Препарат регулирующий равновесие кишечной микрофлоры бациллюс субтилис. Эффекты активных метаболитов Bacillus subtilis в пробиотическом продукте нового поколения

  • Дата: 16.04.2019
Bacillus subtilis, перспективных для создания новых пробиотиков">

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Гатауллин Айрат Гафуанович. Биологические свойства штаммов Bacillus subtilis, перспективных для создания новых пробиотиков: Дис. ... канд. биол. наук: 03.00.07 Москва, 2005 131 с. РГБ ОД, 61:05-3/1040

Введение

Глава 1. Микробный антагонизм - основа создания биотерапевтических препаратов для коррекции дисбиотических состояний 9

Глава 2. Споровые пробиотики и их воздействие на макроорганизм 18

2.1. Препараты из бактерий рода Bacillus 18

2.2. Современные представления о механизмах лечебно-профилактического действия пробиотиков из бактерий рода Bacillus 26

2.3. Биологически активные вещества, продуцируемые аэробными спорообразующими бактериями 32

2.4. Факторы патогенности бактерий рода Bacillus 34

Глава 3. Объекты и методы исследований 41

3.1. Объекты исследований 41

3.2. Методы исследований 43

3.2.1. Оборудование и методики 45

Глава 4. Характеристика выделенных штаммов 53

4.1. Изучение морфологических и физиолого-биохимических свойств штаммов 53

4.2. Антагонистическая и адгезивная активность штаммов B.subtilis в опытах in vitro 55

4.3. Определение антибиотикоустойчивости и плазмидного профиля штаммов B.subtilis 57

Глава 5. Влияние штамма B.subtilis 1719 на макроорганизм 62

5.1. Изучение токсичности, токсигенности, вирулентности и пробиотической активности штамма B.subtilis 1719 в опытах in vivo 62

5.2. Изучение влияние штамма B.subtilis 1719 на показатели иммунитета в опытах in vivo при экспериментальном дисбиозе 70

Глава 6. Технологическая характеристика штамма B.subtilis 1719 как основы пробиотического препарата 76

6.1. Оценка ростовых свойств на различных жидких питательных средах 76

6.2. Изучение жизнеспособности и антагонистической активности штамма B.subtilis 1719 при хранении 84

Глава 7. Сравнительная характеристика свойств штамма B.subtilis\l\9 и штаммов, составляющих основу некоторых коммерческих препаратов-пробиотиков . 94

Заключение 98

Выводы 107

Список литературы 108

Введение к работе

Актуальность проблемы

V На современном этапе в медицинской микробиологии появились новые

данные, обосновывающие использование сапрофитной микрофлоры, которая способна в процессе своей жизнедеятельности вырабатывать биологически активные вещества (БАВ), подавляющие рост патогенных микроорганизмов, злокачественных опухолей и нормализующие различные патологические и биохимические процессы в организме человека .

В последнее десятилетие для профилактики и лечения заболеваний желу-дочно - кишечного тракта широко используют биопрепараты на основе живых микробных культур спорообразующих бактерий .

Бактерии рода Bacillus, одна из наиболее разнообразных и широко распространенных групп микроорганизмов, являются важными компонентами экзогенной флоры человека и животных .

* Род Bacillus привлекает внимание исследователей с давних времен. Нако-

- пленные знания в области микробиологии, физиологии, биохимии, генетики

бактерий свидетельствуют о преимуществах Bacillus как продуцентов биологически активных веществ: ферментов, антибиотиков, инсектицидов . Высокая приспособляемость к различным условиям существования (наличие или отсутствие кислорода, рост и развитие в значительном диапазоне температур, использование в качестве источников питания различных органических или неорганических соединений и т.д.) способствуют распространению бацилл в почве, воде, воздухе, пищевых продуктах и других объектах внешней

]t среды, а также в организме человека и животных.

I Разнообразие метаболических процессов, генетическая и биохимическая

вариабельность, устойчивость к литическим и пищеварительным ферментам, послужили обоснованием использования бацилл в различных областях меди-

"4 цины. Управление по контролю за качеством продовольственных и лекарствен-

ных средств США, присвоило Bacillus subtilis статус GRAS (generally regarded as safe) - вполне безопасных организмов, что является обязательным условием

5 для применения этих бактерий в производстве лекарственных препаратов .

Активность бацилл проявляется в отношении широкого спектра патогенных и условно патогенных микроорганизмов. Благодаря синтезу разнообразных ферментов и других веществ они регулируют и стимулируют пищеварение, оказывают противоаллергенное и антитоксическое действие. При применении бацилл существенно повышается неспецифическая резистентность макроорганизма. Эти микроорганизмы технологичны в производстве, стабильны при хранении и, что существенно важно, экологически безопасны .

Лечебные и профилактические препараты на основе живых непатогенных микробов, способные оказывать при естественном способе введения благоприятные эффекты на физиологические и биохимические функции организма хозяина через оптимизацию его микробиологического статуса, относят в настоящее время к препаратам - пробиотикам .

Из бацилл наибольший интерес вызывают штаммы В. subtilis. По изученности генетических и физиологических свойств они занимают второе место после Е. coli. О больших возможностях В. subtilis в биотехнологии свидетельствует факт создания банка данных по молекулярной генетике этого штамма -SubtiList, в который вносится вся информация о бактериальном геноме .

Анализ результатов научных исследований, проводимых у нас в стране и за рубежом, свидетельствует о масштабах использования бактерий рода Bacillus для получения продуктов из биомассы бактерий или их метаболитов. Известные способы культивирования бактерий рода Bacillus являются основой для технологии получения ряда бактериальных и ферментных препаратов. .

На основе живых бактерий рода Bacillus, созданы препараты - пробиоти-ки, которые безвредны для макроорганизма, имеют широкий диапазон лечебно-профилактического действия и экологическую безопасность . Важное научно-практическое значение имеют результаты, посвященные использованию жи-

вых микробных культур рода Bacillus для лечения желудочно-кишечных заболеваний у человека и сельскохозяйственных животных .

В настоящее время в практическом здравоохранении широко используют известные препараты - пробиотики: бактисубтил, споробактерин, биоспорин, бактиспорин, субалин, цереобиоген, энтерогермин и другие .

Показания к лечебному применению и терапевтическая эффективность этих препаратов ограничивается свойствами штаммов, используемых для их производства. Определяющее значение при этом имеет спектр антагонистической активности против патогенных и условно-патогенных микроорганизмов, являющихся причиной нарушения микроэкологии в различных биотопах организма человека или животных. Кроме того, нельзя не учитывать способности бацилл к продукции БАВ (полипептидные антибиотики, ферменты и др.) и их антибиотикорезистентности.

Многообразие и возникающая антибиотикоустойчивость микроорганизмов, участвующих в развитии дисбиотических нарушений, с одной стороны, а также вариабельность биосинтетических возможностей у разных штаммов B.subtilis, с другой, обуславливают целесообразность постоянного мониторинга штаммов, обладающих направленной пробиотической активностью и/или являющихся продуцентами различных БАВ.

Цель работы:

Изучить биологические свойства выделенных штаммов B.subtilis и оценить возможность их использования для разработки оригинального спорового пробиотика.

Задачи исследования:

1. Изучить морфологические, физиолого-биохимические, антагонистические, адгезивные и другие свойства выделенных культур B.subtilis в опытах in vitro и выбрать для дальнейших исследований наиболее перспективный штамм.

    Оценить пробиотическую активность выбранного штамма B.subtilis в опытах in vivo.

    Подобрать питательную среду, оптимальную для накопления биомассы изучаемого штамма B.subtilis.

    Определить жизнеспособность и антагонистическую активность выбранного штамма B.subtilis при хранении.

    Сравнить свойства оригинального штамма B.subtilis и культур, используемых для изготовления коммерческих препаратов-пробиотиков.

Научная новизна.

На основе изучения морфологических, физиолого-биохимических, генетических и других биологических свойств выделенных штаммов отобран бес-плазмидный штамм B.subtilis 1719, проявляющий антагонизм против условно патогенных и патогенных микроорганизмов различных таксономических групп, обладающий низкой адгезивной активностью, устойчивый к гентамицину, по-лимиксину и эритромицину.

Экспериментально обоснованы подходы к созданию производственной технологии, включающие изучение ростовых свойств штамма B.subtilis 1719 на оригинальных питательных средах, условий стабилизации его жизнеспособности и антагонистической активности как этапов получения нового препарата-пробиотика.

Подана заявка на изобретение (№2005111301 от 19.04.2005 г.): «Штамм бактерий Bacillus subtilis 1719 - продуцент антагонистически активной биомассы в отношении болезнетворных микроорганизмов, а также протеолитических, амилолитических и липолитических ферментов».

Практическая значимость.

Выделенный и идентифицированный штамм B.subtilis 1719 депонирован в Государственной коллекции культур ГИСК им. Л.А. Тарасевича под №277 и

Основные положения, выносимые на защиту:

    Выделенные три штамма бактериальных культур по морфологическим, физиолого-биохимическим и другим свойствам соответствуют виду В. subtilis. Они не содержат плазмид, антагонистически активны в отношении условно патогенных и патогенных бактерий разных таксономических групп, имеют низкий или средний уровень адгезии.

    Штамм В.subtilis 1719 обладает пробиотическими свойствами, проявляющимися в элиминации условно патогенных и патогенных микроорганизмов с восстановлением количественного и качественного состава нормальной микрофлоры при экспериментальном дисбиозе, а также оказывает иммуномодули-рующее действие на макроорганизм.

    По технологическим характеристикам штамм В.subtilis 1719 можно рекомендовать в качестве кандидата для создания оригинального препарата-пробиотика.

9 ОБЗОР ЛИТЕРАТУРЫ Глава 1. Микробный антагонизм - основа создания биотерапевтических препаратов для коррекции дисбиотических состояний

Макроорганизм и его микрофлора являются единой экологической системой, которая начинает формироваться с момента рождения и находится в состоянии динамического равновесия, являясь естественным защитным механизмом от патологических воздействий. Представляя открытый биоценоз, микрофлора желудочно-кишечного тракта включает множество локальных микробиоценозов, занимающих тот или иной биотоп в организме человека или животного. Биотопы пищеварительного тракта располагаются в вертикальном (проксимодистальном) и горизонтальном направлениях. Помимо просвета, микрофлора кишечника в горизонтальном направлении может локализоваться в двух отделах слизистой оболочки: в слое гликопротеинов слизи, гликокаликсе, состоящем из гликопротеинов и гликолипидов над мембранами эпителиальных клеток .

