Патофизиология экстремальных состояний. Кардиогенный шок

  • Дата: 16.06.2019

Поскольку главным патогенетическим механизмом шокового состояния является снижение перфузии органов и тканей, можно ожидать примерно одинаковое развитие патофизиологических реакций при различных вариантах шока. Частные компоненты этой реакции в отдельных случаях могут несущественно разли­чаться, однако общая направленность их бывает обычно при­мерно одинаковой.

Нейроэндокринные реакции. Комплекс нейроэндокринных изменений при шоке может рассматриваться двояко: с одной стороны, это механизм запуска всех последующих ответов ор­ганизма на патологический инцидент, вызывающий снижение минутного объема кровообращения, с другой - это приспособ­ление организма к новым условиям существования, вызванным снижением тканевой перфузии .

Феномен снижения объема перфузии в организме улавли­вается рецепторами низкого давления, локализующимися в пра­вом предсердии, и барорецепторами высокого давления в аорте и в зоне каротидного синуса. Это является пусковым механиз­мом увеличения секреции АКТГ, АДГ и гормона роста, проду­цируемых гипофизом. Одновременно происходит активация надпочечникового секреторного аппарата через периферические симпатические пути, в результате которой в кровь выделяется большое количество адреналина и норадреналина. Увеличение продукции АКТГ и ишемическая активация ренин-ангиотензиновой системы стимулирует освобождение надпочечниками кортизола и альдостерона. Центральным «пультом», воспринимаю­щим патологическую периферическую шоковую- афферентацию, является, по-видимому, гипоталамус, откуда эфферентная ком­пенсирующая импульсация распространяется через ретикуляр­ную формацию ствола мозга, вентролатеральные и вентромедиальные ядра и гипофиз.

В целом нейроэндокринные ответы на остро возникшее шо­ковое состояние можно разделить на немедленные и отсрочен­ные. Высвобождение катехоламинов из адреналовой системы и симпатических нервных ганглиев, которое обеспечивает оптими­зацию гемодинамики, а также последующее освобождение АДГ, альдостерона и кортизола, приводящие к задержке Na + и воды и обеспечивающие поддержание волемии, являются выражени­ем такой немедленной компенсации. Происходит также актива­ция гликогенового пула в связи с дефицитом О 2 и усилением анаэробного метаболизма. Гипергликемия, частично обуслов­ленная катехоламинемией, высвобождением глюкагона, корти­зола и гормона роста, связана главным образом с угнетением секреции инсулина. Хотя катаболический характер метаболизма не выгоден для организма, он позволяет кратковременно улуч­шить условия гемодинамики и оптимизировать метаболизм углеводов в миокарде.


Отсроченный ответ на шоковое состояние реализуется уве­личением секреции тироксина, а также усилением антагонизма между андрогенами и катехоламинами, что позволяет сберечь быстро истощающиеся источники глюкозы.

Нейроэндокринная стимуляция лимбической системы вызывает беспокойство и возбуждение больного. Иногда возникает страх смерти. Особенно выражен он при развитии острого ин­фаркта миокарда, сопровождающегося болевым синдромом и гипотензией, а также при острой кровопотере. Проявлению нейроэндокринных реакций при шоке способствуют также снижение температуры тела и общее охлаждение. Дополнитель­ным фактором в развитии нейроэндокринной реакции на шок является активация хеморецепторных механизмов аорты и каротидного синуса, которые реагируют на снижение концентра­ции Рао 2 изменения Ра СО2 и рН. Таким образом, конечным эффектом гормональных пертурбаций является повышение тонуса периферических сосудов, т. е. повышение периферического сосудистого сопротивления, перераспределение общего кровото­ка, увеличение работы миокарда, задержка воды и солей поч­ками и повышение уровня глюкозы в крови.

Системное кровообращение. На первоначальных этапах раз­вития каждый из вариантов шока имеет собственную гемодинамическую характеристику. Так, гиповолемический шок ха­рактеризуется низкой преднагрузкой, которая и обусловливает синдром малого выброса. При кардиогенном шоке синдром ма­лого выброса возникает вследствие миокардиальной несостоя­тельности при достаточной преднагрузке. При септическом шоке даже на ранних стадиях его развития могут иметь место сни­жение преднагрузки, постнагрузки и угнетение сократительной функции миокарда. В поздних стадиях развития практически всех вариантов шоковых состояний наблюдаются многообраз­ные сочетающиеся формы поражения кровообращения, обуслов­ленные периферическим сосудистым параличом, потерей жидко­сти в интерстициальное пространство, наконец, токсической де­прессией миокарда. Рассмотрим эти факторы более подробно.

Гиповолемия . При потере объема крови из замкнутого сосудистого пространства компенсация возможна двумя путя­ми: укорочением времени кругооборота крови благодаря тахи­кардии с сохранением сердечного выброса, близкого к норме, и мобилизацией всей депонированной крови. Острая гиповолемия, возникшая в результате кровопотери, ведет к снижению венозного возврата. Поскольку снижение ударного объема, сердечного выброса и артериальная гипотензия уменьшают ба-рорецепторную стимуляцию, вазомоторный центр отвечает на это мобилизацией адренергического компонента. В результате частота сердечных сокращений и сократимость миокарда уве­личиваются, более экономно (в пользу жизненно важных орга­нов) начинает распределяться ОЦК. Одним из важнейших элементов компенсации потерянного ОЦК является перемещение жидкости из интерстициального пространства в капиллярное. Этому способствует снижение капиллярного гидростатического давления. В острой фазе, т. е. немедленно после кровопотери, прирост ОЦК за счет интерстициальной жидкости может соста­вить 1 л/ч. В результате гемодилюции снижается также кон­центрация белка в плазме.

Сердечный выброс, который является принципиальной детерминантой адекватного периферического кровообращения, зависит от венозного возврата . Компенсаторный механизм, который приводит к увеличению венозного возврата при шоке и обеспечивает необходимое увеличение преднагрузки, может быть реализован при шоке снижением емкости венозного русла. На первых по­рах этот механизм способен поддерживать адекватное крово­обращение. Периферическая вазоконстрикция, венозная и арте­риальная, обеспечивается комплексом возникающих при шоке реакций. Главными из них являются симпатическая активация, циркуляция в крови катехоламинов, ангиотензина-II, появляю­щегося в результате активации ренин-ангиотензиновой системы и секреции вазопрессина (АДГ).

В описываемых условиях всеобщей периферической вазоконстрикции, включая и венозные емкостные сосуды, как правило, наблюдается дилатация сосудов сердца, мозга, надпочечников и гипофиза. Кровообращение в коже, скелетных мышцах, со­судах органов брюшной полости резко снижается. Этот фено­мен перераспределения кровотока, получивший название «централизация кровообращения», в меньшей степени выражен в сосудах печени и почек. В этих органах он зависит от абсо­лютного объема кровопотери: при массивном кровотечении вместе с уменьшением общего спланхнического кровообращения и, следовательно, с уменьшением портального кровообращения об­щий кровоток в печени также уменьшается.

Однако при большой кровопотере механизмы поддержания адекватного кровообращения в сердце и мозге постепенно исто­щаются и наступает также обеднение кровотока в этих ор­ганах.

Артериальный тонус. Повышение системного арте­риального сопротивления является следствием артериолярной констрикции и реализуется также путем симпатической акти­вации, через повышение циркулирующих катехоламинов, ангио­тензина-II и вазопрессина. Возникающее вследствие этого по­вышение постнагрузки приводит к снижению сердечного вы­броса. Однако кровообращение в сердце и легких в силу механизмов централизации кровообращения, описанных выше, длительно остается достаточно высоким. Компенсаторная вазо­констрикция наиболее характерна для острой массивной крово­потери. Но она может наблюдаться также при кардиогенном шоке и в гиподинамической фазе септического шока.

