины?» Ответ очевиден, если разобраться с тем, какие половые хромосомы несут половые клетки.

Яйцеклетка всегда имеет половую Х-хромосому, сперматозоид же может содержать как Х-, так и Y-хромосому. Если яйцеклетку оплодотворяет сперматозоид с Х-хромосомой, пол малыша будет женским (23Х+23Х=46ХХ). В случае, когда с яйцеклеткой сливается сперматозоид с Y-хромосомой, пол ребенка будет мужским (23Х+23Y=46XY). Так от кого зависит пол ребенка?

То, какого пола будет ребенок, зависит сугубо от сперматозоида, который оплодотворит яйцеклетку. Получается, пол ребенка зависит от мужчины.

От чего зависит пол ребенка при зачатии? Это рандомный процесс, когда вероятность оплодотворения яйцеклетки тем или иным сперматозоидом примерно одинакова. То, что малыш будет мальчиком или девочкой – случайное стечение обстоятельств.

Женщинам с феминистичными склонностями придется или принять тот факт, что пол ребенка зависит от мужчины, или женщины будут долго и нудно пытаться повлиять на себя, модифицируя свой рацион, частоту половых актов и время сна, никаким образом при этом не повышая вероятность рождения мальчика или девочки.

Отчего именно сперматозоид с Y-хромосомой оплодотворяет яйцеклетку?

Во время овуляторной фазы менструального цикла яйцеклетка выходит в маточную трубу. Если в это время женщина имеет половой контакт с мужчиной, сперматозоиды в составе спермы поступают во влагалище, цервикальный канал, а затем – в матку и маточные трубы.

На пути к яйцеклетке у сперматозоидов есть множество преград:

  • кислая среда влагалища;
  • густая слизь в цервикальном канале;
  • обратный ток жидкости в маточных трубах;
  • иммунная система женщины;
  • лучистый венец и блестящая оболочка яйцеклетки.

Оплодотворить яйцеклетку может только один сперматозоид, и этим сперматозоидом может быть как носитель Х-хромосомы, так и Y-хромосомы. То, в какой позе происходит половой акт, какой диеты придерживался мужчина и т.д. не влияет на то, какой из сперматозоидов будет «победителем».

Есть мнение, что Х-сперматозоиды более устойчивы к «агрессивной» среде в женских половых органах, но при этом они медленнее Y-сперматозоидов, однако достоверных доказательств этому нет.

Почему народные способы и приметы не стоит воспринимать серьезно?

А потому, что если включить логику и здравый смысл, они не имеют никакого обоснования. Какие это методы?

  1. Древние календарные методы, например:
    • китайский метод планирования пола в зависимости от возраста женщины и месяца зачатия;
    • японский метод, где пол малыша зависит уже от месяца рождения матери и отца;
  2. Методы, связанные с половым актом: воздержание (для появления девочки) и безудержность (для появления мальчика), разнообразные позы как предиктор мужского или женского пола малыша;
  3. Диетические методы:
    • для получения ребенка-девочки – продукты с кальцием (яйца, молоко, орехи, свекла, мед, яблоки…);
    • для получения ребенка-мальчика – продукты с калием (грибы, картофель, апельсины, бананы, горох…).

А теперь разложим всё по полочкам.

Китайские и японские методы предполагают использование специальных таблиц для прогнозирования пола малыша. От кого зависит пол ребенка при зачатии? От сперматозоида, который оплодотворит яйцеклетку. Китайцы же упорно считали, что пол малыша зависит именно от матери, следовательно, этот метод уже лишается какой-либо логической подоплеки.

Зависит ли пол плода от женщины? В яйцеклетке в любом случае есть только Х-хромосома, следовательно, ответственности за то, родится девочка или мальчик, она не несет.

Ориентироваться на японский метод можно, если свято верить, что совместимость пар определяет исключительно гороскопом, потому что суть этого варианта определения пола такая же. Помним, от чего зависит пол будущего ребенка при зачатии, изучая этот метод!

Разве могут даты рождения двух партнеров повлиять на то, что через много лет из спермы мужчины самым ловким и сильным окажется именно Х- или Y-сперматозоид? Особенно учитывая рандомность последнего. Сюда же можно отнести всевозможные методы, обещающие рождение ребенка того или иного пола в зависимости от дня менструального цикла.

Еще один способ определения пола будущего ребенка

Темпы половой жизни, равно как и диета, могут повлиять на качество спермы и на вероятность оплодотворения, но никак не на пол потенциального малыша. Модификации половой жизни не входят в число тех факторов, от чего зависит пол будущего ребенка, так как не может ускорить передвижение или увеличить выносливость «того самого» сперматозоида.

Да и Х-, и Y-сперматозоиды отличаются не количеством кальция и калия, а всего лишь фрагментом хромосомы, содержащей ДНК. А про влияние женщины вообще не стоит говорить – мы все помним, от кого из родителей зависит пол ребенка.

Следовательно, народные методы планирования пола малыша основаны на мифах и незнании особенностей процесса оплодотворения, потому серьезно к ним относиться нельзя. А вот о том, какими способами можно воспользоваться для определения беременности в домашних условиях, найдете .

Влияет ли пол плода на появление токсикоза?

То, что раньше называли токсикозом, сейчас называют гестозом. Гестоз – результат патологической адаптации женского организма к беременности. К причинам гестозов относят нарушение гормонального регулирования беременности, иммунологические изменения, наследственную предрасположенность, особенности прикрепления плаценты и множество других факторов.

Проявляются гестозы в виде гемодинамических нарушений (например, увеличение артериального давления), ухудшении функции мочевыделительной системы (нефропатия беременности, проявляющаяся в виде отеков, появления белка в моче и т.д.), в тяжелых случаях наблюдается патология свертываемости крови.

На популярный вопрос «Зависит ли токсикоз от пола будущего ребенка?» ответ один: однозначно нет. Ни на один из факторов, являющихся причиной гестоза, половая принадлежность плода повлиять не может.

Все первые признаки беременности подробно описаны в . А — расписано, на каком сроке и с помощью УЗИ можно достоверно узнать пол будущего ребенка.

Полезное видео

Известно, что пол будущего ребенка определяется в момент зачатия и зависит от того, какой сперматозоид оплодотворит яйцеклетку. Является ли это соединение случайным, или можно на него каким-то образом воздействовать:

Заключение

  1. Сперматозоиды продуцируются половыми железами мужчины, что предполагает то, от кого зависит пол будущего ребенка.
  2. Факт того, что яйцеклетку может оплодотворить сперматозоид как с Х-, так и с Y-хромосомой, отвечает на вопрос, почему половая принадлежность ребенка зависит от отца, а не от матери.