Нормальную микрофлору здоровых людей и животных принято подразделять на индигеннную или резидентную, характерную для данного вида, и транзиторную. В пищеварительном тракте обнаружено около 500 видов микроорганизмов. Более 97% общего количества бактерий кишечника включает бесспоровые анаэробы - Bifidobacterium, Bacteroides, Lactobacillus, Eubacterium, содержание которых достигает Ю"^КОЕна 1 грамм фекалий. Число факультативных анаэробных микроорганизмов (Escherichia coli, Enterococcus spp., Staphylococcus spp. и др.) в сотни раз ниже .

Одной из важных сторон защитной функции бактерий нормальной микрофлоры является антагонистическая активность в отношении патогенных и условно патогенных микроорганизмов. Благодаря биохимической активности представителей микроэкологической системы пищеварительного тракта, обеспечивающих продукцию субстанций с выраженной антагонистической активностью, попадающие извне патогенные микроорганизмы быстро элиминируют-

10 ся из кишечника. Это предотвращает развитие инфекционного процесса .

* Бактериальный антагонизм может осуществляться благодаря клеточному

контакту, в результате которого антибактериальные агенты передаются от штаммов-ингибиторов к штамму-мишени. В некоторых случаях колонизационная резистентность реализуется за счет сочетания антагонистического действия определенных представителей нормальной микрофлоры и (или) их метаболитов, а также появления специфических антител .

Fuller R. и Ленцнер А.А. с соав. доказали роль лактобацилл в поддержании микробного баланса благодаря продукции молочной кислоты и специфической адгезии к эпителию толстой кишки. Показана их антагонистическая активность в отношении патогенных бактерий, в частности, Salmonella typhimurium.

Бифидобактерии, продуцируя уксусную и молочную кислоты, препятствуют размножению гнилостной и патогенной микрофлоры, нормализуют пери-

^ стальтику, а также способствуют всасыванию кальция, железа, витамина D и

участвуют в процессах витаминообразования .

Vollaard E.J. et al. отметили, что кишечная палочка влияет на развитие и статус местной иммунной системы, связанной со слизистой оболочкой и обеспечивают защиту хозяина от инфекций, обусловленных энтеропатогенны-ми микроорганизмами. Она принимает участие в расщеплении белков и углеводов, метаболических превращениях холестерина, желчных кислот, жирных кислот .

У E.coli также обладают канцеролитическими свойствами. Карапетян А.О.

J выделила из кишечника здоровых лиц штаммы кишечной палочки и фекально-

го энтерококка, которые in vitro обладали способностью вызывать некроз рако-вых клеток. В то же время бактерии, выделенные от онкологических больных,

t таковыми свойствами не обладали. Этот микроб синтезирует в кишечнике 8 ви-

таминов: В] 5 В 2 , В 6 , В12, К, никотиновую и пантотеновую кислоты, биотин. Кроме того, E.coli создает необходимую анаэробную среду для строгих анаэро-

бов, поглощая Ог, диффундирующий из кровеносной системы через кишечную стенку в просвет. Наблюдения за естественной микробной колонизацией кишечника новорожденных и эксперименты по имплантации микробов в кишечник гнотобиологических животных обнаружили, что анаэробные бактерии обычно начинают колонизацию только после таких бактерий, как E.coli .

Важными регуляторами роста бактерий в кишечнике являются различные БАВ, экзоэнзимы и бактериоцины, например колицины, микроцины, лизоцим и др. Большинство авторов считают, что бактериоцины отличаются от "классических" антибиотиков более узким спектром антибактериального действия, поскольку специфически подавляют рост бактерий того же или филогенетически родственных видов. Например, патогенные энтеробактерии подавляют нормальную микрофлору и беспрепятственно распространяются в кишечнике. Возможно, колицины у представителей кишечной палочки, подавляя рост микроорганизмов, играют роль факторов естественной устойчивости макроорганизма .

Следует отметить, что колонизационная резистентность обеспечивается как представителями преобладающей анаэробной микрофлоры, так и факультативно аэробными бактериями, значение которых в 70-х годах прошлого века стало искусственно занижаться. Защитные свойства E.coli обусловлены не только антагонизмом на метаболическом уровне (бифидобактерии, бактероиды лактобациллы), но и могут быть опосредованными через макроорганизм . Однако интимная связь E.coli с ним, обеспечивающая "созревание" эпителия слизистой оболочки кишечника и формирование так называемого естественного иммунитета, вызывает и более "агрессивное" поведение микроба .

Нормальная микрофлора играет важную пусковую роль в механизме формирования иммунитета и специфических защитных реакций в постнаталь-ном развитии макроорганизма .

Роль микрофлоры в развитии иммунного ответа обусловлена ее универсальными иммуномодулирующими свойствами, которые включают иммуно-

стимуляцию и иммуносупрессию, а также важные адъювантные и иммуноген-ные свойства. Известно, что бактериальные липополисахариды (ЛПС) оказывают иммунорегулирующее действие на Ig А - иммунный ответ и играют роль адъювантов. Микрофлора обеспечивает развитие комплекса неспецифических и специфических иммунологических реакций, формируя адаптационно-защитные механизмы .

Таким образом, микрофлору пищеварительного тракта следует рассматривать как единую микроэкологическую систему, сформировавшуюся в ходе эволюции, которая выполняет и регулирует многочисленные функции организма хозяина, поддерживая колонизационную резистентность и тем самым, сохраняя его гомеостаз .

Французскими исследователями опровергнуто сложившееся мнение об индифферентности транзиторной части нормальной микрофлоры, как в отношении других бактерий, так и макроорганизма. Некоторые штаммы транзиторных эшерихий и бифидобактерий значительно снижали продукцию токсина С.difficile в кишечном тракте животных-гнотобионтов. Bacillus cereus - аэробный спорообразующий микроорганизм, выделенный из почвы, был использован как представитель транзиторной микрофлоры в препарате "Цереобиоген" (КНР) для лечения диарейных заболеваний у детей. Продолжительность его пребывания в кишечнике - 4 дня, но за это время он способствует размножению бифидофлоры и почти полному исчезновению клинических симптомов заболевания. Индийские ученые нашли, что микробы с транзиторным статусом, а не только представители резидентной микрофлоры, способны вырабатывать витамины и детоксицировать токсические продукты. Ими выделены виды рода Bacillus из тонкого отдела кишечника крыс, способные разрушать нейротокси-ны, гемагглютинины, присутствующие в бобах. Представители родов Bacillus и Klebsiella синтезируют витамины Вь В 2 , В^, никотиновую и фолиевую кислоты .

Различные заболевания инфекционной и неинфекционной природы, а также многие другие неблагоприятные факторы (изменение климатических ус-

13 ловий, лучевые воздействия, погрешности в режиме питания, ухудшение общего физиологического статуса, соматические расстройства, применение лекарственных средств, возрастные изменения организма и др.), действуя прямо или опосредованно, оказывают отрицательное влияние на сложную микроэкологическую систему макроорганизма в пользу активации условно патогенной микрофлоры .

Дисбиоз - это любое количественное или качественное изменение типичного для данного биотопа состава нормальной микрофлоры человека или животного, возникающее в результате воздействия различных факторов экзогенного и эндогенного характера, которое влечет за собой выраженные клинические проявления со стороны макроорганизма, либо являющееся следствием патологических процессов, развивающихся в нем. Факторы, ведущие к нарушениям микрофлоры, т.е. к дисбиозам, весьма многочисленны. Видимо поэтому почти 90% населения нашей страны, в той или иной мере, страдает дисбиозами. Они, как правило, сопряжены с нарушениями иммунной системы. Очевидно, изменения нормофлоры, состояние иммунного статуса и проявление болезни следует рассматривать в единстве, причем роль пускового механизма в каждом конкретном случае может принадлежать любому из этих компонентов триады. В одних случаях дисбиоз дает толчок развитию патологического процесса непосредственно, в других случаях он возникает через развитие иммунодефицита, в третьих - вызывает эти взаимосвязанные процессы .

Однако в последнее время дисбиоз кишечника все чаще считают следствием возникших иммунологических нарушений .

Клинические проявления дисбиозов многообразны: диспептические расстройства (запоры, диарея), нарушения обмена веществ, катаральновоспали-тельные заболевания (гастриты, дуодениты), гнойно-воспалительные заболевания и осложнения разной локализации, язвенная болезнь желудка и двенадцатиперстной кишки, гепатиты, злокачественные новообразования, аллергия и т.д. .

Попытки применения только антимикробных препаратов для профилактики и терапии дисбиозов оказались малоэффективными, и в некоторых случаях усугубляли начавшийся процесс. Это определяет целесообразность применения средств корригирующей терапии, включающей препараты пробиотики, биодобавки, фитопрепараты для восстановления эубиоза .

С тех пор как было открыто свойство различных микробных культур, подавлять рост других микроорганизмов и особенно патогенных, виднейшие естествоиспытатели работали над проблемой практического использования явления антагонизма микробов (Л.Пастер, И.И.Мечников, Н.Ф.Гамалея и др.). Мысль о целесообразности регулирования состава кишечной микрофлоры при ее нарушениях, высказанная еще И.И.Мечниковым, привела к развитию нового направления в медицине - бактериальной терапии, созданию биологических препаратов-пробиотиков из живых бактерий, представителей нормальной микрофлоры человека .

Термин «пробиотики» предложен в 1974 г. Паркером для обозначения организмов и субстанций, обеспечивающих равновесие кишечной микрофлоры. Для отбора штаммов микроорганизмов в качестве препаратов - пробиотиков предложено несколько критериев: апатогенность, специфическое окрашивание по Граму, резистентность к кислотам и окислителям, колонизация и (или) адгезия к клеткам пищеварительного тракта, выделение противоколиформных факторов, резистентность к желчи, жизнеспособность и стабильность .