В ранних фазах развития септического шока, характеризующихся циркуляторной гипердинамией, как правило, имеет место снижение периферического сосудистого сопротивления. Возмож­но, это связано с прямым влиянием быстро накапливающейся бактериальной флоры и эндотоксинов на сердечно-сосудистую систему и клеточный метаболизм . Клинические различия во влия­нии грамположительной и грамотрицательной флоры на пери­ферический сосудистый тонус установить невозможно . Непосредственной причиной снижения периферической сосудистой резистентности являются открытие низкорезистент­ных артериовенозных шунтов и непосредственный сброс крови через них. Неизбежным следствием этого является развиваю­щаяся тканевая гипоксия. У больных в связи со сниженной экс­тракцией О 2 тканями артериовенозная разность по О 2 уменьша­ется. В ряде случаев коэффициент экстракции О 2 [ДЭО 2 = = (С ао -C vo)/Са 0 ] составляет 0,1-0,15, что в 1,5-2 раза ниже нормы . Для поддержания достаточ­ного уровня тканевой оксигенации в подобных условиях необ­ходимо увеличение объемного кровотока в 2-3 раза. В позд­них фазах развития шока, несмотря на продолжительную вазо-констрикцию и перераспределение крови на периферии, наблю­дается снижение преднагрузки, объясняемое опустошением капиллярного функционирующего русла и, главное, жидкостной экстравазацией. Этим и определяется вторичный гиповолемический синдром при септическом шоке. Вместе с миокардиодепрессией гиповолемия формирует синдром малого выброса .

Сердечный выброс. Важнейшими составляющими эле­ментами СВ являются сократимость миокарда и частота сердеч­ных сокращений. Усиление этих функций как вместе, так и раз­дельно приводит к увеличению СВ. Однако усиливающие ре­зервы этих механизмов ограничены. При тахикардии, близкой к 170-180 мин -1 , наступает обратный эффект - снижение СВ, поскольку уменьшается время диастолического наполнения сердца. Оба эффекта могут быть обусловлены симпатической стимуляцией и циркуляцией катехоламинов.

В качестве активаторов кровообращения при шоке могут рассматриваться также кинины, серотонин, гистамин, энкефалины, эндорфины и метаболиты арахидоновой кислоты. Однако физиологическое значение всех этих субстанций, их роль в генезе компенсаторных и патологических реакций при шоковых состояниях окончательно не ясны.

Снижение постнагрузки, различные компенсирующие изме­нения преднагрузки довольно долго компенсируют нарастаю­щую депрессию миокарда, и СВ длительно остается удовлетво­рительным для обеспечения жизненно важных органов. Относительно значения изменений СВ у больных в шоковых состояниях имеются различные точки зрения. Однако преобладает мнение, что высокий СВ является достаточно благоприятным прогностическим признаком . По общим оценкам, сердечный индекс более 3,1 л/(мин-м 2) при шоке кор­релирует с выживанием больных (r=0,86). L. D. McLean и соавт. (1967) при наблюдении за 28 больными в состоянии септи­ческого шока установили, что способность организма повы­шать сердечный индекс на 1 л/(мин-м 2) при соответствующей инфузионной терапии свидетельствует о высокой вероятности выживания.

В отсутствие каких-либо причин, например действия миокардиальных депрессантов, снижение сократительной функции миокарда (его инотропизма) зависит от снабжения сердца кислородом. Следует отметить, что в норме экстракция О 2 сердцем из крови весьма высока в отличие от остальных тканей и составляет около 0,65. Повышение экстракции до 0,75-0,8 свидетельствует о гипоксии миокарда . Таким образом, снабжение сердца кислородом зависит от сте­пени кровоснабжения миокарда. Снижение коронарного крово­обращения, развивающееся при любом варианте шока, сущест­венно ухудшает сократительную функцию миокарда. Гипоксическое поражение метаболизма миокарда у больных в состоянии шока является одним из важнейших факторов формирования необратимого шока.

Вторичное повышение постнагрузки в ответ на снижение сердечного выброса при септическом шоке в настоящее время не доказано. Первичные изменения периферических сосудистых реакций и, следовательно, изменения преднагрузки и постна­грузки происходят при септическом шоке обычно в связи с интоксикацией. Депрессия миокарда, возникающая, как прави­ло, в ранних стадиях септического шока, но мало заметная, связана со снижением чувствительности адренергических ре­цепторов к катехоламинам (норадреналину и адреналину).

Физиологическая компенсация дефицита внутрисосудистого объема. Физиологическая компенсация может быть удовлетво­рительной даже при 50% снижении сердечного выброса и поте­ре 35% ОЦК. С клинических позиций важно отметить, что уменьшение ОЦК на 25% может протекать без гипотензии . Тем не менее поддержание адекват­ного объема плазмы является одним из важнейших условий обеспечения удовлетворительного кровообращения и предупреждения циркуляторной гипоксии. Длительная физиологиче­ская ишемия всегда опасна развитием необратимости микроциркуляторных расстройств и необратимости критического со­стояния в целом.

Компенсаторные реакции в условиях массивной кровопотери могут быть эффективными лишь в случае достаточно скорого восстановления ОЦК. Компенсаторное восстановление потерян­ного объема крови имеет две фазы: сначала восстанавливается водная часть плазмы, позже происходит восстановление про­теинов . В первой фазе сни-

жение гидростатического давления в капиллярах, возникающее в результате прекапиллярного спазма, способствует быстрому перемещению жидкости из интерстициального пространства в капиллярное русло. Подобные внеклеточные перемещения жидкостей способствуют восстановлению до 50% объема по­терянной крови. При этом развивается компенсаторная гемодилюция со снижением гематокрита.

Вторая фаза восстановления объема потерянной плазмы начинается с повышения ее осмоляльности, преимущественно за счет глюкозы.

Повышение осмоляльности плазмы происходит пропорцио­нально степени кровопотери и вскоре ведет к гипертоничности интерстициального пространства. В результате образуются осмо­тические градиенты между клеточным и внеклеточным прост­ранством, которые приводят к перемещению жидкости из клеток в интерстициальное пространство. В свою очередь повышение водного объема интерстициального пространства вызывает транскапиллярное перемещение альбумина из внеклеточного в сосудистое пространство. Полное восстановление потерянного объема крови зависит не только от описанного процесса воз­мещения объема плазмы, но и от скорости репарации эритро­цитов и других клеточных компонентов крови.

Расстройства микроциркуляции. Как ни странно, расстрой­ства микроциркуляции оказались наиболее трудно изучаемой частью проблемы шока. Это связано с тем, что при шоке изме­нения микроциркуляции в различных частях организма, его тка­нях и органах неодинаковы и неоднозначны.

Поскольку все нейрогуморальные реакции при шоке вызы­вают изменения различных гемодинамических параметров (та­хикардия, изменения периферического сосудистого сопротивле­ния и др.), которые потенциально опасны для одних органов (например, для почек и кишечника) и играют охранительную роль для других (сердце и мозг), соответствующие расстройства микроциркуляции тоже могут быть протективными для одних органов и разрушающими для других. Катехоламины, напри­мер, суживают сосуды почек и кишечника и, следовательно, ухудшают кровообращение в них, но расширяют сосуды сердца и мозга, увеличивая тем самым объемное кровообращение в этих органах.

Состояние микроциркуляции зависит от характера работы и чувствительности гладкой мускулатуры сосудов, контролирую­щей их способность к дилатации и констрикции. В ранних фа­зах кардиогенного и гиповолемического шока имеет место высо­кий симпатический тонус. Развитие в этом периоде ишемии, приводящей к образованию большого количества побочных про­дуктов метаболизма, приводит к преобладанию артериального тонуса, его доминированию и компенсаторному открытию ка­пиллярной сосудистой сети . Кровоток становится пассивным, зависящим от абсолютного системного давления. Однако сосудистая ауторегуляция сохраняется лишь в ранних стадиях шока, а с наступлением характерной для любого шока фазы токсичности артериолярный тонус исчезает и тканевой кровоток становится практически неуправляемым. Весьма уязвимым оказывается мозговое кровообращение, осо­бенно у людей пожилого возраста .

В ранних и обратимых стадиях шока, когда работают ком­пенсаторные механизмы и поддержание волемии обеспечивает­ся инфузионной терапией, кровоснабжение тканей и органов остается удовлетворительным. Необратимость начинается с то­го момента, когда кровеносные сосуды, включая капиллярную сеть, прекращают реагировать на к.онстрикторные факторы и постоянно остаются открытыми. Переполнение капиллярного сосудистого русла приводит к уменьшению венозного возврата, что впоследствии способствует формированию малого выброса. Возникновение гиперкоагуляции и присоединение ДВС-синдрома содействуют аккумуляции значительных количеств крови и плазмы в периферических сосудах. В результате симпатической вазоконстрикции, проявляющейся первоначально как ответ на гипотензию, нарушаются функции прекапиллярных артериол. В меньшей степени подобные функциональные расстройства ка­саются посткапиллярных венул. В результате гидростатическое давление в капилляре повышается. В условиях повышенной капиллярной проницаемости это способствует переходу значи­тельной части плазмы в периваскулярное пространство; так раз­вивается интерстициальный отек.

Сосудистые медиаторы, освобождающиеся при шоке, такие как ангиотензин-II, метаболиты арахидоновой кислоты и кинины, оказывают селективное воздействие на систему афферент­ных артериол и систему эфферентных венул. В частности, эти вещества могут вызывать образование артериовенозных шунтов при сопутствующей окклюзии капиллярного русла и тем самым менять взаимоотношения между давлением и потоком в капиллярной системе. Это в конечном счете извращает перифе­рическую микроциркуляцию, снижает эффективную, доставку О 2 тканям и отрицательно влияет на потребление тканями кис­лорода. Одновременно описанные микрососудистые аберрации способствуют агрегации тромбоцитов и микрососудистому тромбированию. Образовавшиеся внутрикапиллярные сгустки высво­бождают в последующем вазоактивные субстанции (простаноиды и серотонин), которые в комплексе с непосредственным гипоксическим фактором оказывают повреждающее влияние на сосудистый эндотелий, вызывая повышение капиллярной проницаемости. Конечным физиологическим результатом рас­стройств микроциркуляции являются образование интерстици­ального отека, дальнейшее перераспределение кровотока и до­полнительная потеря ОЦК.

Хотя окончательно не ясно, какие из описанных элементов сосудистых расстройств наиболее важны в патогенезе шокового состояния, известно, что гипоксия играет главную роль в генезе расстройств капиллярной проницаемости . Подобно другим клеткам, капиллярный эндотелий и его функция в значительной степени зависят от кислород­ного снабжения, и его проницаемость резко увеличивается в условиях гипоксии. При накоплении жидкости в интерстициальном пространстве увеличиваются межклеточные расстояния, что отрицательно сказывается на ходе клеточных метаболиче­ских процессов. Описанные изменения микроциркуляции ха­рактерны практически для всех органов, но особенно отчетливо выражены в капиллярах легких при септическом шоке. Именно вследствие подобного процесса формируется так называемый синдром капиллярного просачивания, в значительной степени зависящий от этиологии шока .

Однако окончательно вопрос о генезе синдрома капиллярно­го просачивания пока не решен. Имеются сведения о том, что сама по себе гипоксия не усиливает капиллярное просачивание. Этот процесс скорее может быть связан с высвобождением кислородобусловленных свободных радикалов, возникающим в ре­зультате быстрого возмещения объема потерянной плазмы, а также использования высоких концентраций О 2 во вдыхаемой смеси во время первичных восстановительных мероприятий в ходе лечения шока. Известно, например, что перекисный анион, являющийся главным компонентом системы кислородного ра­дикала, оказывает непосредственное повреждающее влияние на клетки и клеточные мембраны . Пока неясно, как можно избежать влияния этих токсических анионов на микроциркуляцию в организме, при шоке и, в частности, на микроциркуляцию в легких.

Расстройства метаболизма. Развивающаяся в результате гипоперфузии тканевая гипоксия приводит к усилению анаэроб­ного гликолиза в ходе метаболических процессов. Вместо вклю­чения в цикл лимонной кислоты через СоА пируват превраща­ется в лактат (L -). Повышение концентрации l- в крови пред­ставляет собой явление, наиболее характерное для шоковых состояний. Каждый миллимоль L - высвобождает 1 ммоль Н + , что снижает буферную емкость и приводит к системному аци­дозу. Если ацидоз глубокий, то он существенно изменяет все сосудистые реакции организма, ухудшает кровообращение и может вести к необратимости шока и смерти.

Нормальной реакцией на развитие шокового состояния явля­ется также гипергликемия. При шоке, как уже указывалось, имеет место также повышение продукции инсулина [Гельфанд Б. Р. и др., 1988]. Однако эта нормальная реакция, на­правленная на поддержание анаболического компонента мета­болизма, не в состоянии противостоять катаболической направ­ленности, вызванной гиперпродукцией катехоламинов, кортизола и глюкагона , и у больного развивается ги­пергликемия. Бесспорно, что биологическое значение гипергликемии при шоке сугубо положительно, так как она поддержи­вает возможность покрытия высокого метаболизма миокарда и мозга.

Основными источниками глюкозы в этих ситуациях явля­ются мобилизация гликогена преимущественно из печени, а так­же из мышц и стимуляция глюконеогенеза с образованием зна­чительного количества глюкозы при распаде мышечных белков с последующим их метаболизмом в печени до образования свободной глюкозы.

Высокий уровень катехоламинов способен селективно ингибировать секрецию инсулина, что также приводит к гипергли­кемии. Описанный метаболический ответ способствует поддер­жанию метаболизма мозга, поскольку утилизация глюкозы в нем осуществляется с минимальным участием инсулина. Таким образом, перестройка метаболизма углеводов при шоке осу­ществляется в ущерб периферическим тканям, но в пользу це­ребрального и частичного миокардиального метаболизма. Сни­жение интенсивности использования глюкозы в периферических тканях также способствует поддержанию высокого уровня гли­кемии.

При шоке повышается концентрация триглицеридов и жир­ных кислот в крови [Гельфанд Б.Р. и др., 1988], образование которых стимулируется катаболическими гормонами . Этот липолитический эффект, антагонистичный действию инсулина, также направлен на поддержание достаточного энер­гетического пула организма для покрытия резко возросших, но не обеспеченных метаболических потребностей.

Высвобождается также большое количество других метабо­лически и гемодинамически активных факторов. В крови можно обнаружить повышенный уровень эндорфинов и других опиатоподобных факторов, которые могут способствовать гипотензии и депрессии миокарда, особенно при тех формах шока, когда гиповолемия не является основным этиологическим фактором .

В последние годы обращают особое внимание на повыше­ние уровня метаболитов арахидоновой кислоты при шоке, глав­ным образом на, тромбоксан А 2 и простациклин, которые спо­собствуют усилению сердечно-легочной недостаточности . Эти субстанции, являющиеся антагонистами по физиологическому эффекту (тромбоксан А 2 вызывает агре­гацию тромбоцитов и является вазоконстриктором, а простацик­лин ингибирует агрегацию тромбоцитов и приводит к вазодила-тации), в значительной степени определяют «качество» шока в зависимости от того, какой из них преобладает по концент­рации.

В метаболических пертурбациях при шоке существенную роль играют также гормоны щитовидной и паращитовидной желез. Поскольку тироксин участвует в регуляции потребления кислорода, его дефицит, развивающийся при снижении базального кровоснабжения щитовидной железы, сам по себе ухудша­ет тканевый метаболизм при шоке. Нарушения кальциевого метаболизма, развивающиеся вследствие изменений синтеза или высвобождения паратгормона или тирокальцитонина, играют важную роль в изменениях клеточных функций.