Пробиотики используют для коррекции микроэкологических нарушений при острых и хронических заболеваниях и дисфункциях желудочно-кишечного тракта, при нарушениях обмена, после антибактериальной, гормональной и лучевой терапии, в предоперационный и послеоперационный периоды, при неблагоприятных условиях и т.д. . Их биотерапевтический эффект может быть связан с прямым антагонистическим действием на патогенные и условно патогенные микробы, приводя к уменьшению их количества, с влиянием на их метаболизм, или же со стимуляцией иммунитета .

Препараты - пробиотики, изготавливают из живых антагонистически активных бактерий, являющихся представителями нормальной микрофлоры кишечника человека: кишечной палочки (колибактерин), бифидобактерий (бифидумбактерин, бифидумбактерин форте, бифилиз), смеси кишечной палочки и бифидобактерий (бификол), лактобактерий (лактобактерин, ацилакт, аципол). В последние годы для лечения дисбиозов в лечебную практику были внедрены отечественные препараты, изготовленные на основе живых апатогенных антагонистически активных представителей рода Bacillus: споробактерин, бактис-порин, биоспорин .

При приеме per os, микроорганизмы, составляющие основу пробиотиков, большинство из которых являются к тому же представителями нормофлоры ЖКТ, заселяют его, способствуя нормализации биоценоза и, как следствие этого, восстановлению пищеварительной, обменной и защитной функций. Аналогичный механизм действия проявляется и при других способах аппликации (например, вагинальном) .

При приеме пробиотиков, как правило, не развиваются побочные реакции, и они не имеют противопоказаний к применению.

Большинство пробиотиков (бифидумбактерин, лактобактерин, аципол, ацилакт, бифилиз) могут быть применены уже с первых дней жизни, в том числе, и для недоношенных детей .

В настоящее время при отборе и характеристике производственных культур микроорганизмов учитывают, главным образом, следующие показатели: спектр и уровень антагонистической активности, технологичность, т.е. способность к быстрому накоплению биомассы, устойчивость к лиофильному высушиванию, жизнеспособность при хранении. Важен также спектр их антибиоти-корезистентности .

Особое внимание уделяется критериям безопасности используемых штаммов для здоровья человека .

По совокупности физиолого-биохимических свойств и факторов биологической активности наиболее перспективными для создания пробиотиков из

неиндигенной микрофлоры оказались бациллы, главным образом, относящиеся к B.subtilis, B.pumilus, B.polymyxa. Эти виды, стабильно выделяющиеся из разнообразных биотопов, в том числе, из организма и тканей теплокровных, насекомых и растений, не вызывали у последних патологических изменений.

Особенный интерес представляет вопрос о биологических свойствах споровых бактерий, изолируемых из организма человека или животных, с точки зрения познания механизмов их воздействия на макроорганизм. Кроме того, эта проблема важна для выявления новых резервов создания эффективных лечебно-профилактических препаратов, поскольку почти половина выделенных бацилл проявляет антагонистические свойства по отношению к различным патогенным и условно патогенным бактериям и грибам, при этом наибольшую активность проявляют штаммы Bacillus subtilis .

Установлена их способность синтезировать низкомолекулярные полипептидные антибиотики .

В качестве антагониста микобактерий туберкулеза предложен штамм B.subtilis МЖ-6, который в 96,2% случаев подавлял их рост in vitro. .

Обнаружено, что бактерии рода Bacillus способны оказывать антагонистическое воздействие по отношению к бактериям различных видов Klebsiella (336 культур) . Различные штаммы В. subtilis подавляли рост 57-83% культур К. ozaenae, 50-100% культур К. rhinoscleromatis, 64-95% - К. pneumoniae. Практически все тестируемые штаммы бактерий рода Klebsiella оказались чувствительны к тем или иным культурам В. subtilis, при этом значительное количество клебсиелл были одновременно чувствительны к действию нескольких культур сенной палочки.

При изучении антагонистической активности 150 свежевыделенных штаммов В. subtilis относительно К. rhinos cleromatis в опытах in vivo и in vitro, выявлен антагонизм у 114 культур по отношению к 5 тест - штаммам K.rhinoscleromatis. Из числа исследованных штаммов бацилл наибольшую активность проявляли культуры, выделенные из желудочно-кишечного тракта сельскохозяйственных животных .

17 Исходя из выявленных уникальных биологических свойств бактерий рода Bacillus, в последние десятилетия внимание исследователей привлекают проблемы создания препаратов на основе живых спорообразующих аэробных бактерий и изучения их влияния на макроорганизм.

Современные представления о механизмах лечебно-профилактического действия пробиотиков из бактерий рода Bacillus

На современном этапе можно считать установленным, что лечебный эффект споровых пробиотиков определяется комплексом факторов, в том числе способностью продуцировать бактериоцины, подавляющие рост патогенных и условно патогенных микроорганизмов, высокоактивные ферменты (протеазы, рибонуклеазы, трансаминазы и другие), а также субстанции, нейтрализующие бактериальные токсины. Доказательством безвредности для макроорганизма служат экспериментальные данные о том, что уже через несколько дней после парентерального введения, B.subtilis элиминируется из организма .

Изучение механизма лечебно-профилактического действия препаратов-пробиотиков на организм человека и животных показало, что бациллы способны проникать из желудочно-кишечного тракта в кровь, а оттуда в очаг поражения, сохраняя жизнеспособность. После перорального приема, уже в первые минуты через слизистые ротоглотки, пищевода и желудка примерно 0,1% от общего числа бактерий проникали в паренхиматозные органы. Бессимптомная транслокация микроорганизмов наблюдалась 6-8 часов после однократного приема препарата, чем определяло время воздействия препарата на макроорганизм. По данным двумерного электрофореза, в течение 0-10 мин после прорастания спор штамм В. subtilis 168 синтезировал 65 экзобелков, на 10-20 минуте -210 белков, а всего в ходе вегетативного роста клеток продуцировал 260 белков .

Существует предположение, что явление транслокации микроорганизмов в органы и ткани здоровых индивидуумов представляет собой эволюционно сформировавшийся динамический процесс, во многом определяющий участие общей нормальной микрофлоры в формировании защитных реакций макроорганизма .

В результате транслокации бацилл в кровь и органы теплокровных не происходит каких-либо патологических изменений. Этот процесс следует рас 27 сматривать в качестве одного из начальных звеньев естественного механизма стимулирования неспецифической резистентности в отношении всех микроорганизмов. При этом не исключаются возможные неблагоприятные последствия для макроорганизма в тех случаях, когда происходит проникновение патогенных микроорганизмов на фоне общего или локального ослабления защитных механизмов.

В свете понятия об экзогенном компоненте нормальной микрофлоры (поступающей с пищей, воздухом, водой) и связанной с ней транслокацией бацилл в органы и кровь, подтверждается целесообразность именно перорального введения пробиотиков, разработанных на основе экзогенных представителей микрофлоры. .

Антагонистическое действие бацилл осуществляется за счет продукции различных по природе биологически активных веществ: полипептидных антибиотиков, лизоцима, литических ферментов .

Высокая ферментативная активность бацилл имеет положительное значение с точки зрения обогащения желудочного секрета дополнительными, в том числе, парадигестативными ферментами. Показано, например, что культуры, входящие в состав Биоспорина или Бактерина-SL, проявляли выраженную пек-толитическую активность (0,1-0,2 ед/мл), обладали целлюлозолитическими свойствами, синтезировали комплекс протеолитических ферментов. Общая протеолитическая активность соответствовала 4,2-5,7 ед/мл, активность амилазы составляла 11-15 ед/мл, липазы - 70-127 мкмоль, олеиновой кислоты - 5-10 ед/мл . Культуральная жидкость штамма В. subtilis содержала следующие ферментативные активности: 1,3-1,4 глюканазу, 1,3-1,4 глюкозидазу, .

На модели пиелонефрита у мышей показано, что применение Биоспорина способствовало более быстрой элиминации S. aureus из почек, по сравнению с контрольными животными, за счет стимуляции макрофагов. Полученные данные позволили предположить, что биопрепараты из бацилл перспективны не только для коррекции микрофлоры желудочно-кишечного тракта, но, возможно, и для лечения бактериальных инфекций, локализованных вне желудочно-кишечного тракта .

Изучение морфологических и физиолого-биохимических свойств штаммов

Для аккумуляции перитонеальных нейтрофилов животным внутрибрю шинно вводили 2 мл 1% раствора казеина; через 4-5 часов мышей забивали транслокацией шейных позвонков, используя премедикацию эфиром согласно правилам гуманного обращения с животными. Перитонеальную жидкость получали, промывая брюшную полость раствором Хенкса с гепарином во избежании агрегации нейтрофилов. Из полученной от 5 мышей перитонеальной жидкости одной группы животных формировали клеточный пул. Морфологическое изучение показало, что 70-85% клеточного содержимого составляли нейтрофи-лы. Жизнеспособность клеток превышала 95%. Клеточный пул центрифугировали при 1500 об/мин в течении 10 мин. Затем добавляли 300 мкл сыворотки крупного рогатого скота (КРС) и 3% уксусной кислоты, подсчитывали в камере Горяева количество выделенных нейтрофилов.

Методика постановки теста восстановления нитросинего тетразолия (НСТ-тест) спонтанного и стимулированного in vitro. Метод основан, на спо собности нейтрофилов поглощать нитросиний тетразолий и восстанавливать его в гранулы синего цвета нерастворимого диформазана (ДФ). Восстановление НСТ обеспечивается энергией и продуктами окислительно-восстановительных реакций "метаболического взрыва", сопровождающих процесс фагоцитоза, а также повышением метаболизма активированного нейтрофила. Различают спонтанный и индуцированный НСТ-тест. Результаты спонтанного теста ука зывают на количество активированных клеток в образцах. Результаты стимули г рованного теста дают представление о способности исследуемых нейтрофилов А к активации in vitro. Постановку реакции проводили в 96-луночных плоскодонных планшетах для иммунологических исследований. При анализе спонтанной активности в лунку вносили: 50 мкл 0,4% раствора НСТ, 50 мкл инкубационной среды (ИС-0,85% раствор NaCl с 20% содержанием сыворотки крови крупного рогатого скота), и 100 мкл клеточной суспензии. Для анализа индуцированной активно 50 сти в каждую лунку вносили: 50 мкл раствора НСТ, 50 мкл взвеси стимулятора (опсонизированный (о/з) и неопсонизированный (н/з) зимозан в соотношении 20 частиц/клетку) и 100 мкл клеточной суспензии. Каждый вариант реакции проводили в 2-х параллельных пробах. Контроль реагентов осуществляли заменой клеточной суспензии эквивалентным объемом ИС. Планшет инкубировали 20 мин при 37С. Для остановки реакции восстановления НСТ и осаждения клеток, содержащих ДФ, планшет центрифугировали 10 мин при 500g. Осажденные в лунках клетки фиксировали 96 % этиловым спиртом и однократно отмывали 0,85 % раствором NaCl. Разрушение клеток и растворение образовавшегося ДФ достигали добавлением в каждую лунку по 130 мкл ди-мексида и 70 мкл 2М КОН с последующей инкубацей - 20 мин при 60С. Содержимое лунок приобретало бирюзовое окрашивание, интенсивность которого зависила от количества экстрагированного ДФ. Результаты реакции регистрировали на спектрофотометре по разнице экстинкций на тестовой (630 нм) и референтной (490 нм) длин волн.