Суммируя метаболические расстройства, развивающиеся при шоке, следует выделить важнейшие из них: 1) гипергликемию; 2) мобилизацию жиров, выражающуюся в повышении в крови уровня свободных жирных кислот; 3) катаболизм белков с по­вышением синтеза мочевины и ароматических аминокислот, яв­ляющихся «сырьем» для нейромедиаторов (в том числе лож­ных), в частности адреналина, норадреналина, серотонина, до­фамина и др.; 4) повышение внеклеточной осмоляльности.

Гипоксия клеток. Важнейшим для функционирования клеток является полноценное снабжение их кислородом. Аэробный метаболизм наиболее эффективно восстанавливает высокоэнер­гетические фосфаты, необходимые для нормального хода мета­болических процессов. В условиях дефицита кислородного снаб­жения клеточный метаболизм частично или полностью перехо­дит на анаэробный путь. Большая часть высокоэнергетических связей нарушается, эффективность клеточной деятельности сни­жается. Нарастающий внутриклеточный ацидоз отрицательно влияет на кинетику ферментов .

Преходящая гипоксия клеток - нормальное явление в ор­ганизме. Примером является гипоксия мышц в процессе рабо­ты или после нее. Сама по себе гипоксия побуждает организм к усилению кровоснабженя зоны напряженной работы. Однако если такого усиления кровоснабжения не происходит, в част­ности при шоке, то гипоксия приобретает патологический, по­вреждающий характер. Чувствительность различных органов и тканей к повреждающему воздействию гипоксии неодинакова. Астроциты, например, переносят гипоксию без серьезных по­следствий не более 15 с, но печень может нормально функцио­нировать в условиях гипоксии (практически в анаэробных усло­виях) более 1 ч . Лишь скелетные мышцы имеют некоторый запас О 2 (в виде соединения с миогемоглобином) для «экстренных нужд» и могут переносить гипоксию около 30 мин . В целом резистентность к гипоксии зависит от снабжения органа О 2 и со­держания гликогена в клетке.

В условиях гипоксии повышается проницаемость клеточной мембраны для глюкозы и начинаются катехоламинобусловленные процессы анаэробного гликолиза, обеспечивающие минимум энергетических субстратов для продолжения жизни клетки и поддержания ее специфической функции. В нормальных усло­виях анаэробный гликолиз способствует усилению кровоснабже­ния и кислородного обеспечения заинтересованной зоны (или организма в целом). При гиповолемии или ухудшении насосной функции сердца, т. е. в условиях шока, этот механизм компен­сации гипоксии становится невозможным.

Сущность гипоксического повреждения клетки заключается в прекращении высокоэнергетических реакций в связи со сни­жением содержания АТФ. На экспериментальных моделях шо­ковых состояний показано, что перфузия организма растворама дтф-MgCl 2 снижала смертность животных со 100 до 27% . Основную протективную роль в клетке играет ее билипидная мембрана , которая хорошо прони­цаема для К+ и плохо проницаема для Na+. Недостаточная про-тективная функция мембраны в конце концов приводит к ги­бели клетки.

В результате гипоксии нарушается деятельность внутрикле­точного натриевого насоса, возникает внутриклеточный отек, который поражает внутриклеточные органеллы, главным обра­зом митохондрии и лизосомы. Из-за ускоренной диссоциации АТФ на АДФ и фосфат кальций покидает органеллы. Внутри­клеточное дыхание определяет запасы кальция в клетке. Пере­мещению кальция из органелл во внутриклеточное пространство-способствует снижение проницаемости мембран. Таким обра­зом, кальций накапливается в клетке. Это имеет некоторое по­ложительное значение, так как внутриклеточный кальций (Ca i)-тормозит действие АТФ-транслоказы.

Центральная роль, которую играет кальций в обмене мио­карда, в настоящее время достаточно точно документирована. Кальций принимает участие как в процессах возбуждения сердечной мышцы, так и в процессах сокращения. Оно заклю­чается в постоянном медленном движении Са 2+ через каналы а сарколемме, обеспечивающем сердечный потенциал действия. стоянно высокая концентрация Са 2+ в клетке приводит к уко­рочению периода мышечной релаксации; при этом возможна остановка сердца в систоле. Циклические АМФ и АТФ прини­мают участие в осуществлении медленных передвижений Са 2 + по каналам путем фосфорилирования связанных с мембранам» белков, которые облегчают продвижение кальция в обоих на­правлениях .

Циклический АМФ (цАМФ), возможно, играет особую роль в общих путях регуляции кальция. Высказано предположение, что контроль за энергетическими функциями клетки (возбуждение, сократимость) может осуществляться с помощью АТФ, концентрация которого всегда определяет число открытых каль­циевых каналов, а следовательно, сократимость клетки и рас­ходование энергии .

В условиях гипоксии наряду со снижением концентрации внутриклеточного цАМФ происходит снижение чувствительно­сти клеток бета-адренергической стимуляции. Как известно, регио­нальная ишемия может снизить рН до 6,8; полная блокада (инактивация) медленных кальциевых каналов наступает при рН 6,4 . Установлено, что отрицательный инотропизм и периферическая вазодилатация, развивающаяся под влиянием некоторых эндотоксинов, возни­кают в результате значительного и непосредственного повреж­дения АТФазы, зависящей от потребления Са 2 + саркопластическим ретикулумом. Положительный инотропизм, возникающий при инфузии Са 2 + (а также дексаметазона), обусловлен повы­шением скорости перемещения Са 2 + и АТФ в митохондрии .

При сепсисе, кроме непосредственного влияния гипоксии, имеет значение первичное нарушение клеточного метаболическо­го процесса, например изменений метаболизма аминокислот, жиров и углеводов. Окончательно механизмы этих нарушений метаболизма не ясны, хотя известно, что основное проявление этих сдвигов заключается в повышении концентрации пирувата .

Помимо гипоксии, целость и функция клеточной мембраны могут нарушаться под влиянием эндотоксинов и других, воз­можно, неидентифицированных факторов, которые могут накап­ливаться в организме при шоке.

Нарушения водно-электролитных взаимоотношений, влияю­щие на интегрированную деятельность самой клетки и ее мем­браны, изменяют также характер ответа клетки на воздействие дополнительных субстанций, появляющихся в ходе шока, таких как катехоламины, кортизол, глюкагон и инсулин. Реакция клетки на эти субстанции может стать ослабленной или усилен­ной в зависимости от состояния внутриклеточной энзимной активности и выраженности шока.

Следует подчеркнуть, что все расстройства клеточного ме­таболизма, нарушения функции клеточной мембраны и рас­стройства ответа клетки на нормальные медиаторные факторы при шоке являются вторичными по отношению к расстройствам микроциркуляции и находятся в пропорциональной зависимости от них.

Эндотоксемия. В условиях тканевой ишемии (гипоксии) об­разуется значительное количество различных вазоактивных веществ. Наиболее известные из них - лизосомные ферменты - в избытке образуются в печени, почках, селезенке, других орга­нах. Стимулом к их высвобождению являются ишемия, гипо­ксия, ацидоз и сепсис . Их концентрация в крови повышается с увеличением длительности шока, а дейст­вие может быть несколько уменьшено применением ингибиторов лротеаз- трасилола или контрикала. Лизосомные ферменты, помимо того, что дают прямой цитотоксический эффект, небла­гоприятно влияют на сократимость миокарда и вызывают коро­нарную вазоконстрикцию. Лизосомные ферменты разрушают эндогенные протеины, главным образом а 2 -глобулины, и способ­ствуют превращению кининогена в кинин.

Известно множество различных кининов, сходных по эффекту с брадикинином. Их объединяют главным образом четы­ре общих эффекта: способность вызывать глубокую вазодилатацию, повышать капиллярную проницаемость, угнетать сокра­тимость миокарда, тесно взаимодействовать с фактором XII (Хагемана) и таким образом активировать процесс превраще­ния протромбина в тромбин, т. е. активировать систему сверты­вания крови . Особенно велика роль кини­нов в механизмах развития эндотоксинового шока в тех случа­ях, когда преимущественный путь возникновения его связан с кишечником .

Легкие во время шока также могут быть вовлечены в кининовую активность организма. Известно, что они могут быть как местом образования кининов, так и местом их инактивации . Роль кининов в генезе эндотоксинового шока до конца не ясна. Возможно, существуют еще не изученные кинины и кининоподобные факторы, прини­мающие участие в формировании шока . Роль гистамина как «соучастника» инициации гемодинамических расстройств, особенно в ранних (гипотензив­ных) стадиях шока, известна довольно давно и подтверждена в более позднее время .

Важное значение в качестве вазоактивных субстанций, опре­деляющих характер и направленность микро- и макрососудистых сдвигов при шоке, имеет разнородная группа карбоксиловых кислот под общим названием «простагландины». Среди них наиболее изучены простациклин (PGI 2) и тромбоксан А 2 (PGAs). Спектр действия простагландинов выражен вазоконстрикторным (PGA 2 и PGF 2 a), вазодилатирующим (PGE 2 и PGI 2) эффектом, усилением мембранной проницаемости (PGD 2 и PGE 2), усилением агрегационных свойств тромбоцитов (PGA 2 и PGE 2) и торможением их агрегации (PGD 2 , PGE, и PGI 2). Группы простагландинов Е и F дают противоположно направ­ленные вазомоторные эффекты. При общей оценке вазомотор­ных реакций организма в условиях септического шока имеют значения количественные взаимоотношения этих субстратов. Простагландины могут быть обнаружены в очень малых коли­чествах в артериальной крови, так как метаболизируются пре­имущественно в легких (хотя возможен и обычный - печеноч­ный - путь их метаболизма) . При экспериментальном эндотоксиновом шоке отмечен высокий уровень простагландинов в крови. Простагландин PGF 2 cc в зна­чительной степени обусловливает раннюю легочную гипертен-зию при эндотоксиновом шоке .

Важнейшим фактором, от которого зависит течение эндоток­синового шока, является непосредственное влияние токсинов. Главным объектом их воздействия является также микроцирку­ляция. Различия в эффектах между грамположительной и грамотрицательной флорой в настоящее время во внимание не при­нимаются, и рассматриваются как архаизм . Обе группы микроорганизмов продуцируют токсины. Стафилококки, например, в дополнение к локальной коагулазе выделяют альфа-токсин, который является вазоконстриктором. Однако он же вызывает повреждение эндотелия, усиливает агрегацию тромбоцитов, повышает мембранную про­ницаемость, ведет к разобщению окислительного фосфорилиро-вания . Классическим эндотоксином, высво­бождающимся при распаде грамотрицательных бактерий, явля­ется липид А. Эндотоксины дают множество различных эффектов, главными из которых являются их влияние на сосудистый то­нус и непосредственное повреждение клеток.

При септическом шоке под влиянием эндотоксинов (при уча­стии катехоламинов) снижается периферическая сосудистая резистентность и уменьшается среднее время циркуляции: в кро­вообращение включаются артериовенозные шунты, через кото­рые идет сброс оксигенированной крови непосредственно в венозную систему.

Как уже указывалось, эндотоксин обладает выраженными цитотоксическими свойствами. Главными мишенями являются митохондриальные и клеточные мембраны, в которые оказыва­ется «встроенным» липид А. Возможно, в этом заключается суть механизма разобщения окислительного фосфорилирования .

Эндотоксины оказывают также непосредственное влияние на сосудистый эндотелий и ретикулоэндотелиальную систему, раз­рушая ее и высвобождая при этом нейтрофильные прокоагулянты и тромбогенные фибриногеновые комплексы. Существенно снижается под влиянием эндотоксинов функция фагоцитоза.

Шок - англ. shock "удар", "сотрясение", "потрясение".

Шок - типовой патологический процесс, вызываемый чрезвычайными агентами внешней и внутренней среды и представляющий собой комплекс патологических и защитно-приспособительных реакций в виде перевозбуждения и торможения центральной нервной системы, гипотензии, гипоперфузии, гипоксии органов, тканей и расстройств ме­таболизма.

Диагноз шок ставят при наличии у больного острого на­рушения функций ЦНС, сердца и кровообращения, кото­рое проявляется следующими признаками:

1. холодная, влажная, бледно-цианотичная или мраморная окраска кожи;

2. резко замедленный кровоток ногтевого ложа;

3. беспокойство, затемнение сознания;

4. диспноэ;

5. олигурия;

6. тахикардия;

7. уменьшение амплитуды АД и его снижение.

Таким образом, шок является прежде всего клиническим диагнозом. Симптомы шока развиваются вследствие кри­тического уменьшения капиллярного кровотока пора­женных органов, что ведет к недостаточному снабжению тканей, в том числе нервной, О2 и продуктами обмена и нарушению оттока шлаков.

Итак, патофизиологически шок означает расстройство капиллярной перфузии с недостаточным снабжением О2 и нарушением обмена веществ клеток различных органов, наступающее, как правило, в результате первичного воз­действия шокогенного агента на ЦНС, сердце и систему кровообращения.

Классификация шоков:

В России по общепринятой классификации выделяют 3 группы шоков:

I. Болевой шок.

А. Экзогенный или травматический (при механических повреждениях, ожогах, отморожениях, хирургических вмешательствах).

Б. Эндогенный (кардиогенный, нефрогенный, при брюш­ных катастрофах).

II. Гуморальный шок (гетеротрансфузионный, гемолитический, анафилактический, гормональный, токсический).

III. Психогенный шок.

По классификации акад. В.К.Кулагина различают сле­дующие виды шока:

I. Рецепторный: а) психический; б) болевой; в) электрический.

II Травматический: а) при механической травме (собственно травматиче­ский); б) операционный; в) раневой; г) геморрагический; д) компрессионный(при синдроме сдавления); е) ожоговый.

III. Токсический: а) эндотоксический; б) экзотоксический; в) анафилакти­ческий; г) септический.

IV. Ишемический: а) "турникетный" (при снятии жгута выделяются токсины в кровь); б) при тромбозе или эмболии крупных сосудов.

V. Неврогенный (центрогенный): а) при параличе сосудо-двигательного центра; б) "спинальный" шок (при перерыве, или перерезке спинного моз­га).

VI. Смешанный.

Классификация шоков Weil et Shubin (США) составле­на по этиологическому признаку, как и две предыдущие.

I. Гиповолемический, в силу гиповолемии (кровотече­ние, обезвоживание, потеря белков).

II. Кардиогенный, в силу сердечной недостаточности (инфаркт миокарда, сердечная аритмия).

III. Бактериальный , в силу бактериемии (бактериальные токсины (эндотоксины).

IV. Гиперреактивный, в силу повышенной чувствитель­ности (анафилаксия, реакция на лекарства).

V. Неврогенный . в силу действия неврогенных факторов (вазомоторный паралич, спинальный шок, ганглионарная блокада).

VI. Обструкционный , в силу наличия препятствий кровотоку (легочная эмболия, расслаивающая аневризма).

VII. Эндокринный , в силу гормональной недостаточности (гормоны коркового и мозгового слоя надпочечников, щи­товидной железы).

Д. А. Еникеев, Патофизиология экстремальных и терминальных состояний. 1997г.

Ожоговый шок. В его патогенезе важную роль играют следующие факторы.

Во-первых, для ожогового шока характерна сильнейшая боль, поскольку обожженные ткани становятся источником мощной болевой импульсации. Вследствие этого эректильная фаза ожогового шока чрезвычайно кратковременна (обычно ее не видят, поскольку она заканчивается до прибытия врача или помещения больного в стационар). Поэтому торпидная фаза при ожоговом шоке протекает крайне тяжело.