Оценку получаемых результатов проводили по уровням спонтанной активности нейтрофилов (сНСТ), индуцированной о/з активности нейтрофилов (о/зНСТ), индуцированной н/з активности нейтрофилов (н/зНСТ). Результаты тестов выражали в mOD (от англ. - Optical Density). Резервы функциональной активности клеток оценивали по коэффициентам активации (КАо и КАн), степень дискретности клеточной активности на различные стимулы определяли по коэффициенту опсо-низации (КО). (п=5).

Анализ хемилюминесценции фагоцитов выявляет образование клетками активных кислородных радикалов, включая супероксидный анион, синглетный кислород и гидроксильный радикал, участие в определенной степени миелопе-роксидазы фагоцитов, которая является показателем интенсивности дыхания клеток при фагоцитозе .

Ход анализа: В каждый флакон для сцинтилляционного счета добавляли 200 мкл lxlO 6 люминола, а затем вносили 200 мкл суспензии нейтрофилов, чтобы их конечная концентрация составила 0,5хЮ6на1 мл. Перемешивали со 51 держимое флаконов, помещали их в счетчик и проводили измерение хемилю-минесценции при 37 С в 0,1 минутные интервалы на протяжении 90-120 минут. Обычно через 45-60 минут после начала измерения заканчивалась адгезия клеток на стекло, интенсивность хемилюминесценции приближалась к исходному уровню. В этот период в те же флаконы вносили суспензию зимозана (оп-сонизированного и неопсонизированного) по 20 мкл (исходная суспензия 20 мг/мл после размораживания разводилась в10 раз, и это разведение вносили во флакон). Далее снова измеряли хемилюминесценцию, фиксируя число импульсов в минуту на протяжении 60 мин. Затем делали пересчет импульсов на 1 клетку и выражали хемилюминесценцию условно в имп/мин/клетка. (п=5).

Плазмидный анализ ДНК. Исходя из задач данного исследования, осуществляли стандартную процедуру, предназначенную для очистки плазмиднои ДНК с использованием щелочного лизиса . Биомассу (2 мл) суспендировали в 2 мл раствора следующего состава: 50 мМ глюкозы, 20 мМ Tris-HCl; 10 мМ EDTA; рН 8,0. К ней добавляли 20 мкл лизоцима (8 мг/мл), перемешивали и инкубировали при +4 -+8С 20 минут. После этого добавляли 4 мл лизирующего раствора (0,2 М NaOH, 1% SDS), перемешивали и продолжали инкубировать при той же температуре 5 минут. По истечении времени добавляли 3 мл нейтрализующего раствора (З М ацетат калия, рН 4,8), аккуратно перемешивали и инкубировали 30 минут при +4 - +8С. Далее пробирку центрифугировали (Backman J2-21, ротор JA-14) 30 минут при +4С со скоростью 10000 об/мин. Супернатант отбирали в пробирки и добавляли к нему 2,5 объема этанола. Инкубировали при температуре -70 С 10-15 минут и центрифугировали в течение 20 минут при температуре +4С (Backman J2-21, ротор JA-20) со скоростью 10000 об/мин. Осадок растворяли в 600 мкл воды, переносили в микроцентрифужные пробирки, добавляли 400 мкл 7,5 М Na-ацетата и инкубировали при -20 С в течение 30 минут. Затем центрифугировали 10 минут со скоростью 18000g при +4С. Осадок промывали 70% этанолом и затем высушивали на воздухе. Полученный препарат растворяли в 400 мкл ТЕ-буфера (10 мМ Tris-HCl, 1 мМ EDTA, рН 8,0) и подвергали фенол-хлороформной экстракции . Добавляли равный объем смеси фенол/хлороформ (1:1), насыщенной буферным раствором Tris-HCl, рН 8,0. Смесь интенсивно встряхивали на вортексе и центрифугировали 6 минут со скоростью 13000g при комнатной температуре. Су-пернатант переносили в чистые пробирки и добавляли равный объем смеси хлороформ/изоамиловый спирт (25:1). Пробирку встряхивали на вортексе и центрифугировали при 16000g и температуре +4 С в течении 2 минут. Супернатант переносили в чистые пробирки и осаждали ДНК из раствора добавлением 2,5 объема этанола и 1/10 объема ЗМ раствора ацетата натрия. Пробирку инкубировали при температуре -70 С 10-15 минут и затем центрифугировали 10 минут при 16000g и температуре +4 С. Супернатант удаляли и промывали осадок 70% спиртом (добавляя и сливая 200-500 мкл). Осадок высушивали на воздухе и растворяли в 200 мкл водного раствора рибонуклеазы А с концентрацией 5-10 мкг в мл и инкубировали 40 минут в термостате при температуре +37 С. Повторяли процедуру осаждения ДНК с помощью этанола и ацетата натрия. Осадок ДНК растворяли в 200 мкл ТЕ-буфера.

Изучение токсичности, токсигенности, вирулентности и пробиотической активности штамма B.subtilis 1719 в опытах in vivo

Промышленное получение препаратов на основе живых апатогенных микроорганизмов напрямую связано с подбором и оптимизацией питательной среды для выращивания.

Оптимальный выбор ингредиентов в среде способствует максимальному накоплению биомассы и проявлению антагонистических свойств штаммов, что служит показателем высокой продуктивности процесса культивирования .

Однако пробиотические штаммы имеют трофические особенности. Их следует учитывать в системе "штамм - питательная среда". Получение эффективных пробиотиков на основе штаммов В. subtilis остается актуальной задачей, для решения которой может быть использован принцип адекватности рецептуры питательной среды свойствам штамма. При изучении этого вопроса культивирование осуществляли на средах известного состава и разработанных нами средах на основе гидролизата соевой муки (СПАС-2, СПАС-4, СПАС-6) или на пептоне (ВК-2).

При оценке ростовых свойств сред на основе гидролизата соевой муки с пептоном (СПАС-2, СПАС-4, СПАС-6) и среде с пептоном (ВК-2) сравнение показателей культивирования проводили по отношению к средам, применяемым для выращивания штаммов В. subtilis - продуцентов БАВ (среды: № 5, № 9, КГ - картофельно-глицериновая).

Поскольку физиологические свойства культуры могли измениться в зависимости от добавления различных источников углеводов, целесообразно было сравнить результаты культивирования В. subtilis 1719 на средах исходного состава и с добавлением в качестве источника углеводов: глюкозы, мальтозы, сахарозы и лактозы.

Сравнение уровня оптической плотности (ОП) и скорости роста (и) кле-ток в культуральной жидкости в течение 18 ч выращивания на средах без Сахаров (рис. 6.1.) показало, что среды №5, СПАС-6 и картофельно-глицериновая среда обеспечивали рост штамма с показателем ОП, равным 0,24±0,01 (и=0,03 ч"1), 0,22±0,01 (1)=0,0334-1) и 0,3±0,01 (и=0,025 ч 1) соответственно. На средах СПАС-2, СПАС-4, №9 максимальная величина ОП составляла 0,42+0,03 (и=0,067 ч"1), 0,38±0,02 (1)=0,0541) и 0,58±0,03 (1)=0,037 ч"1) соответственно, а на среде ВК-2 - 0,85+0,6 (\ =0,068ч"). Время достижения максимальной концентрации биомассы на этих средах варьировало в пределах от 9±0,7 ч (СПАС-2) до18±1,Зч(КГГ).

Максимальный выход биомассы (ОП) выявлен на среде ВК-2, при скорости роста 0,068 ч"1, а наименьший на среде СПАС-6 и скорости роста 0,033 ч"1. Добавление к средам в качестве источника углеводов глюкозы (рис. 6.2.) вызывало подъем концентрации клеток В. subtilis 1719 почти вдвое, кроме сред №5, №9 и СПАС-6: на среде №9 отмечено недостоверное снижение значения ОП до 0,43±0,03 при практически той же скорости роста (0,035 ч"1), а на СПАС-6 величина ОП оставалась на прежнем уровне. Наиболее высокий выход биомассы выявлен на среде ВК-2, при этом ОП составила 1,0±0,09 (при 1)=0,066 ч"1) к 18 ч роста. Мальтоза (рис. 6.3.) оказалась оптимальным углеводом в составе сред №9 и №5. Величина ОП увеличилась на среде №9 до 0,695±0,025 (і)=0,058 ч"1) к 12 ч, а на среде №5 - 0,51±0,045 (и=0,022 ч"1) к 18 ч. На средах СПАС-4 и КГ выход биомассы снизился по сравнению с использованием глюкозы с 0,8±0,06 (1)=0,063 ч1) до 0,33±0,01 (1)=0,040 ч1) и с 0,62+0,04 (D=0,03 Ч"1) до 0,38±0,03(и=0,025 ч"1) соответственно. Рост культуры на среде ВК-2 имел тенденцию к снижению выхода биомассы, что отражалось в снижении величины ОП с 1,0±0,09 (1)=0,066 ч1) до 0,55±0,25 (D=0,046 ч"1). Лактоза, добавленная в среды (рис. 6.4.), обеспечивала рост В. subtilis 1719 на уровне ОП от 0,21±0,04 до 0,5±0,03, кроме ВК-2 - 0,83±0,05. Добавление к средам сахарозы (рис. 6.5.) способствовало высокому накоплению биомассы только на среде ВК-2, и ОП достигала значения 1,1+0,06 (и=0,063 ч"1) к 17 ч культивирования. Без дополнительного внесения углеводов оптимальной средой для накопления биомассы оказалась только среда ВК-2. Она обеспечивала наибольшее накопление бактериальных клеток при добавлении глюкозы, лактозы и сахарозы. Максимальный показатель выхода биомассы В. subtilis 1719 получен на среде ВК-2 с добавлением глюкозы (ОП - 1,0±0,09) к 18+0,15 ч культивирования или сахарозы (ОП - 1,1+0,06) к 17+1,0 ч культивирования. Установлено, что состав питательных сред не оказывал какого-либо влияния на антагонистические свойства штамма.