Во-вторых, при ожоговом шоке ОЦК снижается вследствие не только сосудистых расстройств, но и в результате интенсивнейшей плазморрагии через обожженную поверхность. Больной теряет огромное количество жидкости и степень сгущения крови при ожоговом шоке значительно выше, чем при шоке любой другой этиологии. Поэтому при ожоговом шоке следует переливать больному не цельную кровь, а плазму или физиологический раствор, с тем, чтобы разбавить эритроцитарную массу (предпочтительны кровезамещающие жидкости, содержащие высокомолекулярные коллоиды, которые создают высокое онкотическое давление в сосудистом русле, восстанавливая ОЦК).

В-третьих, в данной ситуации наблюдается интоксикация за счет всасывания с обширной раневой поверхности продуктов распада тканей. Поэтому в комплекс терапевтических мероприятий при ожоговом шоке обязательно входит дезинтоксикация организма, заключающаяся во введении больших количеств жидкости, содержащей глюкозу, витамины, а также проведение гемодиализа и гемосорбции.

В-четвертых, обожженная поверхность представляет собой обширные раневые ворота инфекции, что требует соответствующих мероприятий (проведение антибактериальной терапии, содержание больных в палатах со стерильным воздухом и др.).

Электрошок. Этот вид шока наступает в результате поражения электрическим током и относится к группе болевых шоков, что и определяет комплекс терапевтических мероприятий. Однако при электрошоке имеется ряд особенностей, которые требуют особого внимания и специфической терапии.

1. Если электрический ток прошел через все тело или через грудную клетку, то возможно развитие фибрилляции желудочков сердца. Поэтому в данном случае при оказании такому пострадавшему первой помощи следует применить закрытый массаж сердца, а при наличии необходимой аппаратуры электрическую дефибрилляцию сердца. Параллельно проводится искусственное дыхание.

2. При прохождении электрического тока через голову возможно глубочайшее угнетение дыхательного и сосудодвигательного центров, в связи с чем нередко приходится часами проводить искусственное дыхание и массаж сердца до тех пор, пока не восстановится деятельность этих центров.

3. В месте поражения электрический ток вызывает электролиз тканей - появляются знаки тока, что ведет к развитию долго не заживающих и с трудом поддающихся лечению местных повреждений.

Кардиогенный шок. При массивном инфаркте миокарда больной может впасть в состояние кардиогенного шока, летальность при котором достигает 90%. В патогенезе этого тяжелого состояния важную роль играют следующие три фактора:

1. Интенсивный болевой синдром, возникающий в результате ишемии обширных участков миокарда и накопления в нем недоокисленных продуктов.

2. Отек миокарда, развивающийся вследствие резкого повышения сосудисто-тканевой проницаемости в сердечной мышце.

3. Сосудистая недостаточность (коллапс), являющаяся выражением тотальных нарушений гемодинамики в организме при массивном инфаркте миокарда.

В связи со сказанным терапия кардиогенного шока должна наряду с ликвидацией болевого синдрома включать мероприятия по быстрому снижению проницаемости мембран (внутривенное введение глюкокортикоидов), степени отека миокарда (применение диуретиков, дренаж лимфы, в том числе и хирургическое дренирование грудного лимфатического протока) и нормализацию сосудистого тонуса.

Гемотрансфузионный шок. Он возникает при переливании больному несовместимой крови. Образующийся при этом комплекс «антиген-антитело» является чрезвычайным раздражителем для сосудистых интерорецепторов, вследствие чего и возникает мощный поток афферентной импульсации в высшие нервные центры. Это было доказано следующими опытами (С. М. Павленко, 1942). У животного отсепаровывался участок кровеносного сосуда, соединенный с организмом лишь нервными стволами. Если этот отрезок сначала отмывался от крови, а затем в него вводилась чужеродная кровь, то расстройств функций организма не наступало. Если же в нем была собственная кровь, то при введении в него чужеродной крови развивалась картина гемотрансфузионного шока: такое же введение в предварительно денервированный отрезок сосуда к шоку не приводило.

При гемотрансфузионном шоке имеются свои клинические особенности, связанные с тем, что при нем наступает гемолиз эритроцитов. Продукты гемолиза особенно сильно повреждают почки, и больной, даже благополучно выйдя из состояния гемотрансфузионного шока, может скончаться в более позднем периоде процесса при явлениях почечной недостаточности. Поэтому в комплекс терапевтических мероприятий при гемотрансфузионном шоке обязательно должны быть включены гемодиализ и гемосорбция.

Что касается остальных видов шока, приведенных в классификационной схеме,*****shem29 то их развитие принципиально не отличается от патогенеза болевого шока, а некоторые особенности течения являются предметом изучения соответствующих клинических дисциплин.

ЦЕЛЬ ЗАНЯТИЯ: дать определение понятия «шок»; изучить общие патогенетические механизмы развития шока, особенности течения и патогенеза различных видов шока.

Базисные знания, необходимые для усвоения данной темы:

Анатомия, гистология: строение сердечно-сосудистой системы

Физиология: функционирование сердца, большой и малый круги кровообращения

Перечень вопросов для подготовки к занятию:

1. Шок: определение понятия, виды шока.

2. Общие патогенетические механизмы развития шока:

Гемодинамическая стадия шока;

Метаболическая стадия шока.

3. Особенности патогенеза различных видов шока: гиповолемического, кардиогенного, септического, анафилактического.

Перечень вопросов для самостоятельного изучения студентами:

1. Гиповолемический шок. Этиология, патогенез, клинические проявления.

2. Септический шок. Этиология, патогенез, клинические проявления.

3. Кардиогенный шок. Этиология, патогенез, клинические проявления.

4. Инфекционно-токсический шок. Этиология, патогенез, клинические проявления.

5. Анафилактический шок. Этиология, патогенез, клинические проявления.

Текстовые задания для самостоятельной работы студентов

Дать определения терминам

централизация кровообращения

синдром малого выброса

гиповолемия

центральное венозное давление (ЦВД)

сладж-феномен

ДВС-синдром

Тестовые задания для контроля исходного уровня знаний студентов

1. ШОК - ЭТО (1):

1. диагноз заболевания

2. типовой патологический процесс

3. типовая патологическая реакция

4. патологическое состояние

5. адаптационная реакция организма

2. ПРИ ШОКАХ ЦЕНТРАЛЬНОЕ ВЕНОЗНОЕ ДАВЛЕНИЕ СНИЖАЕТСЯ, КРОМЕ (1):

1. гиповолемический

2. постгеморрагический

3. септический

4. кардиогенный

5.травматический

3. ПРИ ШОКАХ СНИЖЕНИЕ ВЕНОЗНОГО ВОЗВРАТА КОМПЕНСИРУЕТСЯ (2):

1. тахикардией

2. депонированием крови в зоне портального кровообращения

3. централизацией кровообращения

4. синдромом малого выброса

5. сокращение объема крови в малом круге кровообращения

4. ДЛЯ СЕПТИЧЕСКОГО ШОКА ХАРАКТЕРНО (2):

1. максимальная выраженность синдрома централизации кровообращения

2. отсутствие синдрома централизации кровообращения

3. повышение центрального венозного давления

4. рефрактерность к инфузионной терапии

5.гиперперфузия тканей

5. ПРИ ШОКАХ ЛЮБОЙ ЭТИОЛОГИИ СЛАДЖ-СИНДРОМ РАЗВИВАЕТСЯ НА УРОВНЕ (1):

2.микрососудов

3. артерий

5. коронарных артерий

6. СИСТЕМНАЯ ВОСПАЛИТЕЛЬНАЯ РЕАКЦИЯ ПРЕДСТАВЛЕНА ПРИ (1):

1. кардиогенном шоке

2. септическом шоке

3. анафилактическом шоке

4. гиповолемическом шоке

5. посттравматическом шоке

7. ПРИ ШОКАХ НА УРОВНЕ МИКРОЦИРКУЛЯЦИИ ПРОНИЦАЕМОСТЬ СОСУДОВ (1):