Изучение жизнеспособности и антагонистической активности штамма B.subtilis 1719 при хранении

Бациллы способны секретировать в культуральную жидкость множество ферментов. Они служат важным промышленным объектом для получения протеолитических и амилолитических ферментов, используемых для производства пищевых продуктов, детергентов и медико-биологических субстанций . В последнее десятилетие с их участием получен ряд новых антибиотиков, бактериальных инсектицидов и других биологически активных веществ .

Несмотря на то, что В. subtilis имеют статус GRAS, в литературе имеются единичные сообщения о наличии факторов патогенности, у некоторых штаммов В. subtilis. Указывается, что это не является постоянным признаком, поскольку исчезает при пересевах. Высказано предположение о взаимосвязи патогенных свойств бактерий с наличием у них плазмид. Например, Le Н. и Anagnostopoulos С. выделили плазмиды из 8 штаммов В. subtilis у 83 обследованных. Плазмидные ДНК были определены только в клетках токсигенных штаммов В. subtilis и не обнаружены в клетках других штаммов одного вида, не обладающих токсигенностью. Элиминация плазмид из токсигенных штаммов под воздействием элиминирующих агентов приводила к устранению токсигенных свойств фильтратов культур. Однако генетическая роль плазмид изучена недостаточно.

В проведенных нами исследованиях, в препаратах выделенной ДНК трех изученных штаммов В. subtilis плазмид не обнаружено.

Авторы, изучавшие воздействие бацилл на организм теплокровных, пришли к заключению, что штаммы В. subtilis совершенно безвредны для человека и животных. Доказательством безвредности для макроорганизма служат экспериментальные данные о том, что уже через несколько дней после парентерального введения, B.subtilis элиминируется из организма . Механизмы лечебного действия этих культур изучали на животных. В настоящее время считают, что терапевтический эффект споровых пробиотиков определяется комплексом факторов, в их числе: про 101 дуцирование культурами В. subtilis бактериоцинов, подавляющих рост патогенных и условно патогенных микроорганизмов; синтез высокоактивных ферментов: протеаз, рибонуклеаз, трансаминаз и др.; продуцирование субстанций, нейтрализующих бактериальные токсины.

Изучение свойств выбранного штамма на мышах показало, что он ави-рулентен, не обладает токсичностью и токсигенностью. Факторами положительного воздействия пробиотиков на макроорганизм являются различные продукты микробного синтеза: аминокислоты, полипептидные антибиотики, гидролитические ферменты и ряд других биологически активных субстанций, имеющих меньшее значение. Поэтому изучение и выделение протективных субстанций, продуцируемых микроорганизмами рода Bacillus, и создание на их основе медико-биологических препаратов является насущной необходимостью .

В желудочно-кишечном тракте проявляется прямое антагонистическое действие бацилл, которое носит преимущественно избирательный характер в отношении патогенных и условно патогенных микроорганизмов. В то же время они характеризуются отсутствием антагонизма в отношении представителей нормальной микрофлоры.

В проведенных нами исследованиях при коррекции экспериментального дисбиоза, индуцированного введением антибиотика доксициклина, культура В. subtilis 1719 способствовала нормализации состава и численности кишечной микрофлоры, а также элиминации условно патогенных микроорганизмов в пристеночной и просветной микрофлоре.

Из литературных данных следует, что производственные штаммы рода Bacillus обладают низким индексом адгезивной активности к эритроцитам и слабой или средней адгезивностью к эпителиальным клеткам кишечника. Штаммы В.subtilis 534 и ЗН имеют больше адгезинов к рецепторам энтеро-цитов, штамм В. licheniformis - к колоноцитам, т.е. у разных штаммов по-видимому, имеются адгезины к рецепторам разных клеток кишечника .

Их активность осуществляется в просвете кишечника и направлена в отношении патогенных микроорганизмов, не оказывая антагонистического действия на представителей нормальной микрофлоры. При приеме споровых пробиотиков реализуется возможность восстановления аутофлоры в различных локусах кишечника, и через 3-5 суток количество лактобактерий, бифи-добактерий, кишечных палочек и др. увеличивается, а затем восстанавливается до нормальных показателей .

Результаты проведенных нами исследований по изучению адгезии микроорганизмов на энтероцитах, позволяют с большей вероятностью утверждать, что адгезивная способность клеток кишечника зависит от количественного и качественного состава нормальной микрофлоры. При дисбиоти-ческих состояниях происходит открытие рецепторов на поверхности энтероцитов, на которые прикрепляются условно патогенные и патогенные микроорганизмы, а при коррекции дисбиоза происходит колонизация кишечника нормальной микрофлорой и происходит уменьшение количества рецепторов энтероцитов, способных адгезировать на своей поверхности неиндигенные микроорганизмы.

Известно, что нормальная микрофлора играет важную пусковую роль в механизме формирования иммунитета и специфических защитных реакций в постнатальном развитии макроорганизма .

Изобретение относится к биотехнологии, ветеринарии и может быть использовано для получения препарата из группы пробиотиков. Штамм бактерий Bacillus subtilis BKM В-2287 выделен из почвы. Клетки грамположительны, капсулы не образуют, образуют круглые споры, тип дыхания - аэробный. Гидролизует глюкозу, маннит, лактозу. Не сбраживает сахарозу, инозит, сорбит, мальтозу. Не образует газа при сбраживании. Подавляет рост стафилококков, кишечной палочки, энтеробактерий, цитробактерий, аэромонас. Штамм используют как производственный для получения пробиотического препарата, названного авторами "Субтилис+". Препарат нормализует деятельность желудочно-кишечного тракта сельскохозяйственных животных, птицы, рыбы; перспективен в лечении и профилактике бактериальных инфекций. 1 табл.

Изобретение относится к биотехнологии и может быть использовано в микробиологической промышленности для получения пробиотического препарата, применяемого в ветеринарии при лечении и профилактике желудочно-кишечных заболеваний животных, птицы и рыб.

Известен штамм Bacillus subtilis 534 - продуцент пробиотика “Споробактерин”, который предназначен для профилактики и лечения желудочно-кишечного тракта, дисбактериозов. SU 1708350, кл. А 61 К 35/66.

Недостатком является небольшие сроки хранения, т.к. содержит живые бактерии, которые не могут длительное время сохранять свои свойства, низкая чистота препарата, что имеет узкую область применения - как кормовая добавка для животных. Штамм также чувствителен к антибиотикам за исключением полимиксина, что ограничивает сферу применения препарата.

Известен штамм Bacillus subtilis 3Н (ГИСК №248), несущий свойство антибиотикорезистентности, используемый для получения пробиотического препарата “Бактиспорин”, который применяют совместно с антибиотиками для лечения и профилактики дисбактериоза, ферментной недостаточности органов пищеварения, гнойных инфекций, пищевой аллергии. RU 2067616 С1, кл. А 61 К 35/74, 10.10.1996.

Известен штамм Bacillus subtilis TPAXC-KM-117, проявляющий ингибирующую активность по отношению к патогенным видам микроорганизмов и обладающий множественной лекарственной устойчивостью. Штамм резистентен к тетратциклину, рифампицину, аленициллину, хлорамфениколу, апректомицину. На его основе готовят антибиотикорезистентный пробиотик для лечения и профилактики инфекционных заболеваний при одноименной антибиотикотерапии (RU 2118364 С1, кл. С 12 N 1/20, 27.08.1988).

Известен штамм Bacillus subtilis ВКМ B-2250 (RU №2184774, кл. А 61 К 35/74, 10.07.02), который является основой препарата для ветеринарных целей и рыбного хозяйства.

Задачей, на решение которой направлено изобретение, является выявление нового эффективного штамма-продуцента пробиотического препарата для ветеринарных целей и рыбного хозяйства.

Технический результат, достигаемый при осуществлении изобретения, заключается в повышении эффективности лечения, увеличения усвояемости кормов, продуктивности и привесов животных, птицы, рыб за счет использования пробиотического препарата на основе предложенного штамма-продуцента, стабильности препарата при хранении в широком диапазоне температур внешней среды.

Штамм Bacillus subtilis Б-9 выделен из почвы, депонирован во Всероссийской коллекции микроорганизмов (ИБФМ им. К.Г.Скрябина) под номером ВКМ В-2287.

Штамм Bacillus subtilis ВКМ В-2287 может храниться в лиофилизированном состоянии в течение нескольких лет или на косяках с агаризованной средой на основе мясопептонного бульона с обязательным пересевом не реже 1 раза в 2 месяца на эту же среду.

Характеристики штамма.

Культурально-морфологические признаки. Палочки. Размер односуточной агаровой культуры 3-5 мкм. Клетки окрашиваются положительно по Грамму, образуют круглые споры, одиночные, центральные диаметры меньше диаметра клетки. Колонии на МПА белые, пигмент в среду не выделяют.

Физиологические признаки. Аэроб, оптимальная температура роста 37° С и рН 3,5-8,0. Возможен рост в диапазоне температур 4-50° С. Отношение к NaCl - рост при содержании до 3%.

Биохимические признаки. Расщепляет глюкозу, лактозу, маннит. Несбраживаемые соединения углерода: сахароза, инозит, сорбит, мальтоза, лактоза. Утилизирует цитрат и ацетат. При сбраживании не образует газа. Продуцирует оксидазу, каталазу.