1. не изменяется

2. понижается

3.повышается

4. нет закономерных изменений

5. сначала понижается, затем повышается

8. СИНДРОМ ЦЕНТРАЛИЗАЦИИ КРОВООБРАЩЕНИЯ ХАРАКТЕРИЗУЕТСЯ ПРЕИМУЩЕСТВЕННЫМ КРОВОСНАБЖЕНИЕМ (3):

9. ПОЯВЛЕНИЕ ПРИ ШОКАХ МДФ ПРИВОДЯТ К (1):

1. активации деятельности сердца

2. угнетению сократительной функции сердца

3.тахикардии

4. повышению давления

5. активации интракардиальных механизмов компенсации

Учебная карта занятия:

Шок (от англ. shock - удар, потрясение) - типовой патологический процесс, развивающийся в ответ на воздействие чрезвычайных раздражителей и сопровождающийся остро возникшим критическим состоянием организма с прогрессирующим нарушением систем жизнеобеспечения, обусловленным острой недостаточностью кровообращения, микроциркуляции и гипоксией тканей. Употребление термина "шок" обозначает крайне тяжелое состояние больного, требующее безотлагательного применения интенсивных лечебных мероприятий.

Классификация шока:

1. постгеморрагический

2. гиповолемический

3. травматический

4. кардиогенный

5. септический

6. анафилактический

7. спинальный (нейрогенный)

1. Постгеморрагический шок развивается в результате кровопотери (травма, операционные кровотечения, повреждение органов и тканей патологическим процессом, нарушение свертывания крови)

2. Гиповолемический шок в основе лежит чрезмерная потеря плазмы (ожоги), потеря жидкости (дегидратация), например, при диарее, рвоте и др.

3. Травматический шок. Он развивается на фоне кровопотери, резко выраженного раздражения или повреждения экстро-, интро- и проприорецепторов кожи, слизистых, тканей внутренних органов, мышечной ткани и др.

4. Кардиогенный шок наблюдается:

При снижении насосной функции сердечной мышцы (инфаркт миокарда, миокардиты);

При тяжелых нарушениях сердечного ритма (пароксизмальная тахикардия, мерцательная аритмия);

При тампонаде сердца (тромбоз полостей, кровотечение в околосердечную сумку);

При массивной эмболии легочной артерии.

5. Септический шок возникает при инфекциях, вызванных чаще всего грамотрицательной (кишечная палочка), реже грамположительной микробной флорой (стафилококк, стрептококк).

6. Анафилактический шок состояние резко повышенной чувствительности организма, развивающееся при повторном введении аллергена.

7. Спинальный (нейрогенный) шок - характеризуется внезапным падением тонуса резистивных сосудов при повреждении спинного мозга, приводящее к расширению артерий и артериол, венозному застою за счет снижения венозного возврата крови в правые отделы сердца.

Различные виды шоковых состояний отличаются своими особенностями и требуют специфических лечебных мероприятий. Вместе с тем при всех формах шоковых состояний прослеживаются общие, единые закономерности, которые являются характерными для всех видов шока. В связи с этим различают гемодинамическую фазу шока и метаболическую.

Гемодинамическая фаза шока.

Для любого шока характерно относительное или абсолютное уменьшение ОЦК:

Из-за кровопотери, плазмопотери (постгеморрагический, ожоговый шоки и др.)

Из-за депонирования крови в сосудах микроциркуляторного русла (анафилаксический шок)

Из-за депонирования плазмы в тканях (септический шок)

Из-за нарушения сократительной функции сердца и застоя крови в сосудах емкостного типа (кардиогенный шок).

Снижение ОЦК тесно связано с изменениями центрального венозного давления.

Центральное венозное давление (ЦВД) . Вместимость всей венозной системы 75-80% от всего объема крови и измерение центрального венозного давлениядает косвенные указания как относительно венозного возврата, так и силы сокращения сердечной мышцы, говоря точнее, этот показатель выражает собой отношение между венозным кровотоком и силой сокращения миокарда. Цифры, превышающие 100 и меньше 20 - 30 мм. водн. столба следует считать патологическими. Низкое ЦВД говорит о несоответствии объема крови сосудистому руслу (гиповолемия абсолютная или относительная), что ведет к снижению преднагрузки и уменьшению сердечного выброса. Высокое ЦВД говорит о несостоятельности сердечного насоса.

Синдром малого выброса. Из-за снижения венозного возврата или падения сократительной функции сердца развивается синдром малого выброса: резко снижается ударный и минутный объем крови. Возникает необходимость более рационального распределения объема циркулирующей крови между функционирующими органами. Синдром малого выброса компенсируется увеличением ЧСС и синдромом централизации кровообращения за счет активации СНС.

Но высокая степень ЧСС свыше 120 уд./мин. приводит к катастрофическому падению МО, из-за резкого сокращения времени диастолы, сердце «хлопает впустую».

Централизация кровообращения. Суть явления заключается в сохранении кровотока в жизненно важных органах (головной мозг, сердце, легкие) за счет ограничения тока крови во второстепенных (почки, кожа, ЖКТ).

Снижение циркуляции крови в органах при формировании феномена централизации кровообращения.

Мозг - 0,6 от исходного кровотока Кожа- 2,2 раза
Сердце - 0,6 от исходного кровотока Почки - -7,3 раза
Кишечник - в 3,3 раза Печень - 1,9 раза

Механизм этого феномена связан с 10-30 кратным увеличением выброса катехоламинов в кровь в ответ на стрессорную ситуацию. Избирательное действие катехоламинов на периферические артериальные сосуды обусловлено наибольшим представительством α 2- адренорецепторов. Это явление позволяет поддерживать жизнеспособность организма на критических уровнях. Клиническим опытом доказано, что при наиболее выраженном феномене централизации кровообращения сохраняются наиболее важные условия для успешной коррекции гемодинамики у больных с шоковым состоянием.

Вместе с тем централизация кровообращения приводит к катастрофическим нарушениям в микроциркуляции и метаболизме клеток органов, в которых наиболее резко снижается кровоток. Такое состояние не может продолжаться долго, а является своеобразной скоростной компенсацией при грубом нарушении гемодинамики. Бытует даже выражение, что феномен централизации кровообращения представляет себе "скорую помощь"- способную оказать положительное воздействие на очень короткий промежуток времени. Кроме того,происходит шунтирование и без того малого количества циркулирующей крови по типу "артериола-венула". Это приводит к резкому изменению тканевого и клеточного метаболизма из-за жесточайшей гипоксии.

Вначале внезапная гиповолемия на уровне микроциркулиции ведет к миграции внеклеточной жидкости в сосудистое русло. Физиологический механизм этой миграции заключается в спазме артериол, снижении гидростатического капиллярного давления и переходе перикапиллярной жидкости в капилляр. В первые 5 минут гиповолемии в сосуды может перейти количество жидкости, соответствующее 10-15% нормального ОЦК.

Далее в условиях ишемии, ацидоза происходит паралич прекапиллярного сфинктера. Следствием чего является поступление крови в микроциркуляторное русло на фоне ограничения оттока из-за сохранения спазма посткапиллярного сфинктера. В создавшихся условиях отмечается формирование сладж-синдрома, основа которого выход жидкости за пределы сосудистого русла из-за внезапно возросшего на уровне капилляров гидростатического давления. Сладж-синдром процесс формирования агрегатов клеток крови имеет определенную последовательность. В первые минуты после повреждения в капиллярах и венулах образуются агрегаты из тромбоцитов и хиломикронов - крупных липидных частиц, поступающих в кровь из лимфы кишечника. Они плотно фиксируются к стенке микрососуда с образованием "белого" тромба или уносятся в другие отделы сосудистой системы к новым очагам тромбообразования. В первые часы после повреждения в результате снижения скорости кровотока и сгущения крови в венулах и артериолах образуются эритроцитарные агрегаты. Агрегаты из эритроцитов блокируют микрососуды, еще больше усугубляя и без того нарушенную микроциркуляцию тканей.