Антагонистические признаки. Штамм Bacillus subtilis BKM В-2287 подавляет рост стафилококков, протея, клебсиелл, кишечной палочки, энтеробактерий, цитробактерий, аэромонас, дрожжевых грибов.

Штамм Bacillus subtilis BKM В-2287 не является патогенным для растений, животных, рыбы и человека.

Данные таблицы 1 показывают антагонистическую активность тестовых штаммов микроорганизмов (метод отсроченного антагонизма).

Для культивирования штамма Bacillus subtilis BKM В-2287 используют жидкую питательную среду, содержащую гидролизат казеина - 5 см 3 · дм -3 (N aM =300 мг%); кукурузный экстракт - 80 см 3 · дм -3 (N aм =290 мг %), MnSO 4 5Н 2 О - 0,250 г-дм -3 ; MgSO 4 7H 2 O - 0,300 г-дм -3 ; FeSO 4 7H 2 О - 0,015 г-дм -3 ; CaCl 2 2Н 2 О - 0,052 г-дм -3 ; NaCl - 11,000 г-дм -3 , дистиллированную воду.

Предварительно сухую биомассу микроорганизмов высевают в пробирку с бульоном. При появлении видимого роста колонии пересевают на мясопептонный агар в пробирки.

Отбирают типичные колонии, которые пересевают на жидкую среду во флаконах. Через 22 часа всю выросшую массу переносят в 20-литровую бутыль с 10-ю литрами питательной среды и культивируют 26 часов при 37-39° С, получая посевной материал.

Питательную среду на основе гидролизата казеина помещают в биологический реактор, стерилизуют 60 мин при 1 атм, охлаждают до 39° С и засевают посевным материалом из бутыли в соотношении 1:9.

В процессе аэробного культивирования рН среды поддерживают в пределах (6,8-7,2) ед. рН, подпитывая среду (10-15)% -ной глюкозой до конечной концентрации (0,1-0,2)%. При достижении биологической концентрации по БК (15-20) 10 9 кл.см -3 и (8-10) 10 9 кл.см -3 по БKt прекращают добавление глюкозы до снижения рН 4,0 и отключают подачу воздуха. Затем отключают обогрев реактора, среду охлаждают до (15-19)° С. Полученную охлажденную культуру перекачивают в емкости или расфасовывают во флаконы.

При указанном способе культивирования получают пробиотический препарат в виде жидкой формы с содержанием (80-95)% спор и живых вегетативных клеток бактерий штамма Bacillus subtilis ВКМ В-2287.

Предложенный пробиотический препарат безвреден, не содержит посторонней микрофлоры. Безвредность проверена на белых мышах массой тела (18-20) г, которым перорально вводили препарат в объеме 1,0 мл.

Препарат обладает специфической активностью: количество клеток в одной дозе препарата (8-20)10 9 кл.см -3 , антагонистическая активность - зона задержки роста тестовых микроорганизмов составляет от 10 до 38 мм.

Таким образом, предлагаемый штамм Bacillus subtilis ВКМ В-2287 может быть использован как производственный для получения препарата пробиотического действия, рекомендуемого для профилактики и лечения желудочно-кишечных заболеваний животных, птицы, рыбы.

Изобретение поясняется примерами.

Пример 1. Испытания предложенного пробиотического препарата на новорожденных телятах и поросятах.

Эффективность препарата на основе предложенного штамма Bacillus subtilis ВКМ В-2287 была испытана на новорожденных телятах и поросятах с диагнозом диарея, протекавшей на фоне сложной эпизоотической обстановки в хозяйстве. Контрольные группы телят и поросят содержались согласно принятой в хозяйстве технологии. Телятам и поросятам опытных групп дополнительно задавали препарат на основе предложенного штамма Bacillus subtilis BKM В-2287 перорально с небольшим количеством воды за 20 минут до кормления в разовой дозе на голову по 15 мл телятам и по 20 мл поросятам три раза в сутки в течение трех суток. Наблюдения показали, что в опытных группах через сутки после дачи препарата улучшилось общее состояние всех животных, диарея прекратилась, а еще через двое суток все животные были практически здоровы. Состояние животных в контрольных группах характеризовалось продолжением состояния диареи, падеж составил 10% у телят и 22% у поросят.

Пример 2. Добавление пробиотического препарата “Субтилис+” в корм аквариумных рыб.

Проводилось кормление подрощенной молоди золотых рыб (оранда) экструдированным кормом с добавлением пробиотического препарата “Субтилис+”. Количество корма составляло 10 кг, добавленного пробиотика 1 мл. Количество рыб в опытной и контрольной группах составляло по 250 экз. Кормление осуществляли 4-6 раз в сутки. Корм поедался охотно. Темп роста молоди в опытной группе по сравнению с контрольной составил 22%. Выход рыб в опытной - 98%, в контрольной - 78%. Вода в аквариумах не портилась, мутность отсутствовала.

Пример 3. Сохранность цыплят в первые недели.

Проведены испытания “Субтилис+” на цыплятах бройлерной птицефабрики (по 5 птичников в опытной и в контрольной группах). Отход цыплят контрольной группы, не получавших пробиотик, составил 4%, опытных - 0,2%. В опытных группах цыплята более интенсивно набирали вес. После первых трех дней средний вес цыпленка в контрольной группе равнялся 61 г, в опытной - 70 г.

Проведенные испытания показали эффективность препарата “Субтилис+”, получаемого на основе предложенного штамма Bacillus subtilis BKM В-2287.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Штамм бактерий Bacillus subtilis BKM В-2287, используемый для получения пробиотического препарата, предназначенного для профилактики и лечения желудочно-кишечных заболеваний животных, птицы и рыбы.

Сенная палочка

Научная классификация

Определение : Бактерии.
Класс : бациллы.
Семейство : бацилиас.
Род : бацилус.
Вид: Bacillus subtilis, тип биномиального имени "сенная палочка " утверждён Эренбергом в 1835, подтверждён Кохом в 1872 .

Сенная палочка , является представителем грамположительных, и каталазо-положительных бацилл, встречается обычно в земле. В отличие от ряда других известных видов, она исторически была классифицирована как облигатный аэроб, хотя в 1998 году исследование показало, что это не совсем правильно.
Само наименование "сенная палочка" происходит от того, что её легко и быстро можно обнаружить из закисшего настоя сена.
Сама бактерия похожа на прозрачную прямую бациллу, габаритом приблизительно 0,7 микрон в поперечнике и длинной 2-8 микрон. Сама бактерия способна плодиться дроблением и споровыми формациями. Эпизодически единичные бактерии этого вида, остаются объединенными тонкими нитями.

Популярна эта сенная бактерия потому, что вырабатывает "антибиотические соединения". И также известна благодаря выделяемым лёгким органическим кислотам. Считается врагом болезнетворных и условноболезнетворных микробов, типа стрептококков, сальмонелл, протеев почвенных, золотистого и обычного стафилококка, кандиды. Она продуцирует ферменты, устраняющие клеточные стенки грибницы для разрушения тканей грибков; производит витаминные комплексы, растительные аминокислоты, иммунноактивные факторы.

Общее описание

Сенная палочка является одной из самых изученных прокариот с точки зрения молекулярной биологии и клеточной биологии. Её превосходная генетическая податливость и бациллы относительно большого размера, обеспечили мощные инструменты, необходимые для расследования бактерии по всем возможным аспектам.
Сенная палочка является облигатным аэробом (кислород нужен). Но в последнее время было установлено, что в присутствии нитратов или глюкозы, может быть как аэробом, так и анаэробом, что делает её факультативным анаэробом. Сенная палочка может образовывать эндоспоры, это позволяет ей выдерживать экстремальные температуры, а также сухие среды. Но они не являются они истинными, а скорее на споры похожие образования.

Сенная палочка не считается патогенной или токсичной и не является причиной смертельных заболеваний. Она присутствует везде – в воздухе, почве, растениях, а также в массе компоста. Сенная бацилла один из главных микроорганизмов присутствующих в верхних слоях почвы.
Однако, что интересно, это основная среда обитания сенных бактерий в желудках жвачных и в тонком кишечнике человека. Исследование 2009 года на плотность спор, обнаруженных в почве (~ 106 спор на грамм), и того, что найдено в фекалиях человека (~ 104 спор) на грамм. И как можно заметить, что почва просто служит этаким подобием резервуара, а кишки и желудки это то, где она живёт и размножается.

Сенная палочка , как сельскохозяйственный и защитный инструмент.Подавляет болезнетворные микроорганизмы в почве путем конкурентного ингибирования и генерации натуральных антибиотических соединений. Сенная бактерия производит изобилие полезных соединений и ферментов, что наиболее важно, она производит токсический элемент под названием субтилизин из класса липопептидных антибиотиков, под названием «iturins». «Iturins» имеет истинно фунгицидную активность в отношении многих патогенов, таких как оидиум, корневые гнили, фитофтора, фузариоз, чёрная плесень, сосудистый бактериоз, мукоровые гнили, серая гниль, антракноз, бактериальный ожог, синегнойная палочка, бактериальный рак, а также против нематод.

Сенная Палочка Bacillus subtilis

Антибиотик, выделяемый из этой бактерии вне конкуренции у других микроорганизмов, так как убивает их путем прямого уничтожения или снижения скорости их роста. Таким путем сенная палочка занимает пространство на корнях растений, оставляя меньше площади для оккупации возбудителями заболеваний.
Бациллы сенные потребляют экссудаты симбионтов, чем лишают возбудителей болезни основного источника питания, тем самым подавляя их способность выживать и размножаться. И это позволяет защитить растение от патогенных микроорганизмов.

Ещё эта бактерия производит естественное поверхностно-активное вещество, которое обладает способностью к био-разложению углеводородов нефти.
Она также стимулирует экспрессию гена естественных защитных механизмов у растений и животных.
А штамм QST 713 (продается как QST 713 или Серенада) используют в качестве агента биологической борьбы, как фунгицид из природы. На основании этого штамма данной бактерии вырабатывают ряд лекарств, нужных для охраны овощных, ягодных,плодовых, и прочих растений от грибковых заболеваний. На данный момент одним из самых действенных био-фунгицидов считаются препараты, содержащие споры этой бациллы.