Травматический шок – острый нейрогенный фазный патологический процесс, развивающийся при действии чрезвычайного травмирующего агента и характеризующийся развитием недостаточности периферического кровообращения, гормонального дисбаланса, комплекса функциональных и метаболических расстройств.

В патогенезе травматического шока играют роль три основных фактора – нейрогенный, крово– и плазмопотеря и токсемия.

В динамике травматического шока различают эректильную и торпидную стадии. В случае неблагоприятного течения шока наступает терминальная стадия.

Эректильная стадия шока непродолжительная, длится несколько минут. Внешне проявляется речевым и двигательным беспокойством, эйфорией, бледностью кожных покровов, частым и глубоким дыханием, тахикардией, некоторым повышением артериального давления. В этой стадии происходят генерализованное возбуждение центральной нервной системы, чрезмерная и неадекватная мобилизация всех приспособительных реакций, направленных на устранение возникших нарушений. Пусковым фактором в развитии эректильной фазы шока является мощная болевая и неболевая афферентная импульсация из поврежденных тканей. Афферентная импульсация достигает ретикулярной формации ствола мозга и приводит ее в сильное возбуждение. Отсюда процесс возбуждения иррадиирует в кору, подкорковые центры, продолговатый мозг и спинной мозг, приводя к дезинтеграции деятельности центральной нервной системы, вызывая чрезмерную активацию симпатоадреналовой и гипоталамо-гипофизарно-надпочечниковой систем. Наблюдается массивный выброс адреналина, АКТГ, вазопрессина, глюкокортикоидов и других гормонов. Избыточное освобождение катехоламинов вызывает спазм артериол, в которых преобладают α-адренорецепторы, в частности, в сосудах кожи, мышц, кишечника, печени, почек, т. е. органов, которые для выживания организма во время действия шокогенного фактора имеют меньшее значение. Одновременно с периферической вазоконстрикцией возникает выраженная централизация кровообращения, обеспечиваемая дилатацией сосудов сердца, мозга, гипофиза. Централизация кровообращения в начальной фазе шока носит адаптационный характер, обеспечивая в достаточном объеме, почти близком к обычному, кровоток в сосудах сердца и головного мозга. Однако если в дальнейшем не происходит быстрой нормализации объема циркулирующей крови, то она приводит к выраженной гипоксии в тех органах, в которых наступает продолжительное ограничение кровотока.

Эректильная фаза шока быстро переходит в торпидную . В основе трансформации эректильной стадии в торпидную лежит комплекс механизмов: прогрессирующее расстройство гемодинамики, циркуляторная гипоксия, приводящая к выраженным метаболическим расстройствам, дефицит макроэргов, образование тормозных медиаторов в структурах ЦНС, в частности, ГАМК, простагландинов типа Е, повышенная продукция эндогенных опиоидных нейропептидов.

Торпидная фаза травматического шока наиболее типичная и продолжительная, она может длиться от нескольких часов до двух суток. Для нее характерны заторможенность пострадавшего, адинамия, гипорефлексия, диспноэ, олигурия. Во время этой фазы наблюдается торможение активности центральной нервной системы.

В развитии торпидной стадии травматического шока в соответствии с состоянием гемодинамики могут быть выделены две фазы – компенсации и декомпенсации. Фаза компенсации характеризуется стабилизацией артериального давления, нормальным или даже несколько сниженным центральным венозным давлением, тахикардией, отсутствием гипоксических изменений в миокарде (по данным ЭКГ), отсутствием признаков гипоксии мозга, бледностью слизистых оболочек, холодной влажной кожей.

Для фазы декомпенсации характерны прогрессирующее уменьшение МОК, дальнейшее снижение артериального давления, развитие ДВС-синдрома, рефрактерность микрососудов к эндогенным и экзогенным прессорных аминам, анурия, декомпенсированный метаболический ацидоз.

Стадия декомпенсации является прологом терминальной фазы шока , которая характеризуется развитием необратимых изменений в организме, грубыми нарушениями обменных процессов, массивной гибелью клеток.

Характерной особенностью травматического шока является развитие патологического депонирования крови. Касаясь механизмов патологического депонирования крови, следует отметить, что они формируются уже в эректильной фазе шока, достигая максимума в торпидной и терминальной стадиях шока. Ведущими факторами патологического депонирования крови являются спазм сосудов, циркуляторная гипоксия, формирование метаболического ацидоза, последующая дегрануляция тучных клеток, активация калликреин-кининовой системы, образование вазодилатирующих биологически активных соединений, расстройство микроциркуляции в органах и тканях, характеризующихся изначально длительным спазмом сосудов. Патологическое депонирование крови приводит к выключению из активной циркуляции значительной части крови, усугубляет несоответствие между объемом циркулирующей крови и емкостью сосудистого русла, становясь важнейшим патогенетическим звеном расстройства кровообращения при шоке.

Важную роль в патогенезе травматического шока играет плазмопотеря, которая обусловливается повышением проницаемости сосудов вследствие действия кислых метаболитов и вазоактивных пептидов, а также возрастанием внутрикапиллярного давления из-за застоя крови. Плазмопотеря приводит не только к дальнейшему дефициту объема циркулирующей крови, но и вызывает изменения реологических свойств крови. При этом развиваются явления агрегации клеток крови, гиперкоагуляция с последующим формированием ДВС-синдрома, образуются капиллярные микротромбы, полностью прерывающие ток крови.

Кризис микроциркуляции, прогрессирующая недостаточность кровообращения и дыхания приводят к развитию тяжелой гипоксии, которая в дальнейшем определяет тяжесть шокового состояния.

В условиях прогрессирующей циркуляторной гипоксии возникают дефицит энергообеспечения клеток, подавление всех энергозависимых процессов, выраженный метаболический ацидоз, повышение проницаемости биологических мембран. Энергии не хватает для обеспечения функций клеток и, прежде всего, таких энергоемких процессов, как работа мембранных насосов. Натрий и вода устремляются в клетку, а калий выделяется из нее. Развитие отека клетки и внутриклеточного ацидоза приводит к повреждению лизосомальных мембран, высвобождению лизосомальных ферментов с их литическим действием на различные внутривнеклеточные структуры. Денатурированные белки и продукты распада нежизнеспособных тканей начинают оказывать токсическое действие. Кроме того, при шоке проявляют токсическое действие многочисленные биологически активные вещества, в избытке поступающие во внутреннюю среду организма (гистамин, серотонин, кинины, свободные радикалы, креатинин, мочевина и др.). Таким образом, по мере прогрессированил шока, вступает в действие еще один ведущий патогенетический фактор – эндотоксемия. Последняя усиливается также за счет поступления токсических продуктов из кишечника, поскольку гипоксия уменьшает барьерную функцию кишечной стенки. Определенное значение в развитии эндотоксемии имеет нарушение антитоксической функции печени.

Эндотоксемия наряду с выраженной клеточной гипоксией, обусловленной кризисом микроциркуляции, перестройкой метаболизма тканей на анаэробный путь и нарушением ресинтеза АТФ, играет важную роль в развитии явлений необратимого шока.

Течение травматического шока в раннем детском возрасте обладает рядом характерных особенностей, определяемых реактивностью детского организма. Чувствительность к механической травме детей раннего возраста выше, чем взрослых, и поэтому одинаковая по тяжести и локализации травма обусловливает у них развитие более тяжелого травматического шока.

Тяжелая механическая травма у детей вызывает более резкие, чем у взрослых, нарушения кислотно-основного состояния.

Одной из особенностей травматического шока у детей является развитие ранней и тяжелой гипотермии. У многих детей температура тела снижается до 34 – 35 °С, что объясняется возрастными особенностями функционирования центра терморегуляции.