Землю принято называть планетой людей, хотя, по справедливости, люди - лишь крохотная часть её обитателей. На самом деле, голубой шар следовало бы именовать планетой бактерий, потому что именно эти «ничтожные» микроорганизмы не только самые многочисленные, но и самые вездесущие. Они присутствуют буквально везде - не только на поверхности, но и внутри любого живого существа, в том числе и собак.

Кишечник как поле боя

Жизнь бактерий чрезвычайно интересна и необычайно сложна - это вам любой бактериолог скажет. Мы поговорим с вами о тех бактериях, которые населяют кишечник наших питомцев, ведь именно от них во многом зависит здоровье собаки. Задумайтесь, кишечник плотоядного животного Canis Familiaris отряда волчьих в пять раз длиннее его туловища.

Это не только огромный плацдарм для важнейших жизненных процессов, но и настоящее поле боя. Здесь идёт сражение за здоровье нашей собаки, а бойцами выступают те самые «хозяева планеты» - бактерии. Как в любой войне, в ней есть «наши» и те, кто им противостоит. В кишечнике эти роли играют полезная и патогенная микрофлора.

Каждый из них стремиться занять как можно больше места, и в зависимости от того, кому это удастся лучше, и зависит здоровье собаки. На стороне патогенной микрофлоры - много союзников. Это и стрессы, и плохая экология, и различные заболевания, и даже лекарства, которыми их лечат.

А вот полезная микрофлора гораздо более уязвима, численность её бойцов напрямую связана с тем, получает ли собака с питанием достаточное количество пробиотических бактерий или нет.

Bacillus subtilis - стойкий боец

Добиться стойкого перемирия в кишечнике сложно, и кормить собаку пищей, обогащённой пробиотиками, становится насущной необходимостью. По мнению ветеринарных врачей, наилучшим рационом для собаки является качественный сухой корм. Только вот большинство пробиотиков не могут пережить процесс его приготовления: слишком они чувствительны к температурным воздействиям.

Однако на наше счастье в неподдающейся исчислению армии бактерий есть и стойкие бойцы. Разрешите представить - Bacillus subtilis. Её полное имя звучит торжественно: грамположительная спорообразующая аэробная бактерия, а по-простому - сенная палочка. Сенная - потому, что раньше Bacillus subtilis получали исключительно из сенных отваров, а палочка - потому, что именно так бактерия выглядит под микроскопом.

Сенная палочка Bacillus subtilis широко распространена в природе, в присутствии кислорода она образует споры, что позволяет ей сохраняться во внешней среде в течение длительного периода. Бактерия живёт в почве, выживая, что называется, при любой погоде. Именно в невероятной устойчивости и заключается одна из главных особенностей сенной палочки.

Она не гибнет под воздействием антибиотиков, химических препаратов, высоких температур, вплоть до кипячения, не страшно ей и замораживание. Не разрушаясь, Bacillus subtilis проходит через кислую среду желудка в тонкий кишечник, где продолжает сохранять устойчивость к флавомицину, канамицину, антибиотикам тетрациклинового ряда, пенициллину и другим агрессивным к микроорганизмам веществам.

Польза сенной палочки

Бактерия Bacillus subtilis отличается на только устойчивостью - биологическая активность сенной палочки также примечательна. Как и все пробиотики, она выделяет пищеварительные ферменты (амилаз, липаз, протеаз) и успешно конкурирует с патогенными микроорганизмами за «место под солнцем».

А кроме этого, сенная палочка ещё и сама вырабатывает антибиотические вещества, убивающие эти самые патогены, а также оказывает активное антитоксическое и иммуностимулирующее действие, индуцируя интерферон и способствуя синтезу иммуноглобулинов.

Препараты на основе Bacillus subtilis широко используют в человеческой медицине для профилактики и лечения заболеваний ЖКТ, дисбактериоза, лёгочных инфекций, подавления роста патогенных и условно патогенных микроорганизмов (сальмонеллы, кишечной палочки, аэромонад, псевдомонад и других).

Корма Blitz с пробиотиком

Как сделать так, чтобы этот «универсальный солдат» бактериального мира каждый день оказывался в миске вашей собаки? Нет ничего проще. Кормите её кормом Blitz - не имеющим аналогов на российском рынке сухим рационом, обогащённым пробиотиком Bacillus subtilis и не только им, а ещё не менее полезной и устойчивой бактерией Bacillus licheniformis.

С кормом Blitz ваша собака не только каждый день будет получать все необходимые для долгой активной жизни питательные вещества и микроэлементы, но и будет надёжно защищена. Ведь с такими бойцами в её кишечнике всегда будут побеждать «наши».

Бактерии Bacillus Subtilis и Bacillus Licheniformis выделены из почвы в экологически чистом районе Сибири. Бактерия Bacillus Subtilis штамм ВКПМ В 7092 получена из Bacillus Subtilis штамм ВКПМ В 7048 путем модификации ее плазмидой рВМВ 105, способной продуцировать интерферон 2-альфа-лейкоцитарный человеческий.

Являясь фактором неспецифической резистентности организма, он обладает следующими основными видами активности: противовирусным эффектом; подавляет рост и развитие внутриклеточных инфекционных агентов невирусной природы (хламидии, риккетсии, бактерии, простейшие); антитоксическим действием.

Бактерии Bacillus Subtilis и Bacillus Licheniformis обеспечивают организму возможность поддерживать микробоциноз на уровне экологически естественного, оптимизируют обмен веществ и снабжение организма биологически активными и строительными веществами, обеспечивают качественное переваривание пищи.

При попадании бактерий в ЖКТ они живут в нём не более 30 дней , после чего выводятся естественным путем. В желудке бактерии этого вида не погибают, поскольку в споровом виде обладают высокой устойчивостью к воздействию желудочного сока.

Применение препаратов, в состав которых входят бактерии Bacillus Subtilis штамм ВКПМ В 7048 и Bacillus Licheniformis штамм ВКПМ В 7038, Bacillus Subtilis штамм ВКПМ В 7092, может быть эффективным при профилактике и лечении следующих заболеваний человека:

  • местные первично-гнойно-воспалительные процессы кожи и мягких тканей: импетиго, целлюлиты, фолликулиты, фурункулы, карбункулы, гидраденит (сучье вымя), фарингиты, ангины, риниты, панариции, абсцессы, флегмоны, пиодермии и др.;
  • системные стафилококковые инфекции: острый и хронический гнойные отиты, конъюнктивиты, синуситы, медиастиниты, перикардиты, маститы, аппендициты, холециститы, панкреатиты, парапроктиты, перитониты, энтериты, колиты, пиелонефриты, пиелиты, уретриты, циститы, сальпингоофориты, остеомиелиты, менингиты, омфалиты, панариции и др.;
  • эшерихиозы; цистит, пиелит, холецистит, оканчивающиеся иногда колибациллярным сепсисом; кишечные инфекции (токсикоинфекции, диареи), поражения мочевыводящих путей; бактериемии; менингиты, респираторные инфекции и др.;
  • сальмонеллезы - брюшной тиф и паратифы, гастроэнтериты и септицемии;
  • кожные поражения, абсцессы, инфекции ожоговых поражений, кератиты, отиты наружного уха (в том числе злокачественные), менингиты, бактериемия (септицемия), эндокардиты, энтериты, пара- и ректальные абсцессы, пневмонии, инфекции мочевыводящих путей, остеомиелиты и артриты;
  • пищевые токсикоинфекции (чаще всего клиника заболевания обусловлена развитием гастрита, энтерита, колита или их сочетаний);
  • оро-фарингеальный кандидоз (хейлит, гингивит, заеды, глоссит, стоматит, фарингит); кандидоз пищевода (осложнения: кровотечение, стриктура); кандидоз желудка: диффузный (специфический эро-зивно-фибринозный гастрит), фокальный (вторичный для язвы желудка); кандидоз кишечника: инвазивный диффузный, фокальный (вторичный для язвы 12-перстной кишки, при неспецифическом язвенном колите), неинвазивный (избыточный рост Candida в просвете кишечника); аноректальный кандидоз: инвазивный кандидоз прямой кишки; перианальный кандидозный дерматит; поверхностный кандидоз; кандидозное интертриго; пеленочный дерматит:

паронихии и онихии; кожно-слизистый кандидоз; кандидоз ротовой полости (молочница); кандидозный вульвовагинит; кандидозный баланит; хронический кожно-слизистый кандидоз; диссеминированный кандидоз (кандидозный сепсис, системный кандидоз);

кандидозный эндокардит; лёгочные поражения сопровождающиеся развитием инфильтратов, включающих псевдомицелий возбудителя:

кандидозная септицемия; поражения глаз: кандидозный ретинит и кандидозный панофтальмит;

  • пневмонии; госпитальные поражения дыхательных путей (бронхиты и бронхопневмонии); поражения мочевыводящих путей, мозговых оболочек, суставов, глаз, а также бактериемии и септикопиемии; озена или хронический атрофический зловонный насморк: риносклерома - хроническое гранулематозное заболевание дыхательных путей;
  • инфекционный гастроэнтерит, острые кишечные инфекции (ОКИ), инфекции мочеполовой систе-мы (МПС);
  • диарея, урологические и септические заболевания детей и взрослых людей;
  • иерсиниоз - инфекционное заболевание, сопровождающееся диареей, энтеритом, псевдоаппендицитом, илеитом, узловатой эритремой и (иногда) септицемией или острым артритом;
  • бактериальная дизентерия или шигеллез;
  • инфекций почек и мочевыводящих путей (острый пиелонефрит, обострение хронического простатита).

Интерферон 2-альфа-лейкоцитарный человеческий, нарабатываемый бактериями Bacillus Subtilis в ЖКТ через его стенки попадает в кровоток. Кроме того, нами установлено, что бактерии Bacillus Subtilis и Bacillus Licheniformis являются природными индукторами интерферонов, то есть активно стимулируют в организме образование собственных эндогенных интерферонов.

Этот путь более естественен, чем введение искусственных интерферонов любым способом, и соответствует природному.

Спектр заболеваний, при которых показана интерферонотерапия, можно разделить на три большие группы:

  1. инфекционные болезни - различные формы герпетических поражений (вирусные кератоконь-юнктивиты и кератиты, кератоувениты, герпес гениталий, опоясывающий лишай); острые и хронические вирусные гепатиты (А, В, С, Д (дельта)); ОРВИ (рино-, короновирусная инфекция, вирусы гриппа и парагриппа); СПИД; папилломавирусные инфекции (остроконечные кондиломы, ювенильпый папилломатоз гортани, бородавки и др.); энцефалиты (клещевой); серозные менингиты различной этиологии; корь; эпидемический паротит; бешенство; цитомегаловирусные инфекции; вирусные осложнения при пересадке органов на фоне применения иммунодепрессантов; подострый склерозирующий панэнцефалит; гнойно-септические заболевания новорожденных; постнатально приобретенные хронические цитомегаловирусные инфекции; псориаз; эпидемический паротит; рассеянный склероз; различные бактериальные заболевания (хламидиозы, легионеллезы, листереллезы, риккетсиозы).
  2. онкологические заболевания - В-клеточные и Т-клеточные злокачественные новообразования крови:
    - лейкемии; лимфомы: В-клеточный хронический лимфолейкоз; множественные миеломы; тромбоцитопении: эссенциальная тромбоцитемия и вторичный тромбоцитоз и др.);
    - солидные опухоли: карциномы (кератоаконтома), глиомы, злокачественные меланомы; гемопоэтические неоплазии; волосатоклеточный лейкоз; хронический миелолейкоз;
    - злокачественные Т-клеточные лимфомы кожи: грибовидный микоз, первичный ретикулез; гипернефромы; базально-клеточный и плоскоклеточный рак кожи; саркома Капоши самостоятельно и в ассоциации сВИЧ-инфекцией; бородавки обычные, генитальныеи плоские ювенильные; опухоли головы, шеи, мозга; рак яичников; рак шейки матки; рак молочной железы; рак мочевого пузыря; рак легкого; папилломатоз гортани; рак почки.
  3. другие формы патологий - детские инфекции; инфекционные токсикозы; избыточная масса тела; уменьшение лейкоцитоза и нейтрофиллеза; сахарный диабет; артрозы и артриты.

Принципиально терапия такими препаратами уместна при любых заболеваниях, поскольку они позволяют решить очень важные проблемы - восстановить микробоциноз и оптимизировать работу иммунной системы.

Уместен приём препаратов этой серии и условно здоровыми, поскольку людей без дефицита иммунитета и дисбактериоза ЖКТ в наше время практически невозможно встретить.

Регулярный контакт с бактериями этих видов естественен для человека, поскольку они на всех этапах эволюции присутствовали в воде, почве, продуктах питания и др.

В настоящее время на рынке присутствуют препараты в различных препаративных формах: порошки, капсулы, свечи, жидкости, гели. При подборе дозировки и кратности приёма необходимо иметь в виду, что лечебный эффект напрямую зависит не от количества препарата принятого единовременно, а от кратности применения - чем чаще, тем выше терапевтический эффект.

Передозировка отрицательных последствий не имеет. Противопоказанием служит только индивидуальная непереносимость действующею начала.

Она может быть выражена в виде аллергии на сенную палочку. Этот вид заболевания встречается крайне редко и может быть выражен в виде сыпи на теле. В этом случае приём препаратов необходимо прекратить. Сыпь пройдет через несколько дней.

Препараты на основе Bacillus Subtilis и Bacillus Licheniformis желательно принимать регулярно: перорально, наносить на кожу (допускается принимать ванны), слизистые оболочки, он должен попадать в глаза и нос.

Некоторые наблюдения

1. Отмечено, что при проведении субтилитерапии наблюдается «обострение» болезней - возникают неприятные болевые ощущения в различных органах.

Наиболее вероятная причина - болевой сигнал поступает из мест локализации «хронических дефектов». В этом случае желательно пройти обследование в соответствующем медицинском центре. В соответствии с полученными результатами принять меры по лечению хронического заболевания.

2. При приёме препаратов перорально часто реализуется либо понос, либо запор, в конечном итоге практически всегда стул нормализуется.

Этот эффект связан с процессом нормализации микробоциноза в ЖКТ. Его неоднозначность обусловлена многообразием микробных сообществ в ЖКТ у различных людей, и, как следствие, неоднозначностью реакции организма на проведение субтилитерапии.

3. Часто наблюдается изменение цвета и запаха мочи, запаха и интенсивности выделения пота. Этот эффект обеспечен интенсивным выводом токсинов из организма (продукты распада сторонней микрофлоры, продукты метаболизма клеток организма и др.).

После завершения курса терапии моча должна стать прозрачной, без видимых включений и не иметь резкого запаха. Если этот эффект не достигнут следует провести обследование на предмет наличия хронических заболеваний в соответствующем медицинском учреждении.

4. Иногда в процессе субтилитерапии на коже наблюдается сыпь в виде мелких прыщей.

Наиболее вероятная причина этого явления - чрезмерно активный вывод токсинов через кожу.

Сыпь всегда проходит в процессе курса субтилитерапии.

5. Отмечено, что в процессе и некоторое время после субтилитерапии (особенно это касается препаратов, в которых в качестве действующего начала использованы бактерии Bacillus Subtilis штамм ВКПМ В 7092) при принятии алкоголя получить эффект опьянения существенно сложнее, эффект «похмелья» не реализуется практически никогда.

1. Субтилитерапию препаратами на основе бактерий Bacillus Subtilis штамм ВКПМ В 7092 для «здоровых» желательно проводить по схеме:

Кратность - не менее 5-7 доз в день. Длительность курса -10 дней.

2. Для тяжелобольных кратность приёма желательно увеличить до 10 и более раз. Длительность приема- 10 дней.

3. Для онкологических больных основной лечебный эффект наступает после 10 дней регулярного приёма. Это связано с тем, что после 10 дней приема препарата в крови многократно увеличивается концентрация клеток Nк киллеров. У здоровых людей это явление может вызвать аутоиммунную реакцию. У больных онкологическими заболеваниями - мощный лечебный эффект.

4. Больным сахарным диабетом следует быть осторожными при подборе кратности приёма - на первом этапе желательно принять одну дозу. Если нежелательных ощущений не возникло в течение 1-2 часов, можно принять вторую дозу и так в дальнейшем.

Это связано с тем, что препараты с действующим началом в виде бактерий Bacillus Subtilis штамм ВКПМ В 7092 вызывают существенное падение концентрации сахара в крови, что может ввести больного в кому. После завершения 10-и дневного курса следует принимать препараты на основе бактерий Bacillus Subtilis штамм ВКПМ В 7048 и Bacillus Licheniformis штамм ВКПМ В 7038. Кратность приема следует подбирать, ориентируясь на ощущения и динамику падения концентрации сахара в крови. Максимальный терапевтический эффект из двух последних штаммов принадлежит Bacillus Licheniformis штамм ВКПМ В 7038.

5. Способ введения микроорганизмов в организм имеет существенное значение для достижения максимального терапевтическою эффекта. Имеющиеся в продаже препаративные формы позволяют вводить бактерии в организм:

Перорально (порошки и капсулы);

Ректально (Клизмы из жидких препаративных форм обеспечивают максимальный терапевтический эффект при введении препарата в прямую кишку на глубину 10 см. Для выполнения процедуры нужно ку-пить катетер уретральный № 14, шприц медицинский (не менее 5 мл), 100 мл физиологического раствора в емкости с резиновой пробкой.

С помощью шприца содержимое пенициллинового флакона (10 мл) с препаратом перенести в 100 мл физиологического раствора. В результате Вы получите 110 мл готового к использованию рабочего раствора препарата.

Далее, с помощью шприца емкостью не менее 15 мл ото-брать 10 мл рабочего раствора и дополнительно набрать 3 мл воздуха, одеть вместо иглы предварительно обрезанный возле муфты катетер. Лечь на правый бок. Левую ногу приблизить к груди и ввести кате-тер в прямую кишку на глубину 10 см. Шприц с жидкостью расположить вертикально и ввести содержимое в прямую кишку вместе с воздухом. После введения препарата необходимо полежать на правом боку не менее 15 минут.);

При обработке поврежденных участков кожи мази с содержанием указанных выше микроорганизмов следует наносить тонким слоем; лечебный эффект зависит от кратности обработки;

Для нормализации состава микробных сообществ на поверхности кожи следует принимать ванны с добавлением жидких препаративных форм (по 10 мл препаратов на основе бактерий Bacillus Subtilis штамм ВКПМ В 7048 и Bacillus Licheniformis штамм ВКПМ В 7038 соответственно на ванну);

Для укрепления и стимуляции роста волос желательно их полоскать после мытья раствором жидких препаративных форм препаратов на основе бактерий Bacillus Subtilis штамм ВКПМ В 7048 и Bacillus Licheniformis штамм ВКПМ В 7038 (допустимо их разводить в 10 000 раз); этот эффект обеспечен тем, что качество волосяного покрова находится в прямой зависимости от состава микробного сообщества на поверхности головы - обработка жидкими препаратами приводит его в соответствие с экологически естественным;

При профилактике и лечении геморроя обработки следует проводить регулярно - для здоровых достаточно 1 раз в месяц, для страдающих этим заболеванием, - чем чаще, тем выше лечебный эффект;

При лечении кандидозов, эрозий вагины и шейки матки - обработку допустимо проводить препаратами в гелевой либо жидкой препаративной форме.

Обширный перечень терапевтических эффектов, обеспеченных бактериями Bacillus Subtilis штамм ВКПМ В 7092, Bacillus Subtilis штамм ВКПМ В 7048 и Bacillus Licheniformis штамм ВКПМ 7038, обусловлен, прежде всего, их свойствами, приобретенными в процессе эволюции.

Микробы, являются одним из элементов среды обитания человека и животных. По оценкам, сделанным учёными, около 90 % биомассы планеты состоит из микробов различных родов и видов; 2-3 % массы тела человека составляют микробы, формирующие нормальный экологически естественный микробный пейзаж в различных органах и системах человеческого тела и обеспечивающих оптимальное функционирование всей экосистемы, которой является человек.

Постоянство клеточного состава тела человека - залог его здоровья и долголетия . Один из механизмов поддержания гомеостаза организма человека и животных - постоянный контакт экосистемы человека с микробами - сапрофитами, среди которых наиболее эффективными для полдержания гомеостаза являются бактерии видов Bacillus Subtilis и Bacillus Licheniformis.